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CLOSED FORM INTEGRATION OF THE ROTATING PLANE

PENDULUM NONLINEAR EQUATION†

GIOVANNI MINGARI SCARPELLO AND DANIELE RITELLI

Abstract. The article deals with the nonlinear differential equation of the frictionless motion

of a heavy pendulum swinging in a vertical plane which rotates at a fixed angular speed. The

authors focused on its closed form integration by means of the Jacobi elliptic functions. This

research took its origin by an autonomous work of the authors; this subject was also developed

by [3], who did a treatment by far different from ours.

1. Introduction

In this paper we will perform the explicit integration - through the Jacobian elliptic

functions - of the nonlinear scalar ordinary differential equation:







ϑ̈ = a sinϑ cosϑ − b sinϑ, a, b > 0,

ϑ(0) = ϑ0,

ϑ̇(0) = ϑ̇0.

(1.1)

The problem (1.1), has been originated by the Watt (flyball) governor motion analysis, in

the absence of both, the friction along the round and the feedback on the angular speed

ω of the driving diametral shaft. This problem is present in the nonlinear literature, [4]

and [3]: it belongs to the direct dynamical ones.

We are then dealing with the frictionless circular (radius R) motion of a fixed length

bead whose oscillating plane rotates about the circle’s diameter joining its poles at a

fixed angular speed ω. Let ϑ be the mobile point coordinate. The point speed component

tangent to the trajectory in its plane is Rϑ̇, that on the weight direction is Rω sin ϑ.
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The system is hamiltonian, holonomic and single degree of freedom. Taking as origin

the circle’s center, and as reference the rotation axis oriented downwards, with the ϑ

angle measured according to the picture, the potential, due to the weight only, will be

mRg cosϑ. The Lagrange function is:

L =
1

2
mR2

(

ϑ̇2 + ω2 sin2 ϑ
)

+ mRg cosϑ,

which will lead us to the relative motion Lagrange equation:

ϑ̈ = ω2 sinϑ cosϑ − g

R
sin ϑ. (1.2)

The equation (1.1) then is a generalized pendulum equation whose motion plane is ro-

tating at a constant angular speed. The (1.2) bifurcations have been analyzed at [4],

pages 40-42, which the reader, interested in the motion’s qualitative analysis, is referred

to. The article [3] analyzes a similar physical object (but its hamiltonian is perturbed

from the reference one) and their relevant phase curves, in order to detect stability and

resonance.

Our overall different pattern of enquiry is the response of (1.2) on the (ϑ, t) plane

for a large span of initial conditions, keeping the hamiltonian function unperturbed, and

disregarding instability and resonances. The Legendre reduction of the elliptic integrals

to their standard form will be followed according to the Bateman Project Staff work [9].

The (1.1) structure refers to the Weierstraß theorem: we are faced with a second

order autonomous differential equation:















ϑ̈ = f(ϑ)

ϑ(0) = ϑ0,

ϑ̇(0) = ϑ̇0,
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for which, separating the variables, the time equation, is:

t =

∫ ϑ

ϑ0

dξ
√

Φ(ξ)
, (1.3)

with:

Φ(ϑ) = 2

∫ ϑ

ϑ0

f(ξ)dξ + ϑ̇2
0,

and where the sign either + or − has to be selected, according to the sign of the initial
speed ϑ̇0, or, if ϑ̇0 = 0 accordingly with f(ϑ0) sign, as it is well known, see e.g. [7] page
114. The Φ = 0 roots’ existence and nature, marks completely the motion, deciding its
periodicity or aperiodicity. Furthermore the reality condition Φ ≥ 0 must be met. For
details the reader is referred to [1] pages 287-293, or to [7] page 114.

In next section, we will tackle the case of zero initial speed (akinetic case) with the
angle ϑ0 in the first quadrant, whilst at section 3 the integration of the motion equation
will be carried out. Section 4 will go into the motion of non zero starting speed (kinetic

case), to be integrated in section 5. The system dynamical behaviour is ruled by the
kinetic energy initially owned by the particle, and its initial angular speed. Summarizing,
the governor can have:

• periodic motions, namely (perpetual) oscillations.

• aperiodic revolutions, where the particle performs infinite rounds on the circle. We
will prove the aperiodic revolution is possible in the kinetic case only.

• asymptotic behaviour, where the point unceasingly turns to a position it joins
never.

2. Motion Starting up with Zero Initial Speed

In this section we are dealing with the Cauchy problem:















ϑ̈ = a sinϑ cosϑ − b sinϑ, a, b > 0,

ϑ(0) = ϑ0 ∈ ]0, π[ ,

ϑ̇(0) = 0,

(2.1)

concerning the motion of a point starting by quiet (akinetic case). Of course the treat-
ment’s generality is not reduced if we suppose ϑ0 ∈ ]0, π[. Performing a first integration
we obtain, following the classic Weierstraß approach:

ϑ̇2 = 2

∫ ϑ

ϑ0

(a sin ξ cos ξ − b sin ξ) dξ

= −a(cosϑ − cosϑ0)
(

cosϑ − 2b − a cosϑ0

a

)

.
= Φ(ϑ). (2.2)
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The problem is defined for all ϑ values such that:

−a(cosϑ − cosϑ0)
(

cosϑ − 2b − a cosϑ0

a

)

