
TAMKANG JOURNAL OF MATHEMATICS
Volume 49, Number 2, 115-127, June 2018
doi:10.5556/j.tkjm.49.2018.2365

-
+

+

-

-
-

-
-

This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst

THE RESTRAINED RAINBOW BONDAGE NUMBER OF A GRAPH

J. AMJADI, N. DEHGARDI, R. KHOEILAR, S. M. SHEIKHOLESLAMI AND L. VOLKMANN

Abstract. A restrained k-rainbow dominating function (RkRDF) of a graph G is a func-

tion f from the vertex set V (G) to the set of all subsets of the set {1,2, . . . ,k} such that for

any vertex v ∈ V (G) with f (v) = ; the conditions
⋃

u∈N(v) f (u) = {1,2, . . . ,k} and |N (v)∩

{u ∈ V | f (u) = ;}| ≥ 1 are fulfilled, where N (v) is the open neighborhood of v . The

weight of a restrained k-rainbow dominating function is the value w( f ) =
∑

v∈V | f (v)|.

The minimum weight of a restrained k-rainbow dominating function of G is called the

restrained k-rainbow domination number of G, denoted by γr r k (G). The restrained k-

rainbow bondage number br r k (G) of a graph G with maximum degree at least two is the

minimum cardinality of all sets F ⊆ E (G) for which γr r k (G − F ) > γr r k (G). In this pa-

per, we initiate the study of the restrained k-rainbow bondage number in graphs and

we present some sharp bounds for br r 2(G). In addition, we determine the restrained 2-

rainbow bondage number of some classes of graphs.

1. Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E (G) (briefly V and

E ). For every vertex v ∈ V , the open neighborhood N (v) is the set {u ∈ V (G) | uv ∈ E (G)} and

its closed neighborhood is N [v ] = N (v)∪ {v}. Similarly, the open neighborhood of a set S ⊆ V

is the set N (S) =
⋃

v∈S N (v) and its closed neighborhood is N [S] = N (S)∪ S. The minimum

and maximum degree in G are respectively denoted by δ(G) and ∆(G). A vertex of degree

one is called a l ea f , and its neighbor is called a support vertex. If v is a support vertex, then

Lv will denote the set of all leaves adjacent to v . A support vertex is said to be an end-stem

if all its neighbors except one of them are leaves. For r, s ≥ 1, a double star S(r, s) is a tree

with exactly two vertices that are not leaves, with one adjacent to r leaves and the other to s

leaves. For a vertex v in a rooted tree T , let C (v) denote the set of children of v , D(v) denote

the set of descendants of v and D[v ] = D(v)∪ {v}, and the depth of v , depth(v), is the largest

distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by

D(v)∪ {v}, and is denoted by Tv . A subset S of vertices of G is a dominating set if N [S] = V .
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The domination number γ(G) is the minimum cardinality of a dominating set of G . For a

more thorough treatment of domination parameters and for terminology not presented here

see [17, 22].

A subset S of vertices of G is a restrained dominating set if N [S] = V and the subgraph

induced by V −S has no isolated vertex. The restrained domination number γr (G) is the min-

imum cardinality of a restrained dominating set of G . The restrained domination number

was introduced by Domke et al. [14] and has been studied by several author (see for example

[12, 13]). The restrained bondage number br (G) of a nonempty graph G is the minimum car-

dinality among all sets of edges F ⊆ E (G) for which γr (G−F ) > γr (G). The restrained bondage

number has been investigated in [15, 18].

For a positive integer k , a k-rainbow dominating function (kRDF) of a graph G is a func-

tion f from the vertex set V (G) to the set of all subsets of the set {1,2, . . . ,k} such that for

any vertex v ∈ V (G) with f (v) = ; the condition
⋃

u∈N(v) f (u) = {1,2, . . . ,k} is fulfilled. The

weight of a kRDF f is the value w ( f ) =
∑

v∈V | f (v)|. The k-rainbow domination number of

a graph G , denoted by γrk (G), is the minimum weight of a kRDF of G . Note that γr 1(G) is

the classical domination number γ(G). The k-rainbow domination number was introduced

by Brešar, Henning, and Rall [7] and has been studied by several authors (see for example

[2, 3, 8, 9, 10, 19, 20, 21, 23, 24]).

A k-rainbow dominating function f is called a restrained k-rainbow dominating function

(RkRDF) if the induced subgraph G[{v ∈ V | f (v) = ;}] has no isolated vertex. The restrained

k-rainbow domination number of G , denoted byγr rk (G), is the minimum weight of an RkRDF

on G . Aγr rk (G)-function is an RkRDF of G with ω( f ) = γr rk (G). If f is a γr rk (G)-function, then

since V − {v ∈V | f (v) =;} is a restrained dominating set, and since placing {1,2, . . . ,k} at the

vertices of a restrained dominating set yields an RkRDF, we have

max{γrk (G),γr (G)} ≤ γr rk (G) ≤ kγr (G).

