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ON INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
STOCHASTIC PROCESSES WHOSE THIRD DERIVATIVE
ABSOLUTE VALUES ARE QUASI-CONVEX

JESUS MATERANO, NELSON MERENTES AND MARIA VALERA-LOPEZ

Abstract. In this paper we give some estimates of the right-hand side inequality of Hermite-
Hadamad type for stochastic processes whose third derivatives in absolute values are
quasi-convex.

1. Introduction

In recent years, different inequalities have been established for convex functions and one
of most famous is the Hermite-Hadamard inequality, due to its rich geometrical significance
and applications (see [5], [13]). For Hermite-Hadamad’s inequality, several authors have esti-
mated the error in the approximation of its sides. The technique used consider derivatives of
different orders and properties as convexity and quasi-convexity, (see [1], [2], [4], [7], [8], [12],
[16]).

The stochastic processes study started from the endings of 30’s, and it was not until 1980
when K. Nikodem established the notion of convexity for stochastic processes and some prop-
erties of this kind of processes in [10], based on the definition of additive stochastic processes
introduced by B. Nagy in 1974, [9]. In the same year, K. Nikodem in [11] introduced some
properties of quasi-convex stochastic processes.

Some inequalities for convex and quasi-convex stochastic processes have been estab-
lished recently. In 2015, N. Merentes et al. in [3], started Jensen and Hermite-Hadamard type
inequalities. Additionally, in [6] prove some error estimations of a Hermite-Hadamad type
inequality for stochastic processes consider its first and second order derivatives convex and

quasi-convex.

Received November 21, 2016, accepted January 18, 2017.

2010 Mathematics Subject Classification. .

Key words and phrases. Stochastic processes, quasi-convexity, inequalities of Hermite-Hadamard type.
Corresponding author: J. Materano.

This research has been partially supported by the Central Bank of Venezuela. We want to give thanks

to the library staff of B.C.V for compiling the references.

203


http://dx.doi.org/10.5556/j.tkjm.48.2017.2359

204 J. MATERANO, N. MERENTES AND M. VALERA-LOPEZ

In this paper, we present the counterpart of the research made by S. Qaisar ef al. in [14]
for stochastic processes to estimate different refinements of the right-hand side an inequality
of Hermite-Hadamard type considering its third mean-square derivatives at certain powers
quasi-convex.

2. Inequalities of Hermite-Hadamard type for quasi-convex stochastic processes

We will result some useful and important definitions for this research. Let (Q, </,[P) be
a probability space. A function X : Q — R is a random variable if it is o/ —measurable. A
stochastic processes is defined as a function X : I x Q — R, where I < R is an interval, if for

every t € I the function X(t,-) is a random variable.

Consider a stochastic process X(t,-) such that the expectation squared is bounded, i.e.
E[X(£)]? < oo for all £ € I. The stochastic process X is defined:

(1) Mean-square differentiablein I, if there exists a stochastic process X' (the derivative of X)
such that for all ¢ty € I we have

2

lim = 0)

lim E[w —X'(to)

=1

(2) Mean-square integrable on [a, b] < I, if there exists a random variable Y such that for all
normal sequence of partitions of the interval [a,b] a = t) < t; < --- < t;, = b and for all
Tr € [te—1, tr), k=1,...,n, we have

lim E =0.

n—oo

n 2
(Z X(Tp, ) (g = tg—1) = Y(-))
k=1

The random variable Y : Q — R is called the mean-square integral of the process X on
[a, b]. In such case, we write

b
Y(-)zf X(s,-)ds, (a.e).

Definition and basic properties of the mean-square derivative and mean-square integral
can be read in [15].

We say that a stochastic process X : I x Q — R is a quasi-convex stochastic process if, for

everya,be I, 1 €(0,1), the following inequality is satisfied

XAt + (A=A 1) =max{|X(a,)],|X(D,)}, (a.e). 2.1)

If in (2.1) the reversed inequality holds, the stochastic process is quasi-concave.

In order to prove some inequalities for quasi-convex differentiable stochastic processes
which are connected with the right-hand side of Hermite-Hadamard’s inequality, it is neces-
sary to use the following lemma:



ON INEQUALITIES OF HERMITE-HADAMARD TYPE FOR STOCHASTIC PROCESSES 205

Lemma2.1. Let X : I xQ — R be a mean-square differentiable stochastic process on 1°, a, b € I°
witha<b. If X @ (¢, is mean-square integrable on [a, b, then the following equality takes
places almost everywhere:

. . b _
X(“’);X(b’)— fX(r,-)dt—u[x’(b,-)—x’(a,-)]
3
(b “) f AA=DA-DXD Aa+ 1= )b, )dA. 2.2)