≥ 0, (2.3)

whilst the sign for ϑ̇ is given by that of a cosϑ0 − b, due to the fact that sinϑ0 > 0. The
condition (2.3) then induces two different kind of motions, according to either:

∣

∣

∣

∣

2b − a cosϑ0

a

∣

∣

∣

∣

≤ 1, (2.4)

or:
∣

∣

∣

∣

2b − a cosϑ0

a

∣

∣

∣

∣

> 1. (2.5)

Let first (2.4) be true. So, the equation Φ(ϑ) = 0 will have four roots in the reference
interval [−π, π], namely two further ones are added to ϑ0 and −ϑ0. Such a condition is
clearly equivalent to:

a(cosϑ0 − 1) ≤ 2b ≤ a(cos ϑ0 + 1). (2.6)

The left hand side inequality in (2.6) is always strictly met, whilst the right hand side
one, will be satisfied if:

b ≤ a

2
(cosϑ0 + 1). (2.7)

Therefore (2.7) ensures four real roots of Φ = 0 in the reference interval. For describing
the motion completely, it is necessary to know the couple of further roots induced by the
assumption (2.4) with respect to the root ϑ0. Therefore we will analyze three different
cases:

cosϑ0 T 2b − a cosϑ0

a
.

The matter is decided by the following oscillation theorem:

Theorem 2.1. If the condition (2.7) holds in the strict sense, i.e.:

b <
a

2
(1 + cosϑ0)

and, moreover:

a cosϑ0 < b, (2.8)

then a value ϑ1 ∈ ]0, ϑ0[ shall exist such that the motion will be periodic bounded between

ϑ1 and ϑ0.

Proof. The (2.7) condition allows to put:

ϑ1 = arccos

(

2b − a cosϑ0

a

)

, (2.9)

and, due to (2.8), it there will be: 0 < ϑ1 < ϑ0. Furthermore ϑ1 is a simple root of Φ = 0,
and then the thesis follows because the allowed angles shall comply with (2.3).
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In the special cases with the physical parameters a and b such that the = sign in (2.7)

holds, an asymptotic motion will take place.

Theorem 2.2. Under the Theorem 2.1 hypotheses, if:

b =
a

2
(1 + cosϑ0), (2.10)

then the particle will point asymptotically towards the south pole of the loop, i.e. ϑ1 = 0.

Proof. It is easy to see that (2.10) implies 2b−a cos ϑ0

a
= 1 and then Φ = 0 has a

double root in ϑ = 0: the trajectory will reach ϑ = 0 in an infinite time.

The angle ϑ decrease from ϑ0 to ϑ1, ruling to take the minus sign before the root in

(1.3), is confirmed by the negative sign of:

∂Φ

∂ϑ
(ϑ0) = sinϑ0(a cosϑ0 − b) < 0.

We can analogously mark the symmetric situation when the inequality in (2.8) is reversed.

Theorem 2.3. If (2.7) and:

a cosϑ0 > b. (2.11)

are both satisfied, then a value ϑ1 ∈ ]ϑ0, π[ will exist such that the particle moves period-

ically between ϑ0 and ϑ1.

Proof. The angle ϑ1 is defined as in the previous proof, but now, due to (2.11) we

have: ϑ1 > ϑ0. The conclusion follows by the condition (2.3).

We are faced with an asymmetric situation: the retrograde motion will allow asymp-

totic behaviour towards the south pole of the governor, while an asymptotic motion to

the north pole is not possible. Of course it depends on the fact that the initial angular

speed is zero. We will prove the existence of both asymptotic motions in the kinetic case.

In order to analyze the degeneration a cosϑ0 = b, let us note that (2.3) becomes:

−a(cosϑ − cosϑ0)
2 ≥ 0,

and therefore ϑ0 is a stationary solution. This is also confirmed by (2.1) which will give:

ϑ̈ = a sinϑ(cos ϑ − cosϑ0).

The shown results are founded upon both the assumption (2.7) and the motion reality

condition (2.3). If, on the contrary, one assumes the inequality (2.5), then two separate

events can occur:

either
2b − a cosϑ0

a
> 1, or

2b − a cosϑ0

a
< −1.
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In the first case we have:

2b > a(cosϑ0 + 1), (2.12)

then the existence condition (2.3) becomes:

cosϑ ≥ cosϑ0.

So, we proved the:

Theorem 2.4. If (2.12) is assumed, then the movement, ruled by (2.1) is bounded

between the initial equilibrium position ϑ0 and its symmetrical −ϑ0.

If the second occurrence holds in (2.5), namely:

2b − a cosϑ0

a
< −1, (2.13)

we find the motion problem looses its physical meaning because (2.13) is equivalent to

2b < a(cosϑ0 − 1), whose validity would allow b < 0 and, as a consequence, a negative

(upwards) gravity acceleration.

The analysis, up to this point, is rather long but crucial for the originality of this

paper consisting of the closed form integrations of (2.1). How we will see, if the initial

angular speed is zero, the motion will be periodic, except when:

cosϑ1 =
2b − a cosϑ0

a
= 1,

as explained by Theorem 2.2.

3. The Akinetic Case: Closed form Integration

We will start under the same assumptions of whichever Theorems 2.1, 2.2 and 2.3.