The restrained k-rainbow domination number has been investigated in [1, 5].

Let G be a graph of order n ≥ k +1 with γr rk (G) < n. The restrained k-rainbow bondage

number br rk (G) of G is the minimum cardinality of all sets E ′ ⊆ E for which γr rk (G −E ′) >

γr rk (G). An edge set B with γr rk (G −B ) > γr rk (G) is called the restrained k-rainbow bondage

set. A br rk (G)-set is a restrained k-rainbow bondage set of G of size br rk (G). If B is a br rk (G)-

set, then clearly γr rk (G −B ) =γr rk (G)+1.

The k-rainbow bondage number brk (G) for usual k-rainbow domination number was

introduced by Dehgardi et al. in [11] and has been studied by several authors [4, 6].

One possible application of the concept of k-rainbow restrained domination is that of

cities and emergency guards. Here, every vertex with a positive weight in a k-rainbow re-

strained dominating function, corresponds to a position of an emergency guard and each
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vertex not occupied by an emergency guard corresponds to a position of a city without any

emergency guards, which is adjacent to at least one other deprived city. The k-rainbow re-

strained bondage number measures the vulnerability of the connection between situations

under unpredictable events or attacks. The minimum k-rainbow restrained dominating func-

tion of cities plays an important role for dominating the whole situations with the minimum

cost. So, we must consider whether its function remains safe under the unpredictable event

or attack. Suppose that an unpredictable event happens. Then how many connection routes

does it have to destroy so that the cost can not remains the same in order to k-rainbow re-

strained dominate the whole city? The minimum number of connection routes is just the

k-rainbow restrained bondage number.

Our purpose in this paper is to initiate the study of the restrained k-rainbow bondage

number in graphs. We first establish some sharp bounds for the restrained k-rainbow bondage

number of a graph. In particular, we prove that for any tree T of order n ≥ 5 with diam(T ) ≥ 3

and different from P5,P6, br r 2(T ) ≤ (n − 3)/2. In addition, we determine the restrained 2-

rainbow bondage number of some classes of graphs.

We make use of the following results in this paper.

Theorem A ([5]). For n ≥ 4, γr r 2(Pn) =

⌈

2n +1

3

⌉

+1 and γr r 2(Pn) =n otherwise.

Corollary 1.1. For n ≥ 7, br r 2(Pn) = 1.

Proof. Let Pn := v1v2 . . . vn . It follows from Theorem A that

γr r 2(Pn −v3v4) = γr r 2(Pn−3)+3 =

⌈

2(n −3)+1

3

⌉

+1+3 >

⌈

2n +1

3

⌉

+1 = γr r 2(Pn).

Hence br r 2(Pn) = 1. ���

Theorem B ([5]). For n ≥ 6, γr r 2(Cn ) = 2
⌈n

3

⌉

+ 1 when n ≡ 2 (mod 3) and γr r 2(Cn ) = 2
⌈n

3

⌉

otherwise.

Corollary 1.2. For n ≥ 6,

br r 2(Cn) =

{

1 if n ≡ 0 (mod 3)

2 otherwise.

Proof. Let Cn := (v1v2 . . . vn). If n = 3k (k ≥ 2), then it follows from Theorem A and B that

γr r 2(Cn −v1vn) = γr r 2(Pn) =

⌈

2n +1

3

⌉

+1 > 2
⌈n

3

⌉

=γr r 2(Cn).
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Hence br r 2(Cn) = 1 if n ≡ 0 (mod 3). Now let n ≡ 1 (mod 3). Then obviously

⌈

2n +1

3

⌉

+1 =

2
⌈n

3

⌉

that implies br r 2(Cn) ≥ 2 in this case. On the other hand, Theorems A and B imply that

γr r 2(Cn − {v1v2, v4v5}) = γr r 2(Pn−3)+3 =

⌈

2(n −3)+1

3

⌉

+1+3 > 2
⌈n

3

⌉

=γr r 2(Cn).

Hence br r 2(Cn) = 2 if n ≡ 1 (mod 3). Finally let n ≡ 2 (mod 3). It is easy to see that

⌈

2n +1

3

⌉

+

1 = 2
⌈n

3

⌉

+1 which implies that br r 2(Cn ) ≥ 2 in this case. We deduce from Theorems A and B

that

γr r 2(Cn − {v1v2, v4v5}) =γr r 2(Pn−3)+3 =

⌈

2(n −3)+1

3

⌉

+1+3 > 2
⌈n

3

⌉

+1 = γr r 2(Cn)

and so br r 2(Cn)= 2 in this case. This completes the proof. ���

Theorem C ([5]). Let G be a connected graph of order n ≥ 2. Then γr r 2(G) = n if and only if

G ≃ K1,n−1,C4,C5 or G = Pn for n = 2,3,4,5,6.