Proof. Integrating by parts the right-hand side of equation (2.2) , we have

1
f AA-1)2A-DX®Aa+1-A)b,)dA
0

—6A+1DXPNa+1-A)b,-)dA

, ,
:X(a(,c-l)_—;)fz(bw)_ X(a(»c-l):r;)fg(bv) +(a b)3 f X(Aa+(1-A)b,)dA
, ,
:X(a(,c-l)_—;)fz(bw)_ X(a(»c-l):r;)fg(bv) +(a b)3 f X(Aa+(1-)b,)dA.
Multiplying by ~—=5- (b a) :
(b a)3

fwt DCA-DX®PNa+1-1)b,)dA
1
%X(b’)]—f X(Aa+(1=A)b,)dA.
0

Then, making the change of variable on the right hand side of the above equation ¢ = Aa +
(1-A)band dt = (a—b)dA, is obtained:

_(b a)
12

[(X'(a,") = X"(b,)] +

3
(b “) f AA-1DCA-DX®Aa+1-Nb,)dA
_X(a,-)+X(b,-) b-a) _, vl
= 5 b—afa X(t,-)dt B (X' (b,") - X' (a,")],
Obtaining the desired result. O

Theorem 2.2. Let X : I x Q — R be three times mean-square differentiable stochastic process
on I° such thata,be I°, a< b. IfXB) is mean-square integrable on |a, b] and 1X®)]| is quasi-

convex on |a, b], then we have the following inequality:

X(a,")+X(b,") 1 bx b-a ., !
2 _b—afa (t,)dt =~~~ 1X (5, - X (a, )]
33
< (b-a) ax{| X® (a,)1,1X® (b, )]} 2.3)

192
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Proof. Using Lemma 2.1 and quasi-convexity of | X¥|, we get:

‘Xuao+xa»)_
2

b _
f X(t,)dt—- u[X’(b, ) -X'(a,")]

3

_(b a) / A0 =012 -11X®Aa+ 1 -A)b,-)|dA
(b—a)

< m
12

_ b-a?
192

ax(1 XD (a,91,1X (b, f A= D24 —11dA
0
max{| X® (a, )], X® (b, )1},

where

1 1/2 1
f )L(l—/l)lz/l—lld)t:f /l(l—A)(l—Z)L)d/1+f AQ1-AD)2A-1)dA = i
0 0 1/2 16

(2.4)

O

In the following theorem, we establish the corresponding version for powers of the abso-

lute value of the second derivative:

Theorem 2.3. Let X : I x Q — R be three times mean-square differentiable stochastic process
on I° such that a,b € I°, a < b. If X® is mean-square integrable on [a, b] and | X®|P/P~1) js

quasi-convex on [a, b] and p > 1, then we have the following inequality:

. . b -
‘th)+XaL)‘ ‘[-Xuﬂdt—é—lﬂX%hJ—X“%J]
2 —AaJa 12
_ 3 17p
Sa};)(piJ max{| X (a,)1,1X® (b, )17},

whereq=pl(p-1).

Proof. By using Lemma 2.1 and the well know Hoélder’s integral inequality, we have:

’XRLJ+XUw)_
2

3
_(b m f A= DRA-11XY (Aa+ (1= b, )ldA

b _
f X(t,)dt— u[X’(b, ) -X'(a, -)]‘

(b—aﬁ
<

Since 0 <21 —-1<1and p > 1, we have:

1 1
f )L’”(l—/l)”|2)t—1|”dﬂtsf AP(1=)P12A0-11dA.
0 0

1/q
5 (f )L’”(l—/l)p|2)L—1|pd)L) (f IX(3)()La+(1—/1b,-))|qd)L) )
0 0

(2.5)
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Then,

. . b —
‘X(a’);X(b')_ 1 fX(t,-)dt—%[X'(b,-)—X'(a»‘)]‘

(b Ll)3 1/q

Up /el
(f AP (1 =P 24— 1|d)t) (f IX(3)()La+(1—/1b,-))|‘7d/1)
0

_(b—a)3( 1
12 \22pt1(1+p)

1/p
) max{| X® (a,)19,1X® (b, 9319,

where

1/2

1 1
/ (7[(1—/1))’7|27L—1|d/1=/ (7[(1—/1))’7(1—27[)61/1+f AQ-ANPR2A-1)dA
0 0 1/2

1
B (22P+1(1+p))' =

Theorem 2.4. Let X : I x Q — R be three times mean-square differentiable stochastic process
onI° such that a,be I°, a < b. If X® is mean-square integrable on |a, b] and |X® |4 is quasi-
convex on |a,b] and p > 1, then we have the following inequality:

. . b -
2 —aJa 12
3
= (bmg) max(| X (a,)|7,1X® (b, )|}9. =0

Proof. Using Lemma 2.1 and the well know power-mean inequality, we get:

‘ ) b _
‘X(a,);X(b,)_ fX(l‘»')dt—y[X’(b,-)—X’(a,-)]‘
3
_(b “) f A= D24 - 11X Aa+ (1 - V)b, )|dA
(b a)3 1-1/q 1/q
(f A= D2A lldﬂt) (f A= D122~ 11X (Aa + (1 - Ab, )I7dA
0
_(b—a)3 =a g @) q ,v®3) q H
- & (E) (16maX{IX (a,)19,1X® (b, )] })
- G, 9 1%® (p y1/a
ST ax{| X" (a,")|7,1X* (b, )|}
where we use the equality (2.4). O
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