Afterwards the motion equation will be integrated under the Theorem 2.4 assumptions.
Following the Theorems 2.1 and 2.3, we will find periodic motion bounded between the

anomalies ϑ0 and ϑ1, because the equation Φ = 0 has four roots, ±ϑ0, ±ϑ1 in the

reference range [−π, π], whilst for (2.9) ϑ1 is:

cosϑ1 =
2b − a cosϑ0

a
. (3.1)

Of course the inequality (2.7) ensures that (3.1) is well defined. The differential equation

(2.2) can then be written as:

ϑ̇ = −
√

−a(cosϑ − cosϑ0)(cosϑ − cosϑ1), (3.2)

and following the Theorem 2.1, we have ϑ1 ≤ ϑ ≤ ϑ0, whilst due to the Theorem 2.3, it

will be ϑ0 ≤ ϑ ≤ ϑ1.
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Theorem 3.1. If the assumptions of Theorem 2.1 are met, so that an oscillation(1)

takes place between ϑ0 and ϑ1, with ϑ0 > ϑ1 > 0, putting:

k2 =
2(cosϑ1 − cosϑ0)

(1 − cosϑ0)(1 + cosϑ1)
, µ =

2
√

(1 − cosϑ0)(1 + cosϑ1)
,

then the motion is found to be:

ϑ(t) = arccos

(

sn2(
√

a

µ
t, k)(cosϑ0 − cosϑ1) − cosϑ0(1 + cosϑ1)

sn2(
√

a

µ
t, k)(cosϑ1 − cosϑ0) − (1 + cosϑ1)

)

, (3.3)

sn(•, k) being the Jacobian elliptic function sine amplitude of the argument (•) and 0 <

k < 1 its module. The motion period is given by:

T =
4

√

a(1 − cosϑ0)(1 + cosϑ1)
K(k), (3.4)

K(k) being the first kind complete elliptic integral.

Proof. Separating the variables, (3.2) becomes:

t = −
∫ ϑ

ϑ0

dξ
√

−a(cos ξ − cosϑ0)(cos ξ − cosϑ1)
. (3.5)

Or, putting ξ = arccos z:

t =
1√
a

∫ cos ϑ

cos ϑ0

dz
√

(z − 1) (z + 1) (z − cosϑ0) (z − cosϑ1)
. (3.6)

We will reduce the elliptic integral (3.6) to the Legendre standard form, founding on the

identity proved in [9] chapter 13, vol. 2, pages 307-310:

∫

dz
√

(z − α1)(z − α3)(z − α3)(z − α4)
= µ

∫

dϕ
√

1 − k2 sin2 ϕ
,

where:

µ =
2

√

(α1 − α3)(α2 − α4)
, k2 =

α1 − α4

α1 − α3
· α2 − α3

α2 − α4
,

k being the module of the first kind elliptic integral, whilst the new variable ϕ (normal-

izing angle) is defined by:

sin2 ϕ =
α2 − α4

α2 − α3
· z − α3

z − α4
.

(1)When an oscillation is not symmetric, some author like [3] prefers to use the word libration, but
we, like [6], will not follow it.
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We shall afterwards remember that [9] α1 > α2 > α3 > α4, so we have:

α1 α2 α3 α4
x



y

x



y

x



y

x



y

1 cosϑ1 cosϑ0 −1

(3.7)

and the integral (3.6) becomes:

t =
1√
a
µ

∫ arcsinx(ϑ)

0

dϕ
√

1 − k2 sin2 ϕ
, (3.8)

with:

µ =
2

√

(1 − cosϑ0)(1 + cosϑ1)
,

k2 =
2(cosϑ1 − cosϑ0)

(1 − cosϑ0)(1 + cosϑ1)
,

x(ϑ) =

√

1 + cosϑ1

cosϑ1 − cosϑ0
· cosϑ − cosϑ0

cosϑ + 1
,

So we can write (3.8) through the first kind elliptic integral:

t =
µ√
a
F (arcsinx(ϑ), k).

But:

sn

(√
a

µ
t, k

)

= sin(arcsinx(ϑ)) = x(ϑ),

then, solving for ϑ, (3.3) follows.
Let us go to the period, which will be given by the general formula:

T = −2

∫ ϑ1

ϑ0

dξ
√

−a(cos ξ − cosϑ0)(cos ξ − cosϑ1)
.

Being now x(ϑ1) = 1, the oscillation period will be given by:

T = 2
µ√
a
F
(π

2
, k
)

= 2
µ√
a
K(k).

This leads to (3.4) and the proof is over.

The integration is slightly different for the asymptotic motion due to the Theorem
2.2 assumptions. We enunciate the:

Theorem 3.2. Let the hypotheses of Theorem 2.2 be satisfied, and particularly for-

mula (2.10). Then (2.1) has the solution:

ϑ(t) = arccos

(

1 − 4(1 − cosϑ0)

3 − cosϑ0 + (1 + cosϑ0) cosh(t
√

2a(1 − cosϑ0))

)

(3.9)
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Proof. (2.10) shows that, in force of (2.9), we have cosϑ1 = 1, and then the time
equation becomes:

t = −
∫ ϑ

ϑ0

dξ
√

−a(cos ξ − cosϑ0)(cos ξ − 1)
. (3.10)

Now, setting again ξ = arccos z, remembering that z ≥ cosϑ0, (3.10) gives:

t =
1√
a

∫ cos ϑ

cos ϑ0

dz

(1 − z)
√

(1 + z)(z − cosϑ0)
, (3.11)

so, if y = 1 − z, (3.11) is written as:

t = − 1√
a

∫ 1−cos ϑ

1−cos ϑ0

dy

y
√

y2 + (cosϑ0 − 3)y + 2(1 − cosϑ0)
. (3.12)

Integral (3.12) is solved, for example in [10]: assuming c > 0, we have:

∫

dy

y
√

ay2 + by + c
= − 1√

c
ln

(

2
√

c
√

ay2 + by + c + by + c

y

)

.