Theorem D ([5]). Let G be a graph of order n ≥ 2. Then γr r 2(G) = 2 if and only if n = 2 or n ≥ 3

and 2 ≤ δ(G) ≤ ∆(G) = n −1 or 3 ≤ δ(G) ≤ ∆(G) = n −2 and there exist two distinct vertices u

and v such that V (G)− {u, v} ⊆ N (u)∩N (v).

Theorem E ([11]). If k ≥ 2 is an integer and n ≥ k +1, then brk (Kn) =

⌈

kn

k +1

⌉

.

Theorem F ([11]). Let G be a graph of order n ≥ 3. Then γr 2(G) = 2 if and only if there exists a

vertex set A with |A| ≤ 2 such that every vertex of V (G)− A is adjacent to every vertex of A.

2. Bounds on the restrained rainbow bondage number

In this section we first establish a sharp upper bound on the restrained 2-rainbow bondage

number of trees in terms of their order and then we present two sharp bounds on the re-

strained 2-rainbow bondage number of general graphs.

Observation 2.1. If T = S(r, s) is a double star of order r + s +2≥ 5, then br r 2(T )= 1.

Theorem 2.2. Let T be a tree of order n ≥ 5. If diam(T ) ≥ 3 and T 6∈ {P5,P6}, then

br r 2(T )≤
n −3

2
.

Furthermore, this bound is sharp.
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Proof. If diam(T ) = 3, then T is a double star of order at least 5 and it follows from Observation

2.1 that br r 2(T ) = 1 ≤
n −3

2
. Assume that diam(T ) ≥ 4. Let P = v1v2 . . . vd be a diametral path

in T such that deg(v2) is as large as possible. Among all paths with this property we choose a

path such that |Lv3
| is as large as possible. Root T at vd . We consider the following cases.

Case 1. deg(v2) ≥ 3.

Suppose that u ∈ Lv2
− {v1}. First let deg(v3) ≥ 3. Assume that Lv3

= {x1, x2, . . . , xk } if Lv3
6= ;

and N (v3) \ (Lv3
∪ {v2, v4}) = {y1, y2, . . . , yt } when N (v3) \ (Lv3

∪ {v2, v4}) 6= ;. We consider two

subcases.

Subcase 1.1. Lv3
6= ;.

Let B = {v3 y1, . . . , v3 yt , v3v2, v3v4}. Clearly, n ≥ 2t +7 and so

|B | = t +2 ≤ (n −7)/2+2 ≤ (n −3)/2.

Let T1,T2, . . . ,Tt ,Tt+1,Tt+2 be the components of T −B containing y1, y2, . . . , yt , v2, v3 respec-

tively. Assume that f is a γr r 2(T −B )-function. Then clearly | f (x)| = 1 for every vertex x ∈
⋃t+2

i=1
V (Ti ). Define g : V (T ) →P ({1,2}) by g (v1) = {1}, g (u) = {2}, g (x1) = {1,2}, g (v2) = g (v3) =

;, and g (x) = f (x) otherwise. It is easy to see that g is a restrained 2-rainbow dominating

function of T of weight less than ω( f ) and hence br r 2(T ) ≤ |B | ≤ (n −3)/2 as desired.

Subcase 1.2. Lv3
=;.

Since deg(v3)≥ 3, we have t ≥ 1. Assume that B = {v3 y1, . . . , v3 yt , v3v4}. Then clearly n ≥ 2t +6

and so

|B | = t +1 ≤ (n −6)/2+1 < (n −3)/2.

Let T1,T2, . . . ,Tt ,Tt+1 be the components of T −B containing y1, y2, . . . , yt , v3 respectively, and

f be a γr r 2(T −B )-function. Then | f (x)| = 1 for every vertex x ∈
⋃t+1

i=1
V (Ti ). Define g : V (T ) →

P ({1,2}) by g (v1) = {1}, g (u) = {2}, g (y1) = {1,2}, g (v2) = g (v3) =; and g (x) = f (x) otherwise.

Obviously, g is a restrained 2-rainbow dominating function of T of weight less than ω( f ) and

hence br r 2(T ) ≤ |B | < (n −3)/2.

Now let deg(v3) = 2. By the choice of the diametral path, every vertex with depth 2 in

N (v4)− {v5}, have degree 2. If n = 6 or 7, then clearly br r 2(T ) = 1 < (n −3)/2 and we are done.

Suppose that n ≥ 8. If deg(v4) = 2 or N (v4)\{v3, v5} = Lv4
, then let B = {v5v4, v4v3}, T1,T2 be the

components of T −B containing v4, v3, respectively, and f be a γr r 2(T −B )-function. Clearly,

| f (x)| = 1 for each x ∈V (T1)∪V (T2). Then the function g : V (T ) →P ({1,2}) defined by g (v4)=

{1,2}, g (u) = {1}, g (v1) = {2}, g (v2) = g (v3) = ; and g (x) = f (x) otherwise, is a restrained 2-

rainbow dominating function of T of weight less than ω( f ) and hence br r 2(T ) ≤ 2 < (n −3)/2

as desired. Henceforth, we assume that deg(v4) ≥ 3 and v4 has a neighbor of degree at least

two other than v3, v5. Let N (v4)− {v3, v5} = Lv4
∪ {y1, y2, . . . , yt }. Clearly, n ≥ 2t +6. If n ≥ 2t +7
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then let B = {v4 y1, . . . , v4 yt , v3v4, v4v5}, and if n = 2t +6 then let B = {v4 y2, . . . , v4 yt , v3v4, v4v5}.

Then |B | ≤ (n −3)/2. Assume that f is a γr r 2(T −B )-function. Clearly, | f (x)| = 1 for each x ∈

V (Tv4
). Define g : V (T ) → P ({1,2}) by g (v4) = {1,2}, g (v1) = {1}, g (u) = {2}, g (v2) = g (v3) = ;,

and g (x) = f (x) otherwise. Obviously, g is a restrained 2-rainbow dominating function of T

of weight less than ω( f ) and hence br r 2(T ) ≤ |B | ≤ (n −3)/2.

Case 2. deg(v2) = 2.

By the choice of the diametral path, we deduce that every end-steam on a diametral path has

degree 2. In particular, any child of v3 is a leaf or a support vertex of degree 2. Consider the

following subcases.

Subcase 2.1. deg(v3) ≥ 3.

Assume that Lv3
= {x1, x2, . . . , xk } if Lv3

6= ; and N (v3)− {v4, v2} = Lv3
∪ {y1, y2, . . . , yt } when

N (v3)− {v4, v2} 6= Lv3
. We distinguish the following.

• N (v3)− {v4, v2} = Lv3
.

If n = 6, then clearly br r 2(T ) = 1 < n−3
2

. Hence, we assume that n ≥ 7. Let T ′ = T −

{v4v3, v3v2} and f be a γr r 2(T ′)-function. Clearly, | f (x)| = 1 for each vertex x ∈V (Tv3
). If

f (v4) =;, then define the function g : V (T ) →P ({1,2}) by g (x1)= {1}, g (v3) =;, g (v2) =

{2} and g (x) = f (x) otherwise. If f (v4) 6= ;, then let, without loss of generality, 1 ∈ f (v4)

and define the function g : V (T ) →P ({1,2}) by g (x1) = {2}, g (v1) = {1,2}, g (v2) = g (v3) =

; and g (x)= f (x) otherwise. It is easy to see that g is a restrained 2-rainbow dominating

function of T of weight less than ω( f ) and hence br r 2(T ) ≤ 2 ≤ (n −3)/2.

• N (v3)− {v4, v2} 6= Lv3
.

First let |Lv3
| ≥ 2. Assume that B = {v3 y1, . . . , v3 yt , v3v2, v3v4}, f is a γr r 2(T −B )-function

and T1,T2, . . . ,Tt ,Tt+1,Tt+2 are the components of T −B containing y1, . . . , yt , v2, v3 re-

spectively. Clearly, |B | ≤ (n − 3)/2 and | f (x)| = 1 for each x ∈
⋃t+2

i=1
V (Ti ). Define the

function g : V (T ) → P ({1,2}) by g (x1) = {1}, g (x2) = {2}, g (v1) = {1,2}, g (v2) = g (v3) = ;

and g (x) = f (x) otherwise. Obviously, g is a restrained 2-rainbow dominating function

of T of weight less than ω( f ) and hence br r 2(T ) ≤ |B | ≤ (n −3)/2.

Now let |Lv3
| ≤ 1. Assume that B = {v3 y1, . . . , v3 yt , v3v4} and f is a γr r 2(T −B )-function.

Obviously, |B | ≤ (n −3)/2 and | f (x)| = 1 for each x ∈V (Tv3
). If f (v4) =;, then the func-

tion g : V (T ) → P ({1,2}) defined by g (y1) = {1}, g (v2) = {2}, g (v3) = ; and g (x) = f (x)

otherwise, is a restrained 2-rainbow dominating function of T of weight less than ω( f ),

implying that br r 2(T ) ≤ |B | ≤ (n −3)/2. If f (v4) 6= ;, then let, without loss of generality,

1 ∈ f (v4) and define g : V (T ) → P ({1,2}) by g (y1) = {2}, g (v1) = {1,2}, g (v2) = g (v3) = ;

and g (x) = f (x) otherwise. Clearly, g is a restrained 2-rainbow dominating function of

T of weight less than ω( f ) and hence br r 2(T ) ≤ (n −3)/2.
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Subcase 2.2. deg(v3) = 2.