So, after the integration, going back from y to ϑ and inverting, one will get ϑ as given
by (3.9)

The assumptions for the second oscillating case are the same of Theorem 2.3: but the
integration will be different, due to the new assumptions’ impact on the condition (3.7),
which is critical in starting up the analytic machinery exposed in [9].

Theorem 3.3. Let us match the Theorem 2.3 assumptions are true, and specially

a cosϑ0 > b, so that the particle oscillates between ϑ0 and ϑ1 > ϑ0. Putting:

k2 =
2(cosϑ0 − cosϑ1)

(1 − cosϑ1)(1 + cosϑ0)
, µ =

2
√

(1 − cosϑ1)(1 + cosϑ0)
,

the equation (2.1) will have the solution:

ϑ(t) = arccos

(

(cos ϑ0 − cosϑ1)sn
2(K(k) − t

µ

√
a, k) + cosϑ1(1 + cosϑ0)

(1 + cosϑ0) − (cos ϑ0 − cosϑ1)sn2(K(k) − t
µ

√
a, k)

)

,

with the period:

T =
4

√

a(1 − cosϑ1)(1 + cosϑ0)
K(k).

Proof. The proof is similar to that of the Theorem 3.1, but the identification among
the roots following up the [9] procedure is:

α1 α2 α3 α4
x



y

x



y

x



y

x



y

1 cosϑ0 cosϑ1 −1



336 GIOVANNI MINGARI SCARPELLO AND DANIELE RITELLI

and, as a consequence, the µ and k expressions have to be accordingly changed.

We now have the residual task of integrating the motion differential equation (2.1)
when the governor physical parameters allow only two symmetrical roots of Φ = 0; then
we assume to be compliant with Theorem 2.4, namely 2b > a(cos ϑ0 + 1) having always
cosϑ ≥ cosϑ0 for the movement reality. This will be matter of the:

Theorem 3.4. Under the Theorem 2.4 assumptions, and putting:

p = p(a, b, ϑ0) =
2b − a cosϑ0

a
> 1, (3.13)

with:

µ =

√

2

p − cosϑ0
, k2 =

(p + 1)(1 − cosϑ0)

2(p − cosϑ0)
, (3.14)

then the (2.1) differential equation will have a T periodic solution. For 0 ≤ t ≤ T
4 and

3
4T ≤ t ≤ T, the solution can be written as:

ϑ(t) = arccos

(

(1 − cosϑ0)sn
2(

√
a

µ
t, k) + 2 cosϑ0

2 − (1 − cosϑ0)sn2(
√

a

µ
t, k)

)

, (3.15)

while, for T
4 ≤ t ≤ 3

4T :

ϑ(t) = − arccos

(

(1 − cosϑ0)sn
2(

√
a

µ
t, k) + 2 cosϑ0

2 − (1 − cosϑ0)sn2(
√

a

µ
t, k)

)

, (3.16)

and, in any case, the period is given by:

T = 4
µ√
a
K(k). (3.17)

Proof. The same integration technique is used as for Theorems 3.1, 3.3, starting
from:

α1 α2 α3 α4
x



y

x



y

x



y

x



y

p 1 cosϑ0 −1

with µ and k suitable expressions. In fact, the time integral for ϑ anomalies moving in
reverse sense, namely from ϑ0 to −ϑ0, is elliptic:

t = − 1√
a

∫ ϑ

ϑ0

dξ
√

(cos ξ − cosϑ0)(p − cos ξ)
.

Following the usual transformation [9], after a little algebra, one gets the period as given
by (3.17) and the motion by:

cosϑ(t) =
(1 − cosϑ0)sn

2(
√

a

µ
t, k) + 2 cosϑ0

2 − (1 − cosϑ0)sn2(
√

a

µ
t, k)

. (3.18)
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So, unlike Theorems 2.1 and 2.3, where the motion takes place between a couple of
anomalies within the first quadrant, the inversion of (3.18) requires some caution. By
inspection of the right hand side of (3.18), minding the sinus amplitude periodicity, see
[2] chapter 6, section 9 pages 146-147, we see its period is:

T

2
= 2

µ√
a
K(k)

Afterwards, founding upon the elliptic functions’ derivatives formulas, see again [2] chap-
ter 6, section 9 pages 147-148, this function is found in the range [0, T

2 ] to attain its
maximum at t = T

4 , as one can see by (3.18) deriving with respect to t:

4
√

a sin2 ϑ0sn(
√

a

µ
t, k)cn(

√
a

µ
t, k)dn(

√
a

µ
t, k)

[

µ(2 − (1 − cosϑ0)sn2(
√

a

µ
t, k))

]2 ,

where cn and dn are the Jacobian elliptic functions cosinus amplitude and delta ampli-

tude respectively. Herefrom we infer the (3.18) monotonicity, built upon both sign and
periodicity of the elliptic functions. Its extremal value is 1, whilst the minimum value
- arising for t = 0 and for t = T

2 - is cosϑ0 and the (3.18) right hand side qualitative
behaviour in the range [0, T

2 ] is shown below.
If 0 < t < T

4 the solution of (3.18) will be expressed through the arccos function,
whilst for T

4 < t < T
2 the (3.18) solution will require − arccos. Similarly, on the second

halfperiod, where the time equation is:

t − T

2
=

1√
a

∫ ϑ

−ϑ0

dξ
√

(cos ξ − cosϑ0)(p − cos ξ)
,

one can get that the particle will transit through the south pole for t = 3
4T . Then, if

T
2 < t < 3

4T our inverse function will be − arccos, whilst, in the period last quarter, the
inverse will be arccos. This completes the proof.

The governor’s differential equation generalizes the simple pendulum swinging in a
fixed plane, which it is tending to, whenever the plane angular speed is going to zero:
a → 0+.
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The other oscillatory cases treated till now cannot be - according to Theorems 2.1
and 2.3 and to the relevant integrations - a generalization of the fixed plane (and then
simple) pendulum: as a matter of fact in those theorems the inequality (2.7) is assumed
true, whilst, for a going to zero, one would find b ≤ 0, namely an unrealistic negative
(reverse) gravity, which is against the initial assumptions.

On the contrary, following the assumptions of Theorems 2.4 and 3.4, we see that, for
a → 0+ the governor period (3.17), exactly gives back the simple pendulum one:

Corollary 3.1. Under the same assumptions and symbols of Theorems 2.4 and 3.4,
then:

lim
a→0+

T = lim
a→0+

4
µ√
a
K(k) =

4√
b
K
(

sin
ϑ0

2

)

. (3.19)

Proof. First of all let us observe that both µ and k are continuous functions of a > 0.
From (3.17), (3.13) and (3.14), one easy obtains:

lim
a→0+

4
µ√
a

= lim
a→0+

4√
b − a cosϑ0

=
4√
b
.

But the behaviour of k is such that

lim
a→0+

k = lim
a→0+

(cosϑ0 − 1) [a(cos ϑ0 − 1) − 2b]

4(b − a cosϑ0)
=

1 − cosϑ0

2
.

The thesis will follow making the limit passage under the integral and remembering
a goniometric identity.

The limit we found is in perfect agreement with the simple pendulum period:

T = 4

√

R

g
K(k),

if one minds that is b = g
R

with g gravity acceleration and R circle radius, or pendulum
length. Up to this point we highlight that the relevant ϑ(t) solution versus time (3.15)
and (3.16), if a → 0+ will result in the well known formulas for the simple pendulum
anomaly as elliptic function of the time.

4. Non-Zero Initial Speed Motion

The system dynamics, if the particle angular speed has a non-zero value at t = 0
(kinetic case), is ruled by the Cauchy problem:















ϑ̈ = a sinϑ cosϑ − b sinϑ, a, b > 0,

ϑ(0) = ϑ0 ∈ ]0, π[ ,

ϑ̇(0) = ϑ̇0 6= 0.

(4.1)
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Following the Weierstraß method, the function whose roots have to be studied becomes:

ϑ̇2 = −a(cosϑ − cosϑ0)
(

cosϑ − 2b − a cosϑ0

a

)

+ ϑ̇0
2 .

= Φ0(ϑ), (4.2)

differing from (2.2) due to the kinetic term ϑ̇0
2

only, or, going back to the symbols of

section 2, Φ0 = Φ + ϑ̇0
2
.

Because Φ0(ϑ0) = ϑ̇0
2

> 0, the motion reality is now ensured in the neighborhood
of ϑ0, which is not the extremal anomaly any more: the existence (if any) of roots of
Φ0(ϑ) = 0 will induce: either the periodic motion or complete (and perpetual) aperiodic
revolutions; or the asymptotic motion towards one of two poles.

Clearly, recalling that Φ(ϑ) is limited, the perpetual aperiodic revolutions are started
up by the initial speed values implying Φ0(ϑ) > 0 for each ϑ ∈ [−π, π]. Such values,
marking the system, will be completely described by the next discussion, built upon the
search of an absolute minimum of Φ0(ϑ). We will have aperiodic revolutions if and only
if the absolute minimum of Φ0(ϑ) is strictly greater than zero. First we shall take into
account that Φ0(ϑ) is an even function of period 2π: the minimum will be reached in the
interval [0, π]. Being:

Φ′
0(ϑ) = 2(a cosϑ − b) sin ϑ, (4.3)

two cases shall be seen:

0 <
b

a
≤ 1 or

b

a
> 1.

4.1. Case b

a
≤ 1

If b/a ≤ 1, with the nonnegative factor sinϑ for ϑ ∈ [0, π], the Φ′
0(ϑ) sign, minding

(4.3), is ruled by the sign of the quantity a cosϑ − b. Then in the interval [0, π] we will
have that:

Φ′
0(ϑ) ≥ 0 ⇐⇒ 0 ≤ ϑ ≤ arccos

( b

a

)

and then:
ν

.
= min

ϑ∈[0,π]
Φ0(ϑ) = min{Φ0(0), Φ0(π)}.

Furthermore, being:

Φ0(0) = ϑ̇0
2
+ (cos ϑ0 − 1)(a + a cosϑ0 − 2b),

Φ0(π) = ϑ̇0
2 − (cos ϑ0 + 1)(a − a cosϑ0 + 2b),

it will be easy found that:

Φ0(π) = Φ0(0) − 4b ⇒ Φ0(π) < Φ0(0).