By the choice of the diametral path, we deduce that every vertex with depth 2 on a diametral

path has degree 2. Since T 6∈ {P5,P6}, we must have diam(T ) ≥ 6. Let Lv4
= {x1, x2, . . . , xk } if

Lv4
6= ; and N (v4)− {v5, v3} = Lv4

∪ {y1, y2, . . . , yt } when N (v4)− {v5, v3} 6= Lv4
. We distinguish

the following.

(a) deg(v4) ≥ 3 and N (v4)− {v5, v3} = L(v4).

Then k ≥ 1. If k ≥ 2, then it is easy to see that γr r 2(T − {v5v4, v4v3}) > γr r 2(T ) that implies

br r 2(T ) ≤ 2 ≤ (n −3)/2. Let k = 1, T ′ = T −v5v4 and let f be a γr r 2(T ′)-function. If f (v5)=

;, then the function g : V (T ) →P ({1,2}) defined by g (v3) = {1}, g (x1) = {2}, g (v4) =; and

g (x) = f (x) otherwise, is a restrained 2-rainbow dominating function of T of weight less

than ω( f ) and hence br r 2(T ) = 1 <
n−3

2 . If f (v5) 6= ;, then let, without loss of generality,

1 ∈ f (v5) and define g : V (T ) → P ({1,2}) by g (v2) = {1,2}, g (x1) = {2}, g (v3) = g (v4) = ;

and g (x) = f (x) otherwise. Clearly, g is a restrained 2-rainbow dominating function of T

of weight less than ω( f ) and so br r 2(T ) = 1 < (n −3)/2.

(b) deg(v4) ≥ 3, N (v4)− {v5, v3} 6= Lv4
and deg(y j ) ≥ 3 for some j .

Let j = 1, B = {v4 y1, . . . , v4 yt , v3v4, v5v4} and f be a γr r 2(T −B )-function. Clearly, |B | <

(n−3)/2 and | f (x)| = 1 for each x ∈V (Tv4
). Let w1, w2 ∈ N (y1)−{v4} and define g : V (T ) →

P ({1,2}) by g (w1) = {1}, g (w2) = {2}, g (v3)= {1,2}, g (v4) = g (y1) =; and g (x) = f (x) other-

wise. It is easy to see that g is a restrained 2-rainbow dominating function of T of weight

less than ω( f ) and hence br r 2(T ) < (n −3)/2.

(c) deg(v4) ≥ 3, N (v4)− {v5, v3} 6= Lv4
and deg(y j ) = 2 for each j .

Let B = {v4 y1, . . . , v4 yt , v3v4, v5v4}, f a γr r 2(T −B )-function and T1, T2, . . . ,Tt ,Tt+1, Tt+2 be

the components of T −B containing y1, . . . , yt , v3, v4, respectively. Then | f (x)| = 1 for each

x ∈
⋃t+2

i=1
V (Ti ) and |B | ≤ (n −3)/2 because n ≥ 2t +7. If f (v5) = ;, then the function g :

V (T ) → P ({1,2}) defined by g (v3) = {1}, g (y1) = {2}, g (v4) = ; and g (x) = f (x) otherwise,

is a restrained 2-rainbow dominating function of T of weight less than ω( f ) and hence

br r 2(T ) ≤ (n−3)/2. If f (v5) 6= ;, then let, without loss of generality, 1 ∈ f (v5) and define g :

V (T ) →P ({1,2}) by g (v2) = {1,2}, g (y1) = {2}, g (v3) = g (v4) =; and g (x) = f (x) otherwise.

Clearly, g is a restrained 2-rainbow dominating function of T of weight less than ω( f ) that

implies br r 2(T ) ≤ (n −3)/2.

(d) deg(v4) = 2.

Considering above, we may assume that any maximal subtree at each child of v5 with

depth 3, is the path P4. Consider the following.

(i) deg(v5) ≥ 3.

Assume that N (v5)− {v6, v4} = Lv5
∪ {y1, y2, . . . , yt } if N (v5)− {v6, v4} 6= Lv5

and Lv5
=

{x1, x2, . . . , xk } when Lv5
6= ;.
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• Lv5
6= ;.