So we proved that:

ν = Φ0(π) = ϑ̇0
2 − (cos ϑ0 + 1)(a − a cosϑ0 + 2b). (4.4)
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The first of the motion’s characterization in the kinetic case is established by the:

Theorem 4.1. If b/a ≤ 1, then the motion ruled by (4.2) will be revolutive if and

only if the initial speed ϑ̇0 satisfies the inequality:

ϑ̇0
2

> (cosϑ0 + 1)(a − a cosϑ0 + 2b). (4.5)

Proof. The (4.5) inequality ensures that the minimum of Φ0(ϑ), evaluated in (4.4),
is strictly greater than zero. This will prevent from Φ0(ϑ) going to zero, excluding both
revolutive and asymptotic motions: as a consequence, the point will carry revolutions on
the rotating plane.

Let us show a plot of Φ0(ϑ) for: a = 2, b = 1, ϑ0 = π/4, ϑ̇0 = 2.4.

-3 -2 -1 1 2 3

1

2

3

4

5

6

It is possible to highlight specifically the Φ0 behaviour according to the Theorem 4.1,
and this will be carried out in the next corollary, in order to integrate the motion equation
explicitly, what will be done at the next section under the Theorem 4.1 assumptions.

Corollary 4.1. Under the assumptions of the Theorem 4.1, two numbers p+, p− > 1
exist such that:

Φ0(ϑ) = −a(cosϑ − p+)(cosϑ + p−)

Proof. The Φ0(z) discriminant, thinking Φ0(z) as a second degree polynomial in
z = cosϑ is:

∆

4
= b2 − 2ab cosϑ0 + a2 cos2 ϑ0 + aϑ̇0

2
. (4.6)

But, in force of (4.5), by (4.6), one gets:

∆

4
> b2 − 2ab cosϑ0 + a2 cos2 ϑ0 + a(cos ϑ0 + 1)(a − a cosϑ0 + 2b)

= (a + b)2 > 0,
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and then, for the major root p+ :

p+ =
b +

√

b2 − 2ab cosϑ0 + a2 cos2 ϑ0 + aϑ̇0
2

a

>
b + a + b

a
= 1 + 2

b

a
> 1.

And similarly:

p− =
b −

√

b2 − 2ab cosϑ0 + a2 cos2 ϑ0 + aϑ̇0
2

a

<
b − (a + b)

a
= −1.

This completes the proof.

The (4.5) condition selects whether asymptotic behaviours are possible or not: if the

equation is satisfied:

ϑ̇0
2

= (cosϑ0 + 1)(a − a cosϑ0 + 2b), (4.7)

then we find a double root for Φ0 in π, and this does mean asymptotic motion, see [1].

The point will tend asymptotically to the north pole, i.e. ϑ = π, because, by (4.7) we

now obtain:

Φ0(ϑ) = −a(cosϑ + 1)

(

cosϑ − a + 2b

a

)

,

remembering that a+2b
a

> 1.

Finally, we have to analyze the system periodic motions. Let us make the assumption:

ϑ̇0
2

< (cosϑ0 + 1)(a − a cosϑ0 + 2 b). (4.8)

Theorem 4.2. If the angular speed ϑ̇0 meets the inequality (4.8), then the motion

system will be periodic between the symmetric anomalies ϑ1 and −ϑ1 if the inequality:

ϑ̇0
2

> (1 − cosϑ0)(a + a cosϑ0 − 2b). (4.9)

holds. If the reverse is true:

ϑ̇0
2

< (1 − cosϑ0)(a + a cosϑ0 − 2b), (4.10)

then the motion will be periodic too, but the oscillations will take place between the asym-

metric anomalies ϑ1 e ϑ2.

Proof. If (4.9) holds, then Φ=0 will have two roots only in [−π, π] and they will be

necessarily opposite. Then the motion will take place between them, passing through the
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south pole. If, on the contrary, (4.10) holds, then Φ0 will have its four zeros in [−π, π],
and the motion will be between those zeros belonging to [0, π], with ϑ0 > 0.

The Φ0 behaviour versus ϑ is shown by the following plots: whose the first has a = 3,
b = 1, ϑ0 = π/4 so that (4.9) is satisfied; for the second is a = 4.3, b = 1, ϑ0 = π/4,
referring to the situation (4.10).
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Finally, the degenerate case:

ϑ̇0
2

= (1 − cosϑ0)(a + a cosϑ0 − 2b), (4.11)

has to be considered: here Φ0 = 0 has a double root at the origin, and then the particle,
after having passed one time through the positive root of Φ0, will asymptotically move
towards the south pole, i.e. ϑ = 0. The last is well founded on the fact that (4.11) allows
to write Φ0 as:

Φ0 = a(1 − cosϑ)

(

cosϑ − 2b − a

a

)

,

where the assumption b
a
≤ 1 implies 2b−a

a
≤ 1.

4.2. Case b

a
> 1

In this case Φ0 will have mostly two symmetrical roots. By (4.3) we see that Φ0

decreases in [0, π] and the minimum is assumed at π. We have then the:

Theorem 4.3. If b/a > 1, the motion, described as Cauchy problem (4.2), will be

revolutive if and only if the initial speed ϑ̇0 complies with (4.5). If, on the contrary, (4.7)
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is true, the point will tend asymptotically to the north pole; finally in the case (4.8), we

will have symmetric oscillations.