If N (v5)− {v6, v4} = Lv5
, then it is easy to see that γr r 2(T − {v5v6, v5v4}) > γr r 2(T )

that implies br r 2(T ) ≤ 2 < (n − 3)/2. Assume that N (v5) − {v6, v4} 6= Lv5
and

B = {v5 y1, . . . , v5 yt , v5v4, v5v6}. As above |B | < (n −3)/2. Let f be a γr r 2(T −B )-

function. Then we may assume that | f (vi )| = | f (x j )| = 1 for 1 ≤ i ≤ 5 and 1 ≤

j ≤ k . Using an argument similar to that described in Case 3, we can see that

γr r 2(T ) < γr r 2(T −B ) implying that br r 2 ≤ (n −3)/2.

• Lv5
=; and Tyi

has a γr r 2(Tyi
)-function h such that |h(yi )| ≥ 1 for some i .

Assume, without loss of generality, that j = 1 and 1 ∈ h(y1). Let B ={v5y1, . . . , v5yt ,

v5v6}, f be a γr r 2(T − B )-function and T1,T2, . . . ,Tt ,Tt+1,Tt+2 be the compo-

nents of T −B containing y1, . . . , yt , v6, v5 respectively. We may assume that f |Ty1

= h and | f (vi )| = 1 for each 1 ≤ i ≤ 5. If there exists a vertex w ∈ {v6, y2, . . . , yt }

with f (w ) = ;, then define g : V (T ) → P ({1,2}) by g (v4) = {2}, g (v5) = ; and

g (x) = f (x) otherwise. Clearly, g is a restrained 2-rainbow dominating function

of T of weight less than ω( f ) and so br r 2(T ) ≤ (n −3)/2. Assume that | f (w )| ≥ 1

for each w ∈ {v6, y1, . . . , yt }. Suppose, without loss of generality, that 2 ∈ f (v6).

Then the function g : V (T ) →P ({1,2}) defined by g (v5)= g (v4)=;, g (v3) = {1,2}

and g (x) = f (x) otherwise, is a restrained 2-rainbow dominating function of T

of weight less than ω( f ) and so br r 2(T ) ≤ |B | ≤ (n −3)/2.

• Lv5
=; and For each i and each γr r 2(Tyi

)-function h, h(yi ) =;.

Then degTy1
(y1) ≥ 2 and y1 has a neighbor of degree at least two with exception

of v5. Let N (y1) \ (Ly1
∪ {v5}) = {z1, z2, . . . , zs }. If the component of T − v6v5 con-

taining v6, has a γr r 2-function f ′ with | f ′(v6)| ≥ 1, then as above we can see that

br r 2(T ) ≤ (n −3)/2. Hence, we assume that every γr r 2-function of the compo-

nent of T −v6v5 containing v6, assigns ; to v6. Now let B = {v5 y1, . . . , v5 yt , v5v6,

y1z1, . . . , y1zs}, f be a γr r 2(T −B )-function and T1 be the component of T −B

containing y1. Obviously, n ≥ 2t + 2s + 6 and so |B | < (n − 3)/2. On the other

hand, we may assume that | f (y1)| = 1 and | f (vi )| = 1 for 1 ≤ i ≤ 5. Let h be

a γr r 2(Ty1
)-function. By assumption we have h(y1) = ; and

∑

x∈V (Ty1
) | f (x)| >

∑

x∈V (Ty1
) |h(x)|. Then the function g : V (T ) →P ({1,2}) defined by g (v5) = g (v3)

= g (v2) = ;, g (v4) = g (v1) = {1,2}, g (u) = h(u) for u ∈ V (Ty1
) and g (u) = f (u)

otherwise, is a restrained 2-rainbow dominating function of T of weight less

than ω( f ) and so br r 2(T ) ≤ |B | ≤
n−3

2 .

(ii) deg(v5) = 2.

Considering the above cases and subcases, we have deg(vi ) = 2 for 2 ≤ i ≤ 5. Sim-

ilarly, we may assume that deg(vi ) = 2 for d − 4 ≤ i ≤ d − 1. Using an argument

similar to that described in the proof of (i), we can show that br r 2(T ) ≤ n−3
2 when
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deg(v6) ≥ 3. Therefore, we suppose that deg(v6) = 2. If deg(v7) = 2, then it is easy to

see that γr r 2(T ) < γr r 2(T − {v7v8, v7v6}) that implies br r 2(T ) ≤ 2 ≤ (n −3)/2. Hence,

we assume deg(v7) ≥ 3. Let N (v7)− {v8, v6} = Lv7
∪ {y1, . . . , yt } if N (v7)− {v8, v6} 6= Lv7

and Lv7
= {x1, . . . , xk } when Lv7

6= ;. Suppose that B = {v7 y1, . . . , v7 yt , v7v6, v7v8}

and f is a γr r 2(T −B )-function. Clearly, |B | < (n − 3)/2 and we may assume that

| f (vi )| = 1 for 1 ≤ i ≤ 7. Then the function g : V (T ) → P ({1,2}) defined by g (v7) =

g (v4) = g (v1) = {1,2}, g (v6) = g (v5) = g (v3) = g (v2) = ; and g (x) = f (x) otherwise,

is a restrained 2-rainbow dominating function of T of weight less than ω( f ) and so

br r 2(T ) ≤ |B | ≤ (n −3)/2. All in all, we have br r 2(T ) ≤ (n −3)/2 as desired.

To prove sharpness, let T be a wounded spider obtained from the star K1,t , (t ≥ 3) by

subdividing t −2 edges. It is easy to see that n(T )= 2t −1, γr r 2(T ) = 2t −2 and br r 2(T ) = t −2=

(n −3)/2. ���

Theorem 2.3. Let x y z be a path of length 2 in the graph G with δ(G) ≥ 2 and deg(y)≥ 3. Then

br r 2(G) ≤ deg(x)+deg(y)+deg(z)−4−π(x, z)

where π(x, z) = 1 if xz ∈ E (G) and π(x, z) = 0 otherwise.

Proof. Let X ⊆ E (G) be the set consisting of all the edges incident with x, y or z with exception

of the edges x y, y z. Clearly, |X | = deg(x)+deg(y)+deg(z)−4 when xz ∉ E (G) and |X | =deg(x)+

deg(y)+deg(z)−5 when xz ∈ E (G). Let G1 =G −X be the graph obtained from G by removing

the edges of X . In G1, the path x y z is a component. We show that γr r 2(G1) > γr r 2(G) implying

that br r 2(G) ≤ |X |. Let f be a γr r 2(G1)-function. Since the path x y z is a component of G1, we

have | f (x)|+ | f (y)|+ | f (z)| = 3. If xz ∈ E (G), then define g : V (G) → P ({1,2}) by g (y) = {1,2},

g (x) = g (z) =; and g (w ) = f (w ) for w ∈ V (G)− {x, y, z}. It is easy to see that g is a restrained

2-rainbow dominating function of G of weight less than ω( f ) as desired.

Now let xz ∉ E (G). If there exists a vertex u ∈ N (y)− {x, z} with f (u) = ;, then the func-

tion g : V (G) → P ({1,2}) defined by g (x) = {1}, g (z) = {2}, g (y) = ; and g (w ) = f (w ) for

w ∈ V (G)− {x, y, z}, is a restrained 2-rainbow dominating function of G of weight less than

ω( f ) as desired. If there are two vertices u ∈ N (x)− {y} and v ∈ N (z)− {y} with f (u) = f (v) =

;, then define g : V (G) → P ({1,2}) by g (y) = {1,2}, g (x) = g (z) = ; and g (w ) = f (w ) for

w ∈ V (G)− {x, y, z}. Clearly, g is a restrained 2-rainbow dominating function of G of weight

less than ω( f ) as desired. Since δ(G) ≥ 2, we thus can assume that f (x1) 6= ; for a vertex

x1 ∈ N (x)−{y} or f (z1) 6= ; for a vertex z1 ∈ N (z)−{y}, say f (x1) 6= ; for a vertex x1 ∈ N (x)−{y}.

In addition, we may assume that f (u) 6= ; for each vertex u ∈ N (y)− {x, z}. Suppose that

u1 ∈ N (y)− {x, z} (possibly u1 = x1). Assume, without loss of generality, that 1 ∈ f (u1). De-

fine g : V (G) → P ({1,2}) by g (x) = g (y) = ;, g (z) = {2}, g (x1) = {1,2}, and g (w ) = f (w ) for

w ∈V (G)− {x, y, z, x1}. It is easy to see that g is a restrained 2-rainbow dominating function of

G with weight less than ω( f ) as desired. This completes the proof. ���



124 J. AMJADI, N. DEHGARDI, R. KHOEILAR, S. M. SHEIKHOLESLAMI AND L. VOLKMANN

Corollary 2.4. Let G be a connected graph of order n ≥ 6 with δ(G) ≥ 2. Then

br r 2(G) ≤ δ(G)+2∆(G)−4.

The bound is sharp for cycles C3k+1 and C3k+2 where k ≥ 2.

Proof. If ∆(G) = 2, then the result is immediate by Corollary 1.2. Let ∆(G) ≥ 3. Assume that x

is a vertex of minimum degree δ(G) such that x is adjacent to a vertex y of degree greater than

δ(G). Since deg(y) ≥ 3, there is a path x y z in G satisfying the condition of Theorem 2.3 and

the result follows by Theorem 2.3. ���

Proposition 2.5. Let x y z be a path of length 2 in the graph G such that (NG(x)∩NG (y))\{z} 6= ;.

Then

br r 2(G) ≤ deg(x)+deg(y)+deg(z)−|NG (x)∩NG (y)|− |NG (x)∩NG (z)|−2−π(x, z)

where π(x, z)= 1 if xz ∈ E (G) and π(x, z)= 0 otherwise.