The Φ0 plot versus ϑ for the symmetric oscillating case is given by the figure:

-3 -2 -1 1 2 3

1

2

3

4

5. The Kinetic Case: Closed form Integration

We are now integrating the motion differential equation (4.1) (kinetic case), referring

to [9], restricting ourselves to the revolutive case and to the asymptotic occurrences where

either (4.7) or (4.11) are met. In fact in the kinetic cases where the behavior is periodic,

at the particle culmination, say at time t1, the akinetic case (see section 3) takes place

again.

Let us start, assuming to be in the case, b
a
≤ 1 (Theorem 4.1), chiefly the inequality

(4.5) is satisfied. Founding on the corollary 4.1, the correspondence with the [9] notations

is:
α1 α2 α3 α4
x



y

x



y

x



y

x



y

x1 1 −1 x2

We can so formulate the revolutive explicit integration, but the change ϑ = arccosz, used

for the Theorems 3.1, 3.3 and 3.4, is possible, in order to invert, only if −π < ϑ < π.

Theorem 5.1. Under the same assumptions of the Theorem 4.1, if we suppose

ϑ̇0 > 0, putting:

µ =
2

√

(1 + x1)(1 − x2)
, k2 =

2(x1 − x2)

(1 + x1)(1 − x2)
,

where x1 and x2 are the roots of the equation Φ0(x) = 0, thought as polynomial of

x = cosϑ, the solution of the differential equation (4.1), for ϑ between ϑ0 and π, as given
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by:

ϑ(t) = arccos

(

x2 − 1 − 2x2sn
2(

√
a

µ
t − F (arcsinx(ϑ0), k), k)

1 − x2 − 2sn2(
√

a

µ
t − F (arcsinx(ϑ0), k), k)

)

, (5.1)

where:

x(ϑ) =

√

x2 − 1

2

1 + cosϑ

x2 − cosϑ
.

Proof. Performing the change of variables ξ = arccosϑ, we can write the time
equation as:

t =
1√
a

∫ cos ϑ

cos ϑ0

dz
√

(z − x1)(z − 1)(z + 1)(z − x2)
,

and ever since we can perform the integration following the [9] approach.

Wishing to integrate the motion equation for ϑ > π, one shall correctly invert the
cosinus function: e.g. if ϑ ∈ [π, 2π] the inverse of z = cosϑ is ϑ = 2π − arccos z, and so
on.

Under the assumptions of Theorem 4.3, the integration does not differ from that of
Theorems 3.1, 3.3, 3.4.

Now let us see two asymptotic motions, starting with that which is pointing towards
the north pole.

Theorem 5.2. Let b ≤ a and the (4.7) equation. Then, and this is not against the

generality, if ϑ̇0 > 0, the (4.1) has the solution:

ϑ(t) = arccos

(

8 (a + b) e2
√

a+b t(1 + cosϑ0)

d(t)
− 1

)

(5.2)

where:

d(t) = 2a + 3b + 2(2a + b)e2
√

a+bt + (2a + 3b)e4
√

a+bt − (2a + b)
(

e2
√

a+bt − 1
)2

cosϑ0

+2
√

a + b
(

e4
√

a+bt − 1
)

√

(cosϑ0 − 1)(a cosϑ0 − a − 2b).

Proof. In this case the time equation, after some substitutions, like those explained
at 3.2 proof, is:

t = − 1√
a

∫ 1+cos ϑ

1+cos ϑ0

dx

x
√

x2 − 2(2a+b)
2 x + 4(a+b)

a

and through the indefinite integration used in the proof of Theorem 3.2, ϑ is successively
obtained, giving (5.2).

Finally, let us go to integrate the asymptotic motion towards the south pole: for
simplicity we will assume ϑ̇0 < 0.
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Theorem 5.3. Let it be b ≤ a and (4.11) true. Then, assuming - what is not against

the generality - ϑ̇0 < 0, the (4.1) has the solution:

ϑ(t) = arccos

(

n1(t) + n2(t)

d1(t) + d2(t)

)

, (5.3)

where:

(1−cos2ϑ0)n1(t) = 4b2(cosϑ0−1)2+8(2a−3b)e2
√

a−bt(cosϑ0−1)(2a−3b+(2a−b) cosϑ0)

+4e4
√

a−bt[3b − 2a + (b − 2a) cosϑ0]
2

+16e2
√

a−btcos
ϑ0

2

√

2(a − b)(a − 2b + a cosϑ0)

×
[

(2a − 3b)(cosϑ0 − 1) + e2
√

a−bt(2a − 3b + (2a − b) cosϑ0)

]

,

n2(t) = 8(a − b)e4
√

a−bt(a − 2b + a cosϑ0)cot2
ϑ0

2
csc2 ϑ0

2
,

while:

(1−cos2ϑ0)d1(t) = 4b2(cosϑ0−1)2−8(2a−b)e2
√

a−bt(cosϑ0−1)(2a−3b+(2a−b) cosϑ0)

+4e4
√

a−bt[3b − 2a + (b − 2a) cosϑ0]
2

+16e2
√

a−btcos
ϑ0

2

√

2(a − b)(a − 2b + a cosϑ0)

×
[

(b − 2a)(cosϑ0 − 1) + e2
√

a−bt(2a − 3b + (2a − b) cosϑ0)

]

and finally:

d2(t) = 8(a − b)e4
√

a−bt(a − 2b + a cosϑ0)cot2
ϑ0

2
csc2 ϑ0

2
.

6. Conclusions

In this final section we show a graphical overview, on the (ϑ, t) plane, of the test-

solutions we obtained applying the final formulas for reasonable values of a, b, ϑ0, ϑ̇0

compliant with the Theorems 3.1, 3.2, 3.3, 3.4, 5.1, 5.2 and 5.3. We recommend the

highest caution using the arccos function specially with revolutive motion or when the
particle symmetrically oscillates between the anomalies ϑ0 and −ϑ0: indeed the found

formulas are true for angles enclosed in the reference range [−π, π]. A slight change

would be necessary for inverting the cos function for anomalies not included in it.

Further control tests have been accomplished using a numerical high performance method [8]: a
complete and minute overlap has been always found.
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6.1. An example from Theorem 3.1

Let us consider a test (oscillating, akinetic) case with a = 4, b = 1, ϑ0 = π
2 , so it will

be also ϑ1 = π
3 . All these data are compliant with the Theorems 2.1 and 3.1. The exact

solution, special case of (3.3) is:

ϑ(t) = arccos

(

sn2(
√

3
2 t, 2

3 )

sn2(
√

3
2 t, 2

3 ) − 3

)

which has been plotted below:

1 2 3 4

1.5708

The oscillating behaviour between the limiting angles, corresponding to the (perpet-
ual, for the frictionless assumption) sequel of maxima and minima anomalies, is clearly
displayed. The shape of the line apparently resembles a sinusoidal line, but it is of

deeply different nature! Finally the oscillatory period T = 2
√

2
3K(2

3 ) ≅ 3.31328 is given

by equation (3.4).

6.2. An example from Theorem 3.2

We tackle an asymptotic motion towards the south pole with a = 1 and ϑ0 = π
3 , then

(2.10) gives b = 3
4 . The (1.1) solution in this special case is:

ϑ(t) = arccos
(1 + 3 cosh t

5 + 3 cosh t

)

,

whose plot, clearly explaining the asymptotic motion character, is shown below:

2 4 6 8 10

1.0472
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6.3. An example from Theorem 3.3

Choosing a = 6, b = 2 and ϑ0 = π
3 , according to the assumptions of Theorems 2.3

and 3.3 with reference to the inequality (2.11), we obtain for (1.1) the solution:

ϑ(t) = arccos





3 + 4sn2(K( 8
15 ) − 1

2

√

15
2 t, 8

15 )

18 − 4sn2(K( 8
15 ) − 1

2

√

15
2 t, 8

15 )



 .

whose period is:

T = 4

√

2

15
K

(

8

15

)

≅ 2.75087.

The solution has been plotted below, and its oscillating character is clearly displayed.

Note that ϑ1 = arccos 1
6 ≅ 1.40335.

2.75087 5.50175 8.25262

1.0472
1.40335

3.14159

6.4. An example from Theorem 3.4

Let us tackle when (Theorems 2.4 and 3.4) the particle moves symmetrically and

periodically between opposite anomalies. The test case has been carried out selecting

a = 2, b = 2 and ϑ0 = π
2 . The period will be computed as T = 2

√
2K(3

4 ) ≅ 6.09955.

1.52489 4.574663.04977 6.09955
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6.5. An example from Theorem 5.1

Under the assumptions of Theorems 4.1 and 5.1, infinite revolutions will occur, and

the inversion - obtained in (5.1) - is correct in a suitable neighborhood of the starting

time. Let us choose a = 2, b = 1, ϑ0 = π
2 and ϑ̇0 = 2

√
3 being compliant with the

inequality (4.5). The (1.1) solution in this particular case is:

ϑ(t) = arccos

(

4sn2(
√

6t − F (π
3 , 5

6 ), 5
6 ) − 3

3 − 2sn2(
√

6t − F (π
3 , 5

6 ), 5
6 )

)

,

whose plot - which apparently resembles a straight line - explains the fact that - in this

case of revolvements - the anomaly grows up indefinitely (secular build - up).

0.1 0.2 0.3 0.4 0.5

1.5708

3.14159

6.6. An example from Theorem 5.2

The motion asymptotic nature displayed by the Theorem 5.2 - as it has been shown -

is induced by the peculiar mixing of the system physical characteristics with the motion

initial conditions. Choosing a = 3, b = 1 and ϑ0 = π
2 , then (4.7) will imply ϑ̇0, so that

the solution for (1.1) is:

ϑ(t) = arccos

(

32(9 + 4
√

5)e4t

1 + 14(9 + 4
√

5)e4t + (161 + 72
√

5)e8 t
− 1

)

,

whose plot, clearly explaining the asymptotic motion to the north pole of the round, is

shown below.
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1 2 3 4 5

1.5708

3.14159

6.7. An example from Theorem 5.3

Let us conclude, showing the case of the Theorem 5.3. Having taken a = 3, b = 1
and ϑ0 = π

2 , (4.11) provides ϑ̇0 and the solution is:

ϑ(t) = arccos

(

(e2
√

2t − 1)((17 + 12
√

2)e2
√

2t − 1)

1 + 10(3 + 2
√

2)e2
√

2t + (17 + 12
√

2)e4
√

2t

)

,

whose plot shows the motion towards the south pole of the circular trajectory.

1 2 3

1.5708

About this solution one can remark that ϑ̇0 < 0 whilst the plot in 6.2 had horizontal
its tangent at the origin for being the particle starting by the rest.
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