Proof. Let X ⊆ E (G) be the set consisting of all the edges incident with x, y or z with exception

of all edges between y and NG (x)− {z} and all edges between z and NG (x)− {y}. Clearly, |X | =

deg(x)+deg(y)+deg(z)−|NG (x)∩NG (y)|−|NG (x)∩NG (z)|−3 if xz ∈ E (G) and |X | = deg(x)+

deg(y)+deg(z)−|NG (x)∩NG (y)|− |NG (x)∩NG (z)|−2 when xz 6∈ E (G). Let G1 =G −X be the

graph obtained from G by removing the edges of X . In G1, the vertex x is isolated and the

neighbors of y or z lie in NG (x). We show that γr r 2(G1) >γr r 2(G) that implies br r 2(G) ≤ |X | as

desired. Let f be a γr r 2(G1)-function. Since x is isolated in G1, we may assume that f (x) = {1}.

If f (y) = ;, then the function g : V (G) → P ({1,2}) defined by g (x) = ; and g (w ) = f (w ) for

w ∈ V (G)− {x}, is a restrained 2-rainbow dominating function of G of weight less than ω( f )

as desired. Assume that | f (y)| ≥ 1. If f (y) = {1,2}, then the function g : V (G) → P ({1,2})

defined by g (y) = {2} and g (w ) = f (w ) for w ∈V (G)−{y}, is a restrained 2-rainbow dominating

function of G with weight less than ω( f ) as desired.

Let | f (y)| = 1. Assume, without loss of generality, that f (y) = {1}. If f (z) = ;, then the

function g : V (G) → P ({1,2}) given by g (x) = ; and g (w ) = f (w ) for w ∈ V (G)− {x} is a re-

strained 2-rainbow dominating function of G with weight less than ω( f ) as desired. Suppose

| f (z)| ≥ 1. If there exists a vertex w1 ∈ (NG (x)∩NG (y)) with f (w1) =;, then the function g de-

fined by g (x) = {1}, g (z) = {2}, g (y) =; and g (w ) = f (w ) for w ∈V (G)− {x, y, z} is a restrained

2-rainbow dominating function of G with weight less than ω( f ) as desired. Hence, we assume

f (w ) 6= ; for each w ∈ (NG (x)∩NG (y))− {z}. Assume that w ∈ (NG (x)∩NG (y))− {z}. Define

the function g by g (w )= {1,2}, g (x) = g (y) =; and g (a)= f (a) for a ∈V (G)−{w, x, y}. Clearly,

g is a restrained 2-rainbow dominating function of G with weight less than ω( f ) as desired.
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Thus γr r 2(G1) >γr r 2(G) implying that br r 2(G) ≤ |X | and the proof is complete. ���

3. Complete graphs and complete bipartite graphs

In this section, we determine the restrained 2-rainbow bondage number of complete

graphs and complete bipartite graphs.

Observation 3.1. For every graph G with γr r 2(G) = γr 2(G) < n, br 2(G) ≥ br r (G).

Proof. For any br 2(G)-set B , we have γr r 2(G −B ) ≥ γr 2(G −B ) > γr 2(G) = γr r 2(G) that implies

br 2(G) ≥ br r 2(G). ���

Proposition 3.2. For n ≥ 9,

br r 2(Kn) =

⌈

2n

3

⌉

.

Proof. By Observation 3.1 and Theorem E, we have br r 2(Kn) ≤

⌈

2n

3

⌉

. Now we show that

br r 2(Kn) ≥
⌈

2n
3

⌉

. Let V (Kn) = {x1, x2, . . . , xn} be the vertex set of Kn and let B be a br r 2(Kn)-

set. Assume, to the contrary, that |B | <
⌈

2n
3

⌉

. It follows from Theorem E that γr 2(Kn −B ) = 2.

By Theorem F, ∆(Kn −B ) = n −1 or there are two vertices, say x1, x2, such that {x3, . . . , xn} ⊆

N (x1)∩N (x2). First let ∆(Kn −B ) = n−1 and degKn−B (x1) = n−1. If δ(Kn −B ) ≥ 2, then clearly

γr r 2(Kn −B ) = 2 which is a contradiction. Hence, degKn−B (xi ) = 1 for some 2 ≤ i ≤ n that

implies |B | ≥ n − 2 ≥
⌈

2n
3

⌉

, a contradiction. Now let ∆(Kn −B ) ≤ n − 2. Then {x3, . . . , xn} ⊆

N (x1)∩N (x2). If δ(Kn −B ) ≥ 3, then clearly γr r 2(Kn −B ) = 2 which is a contradiction. Assume

that degKn−B (xi ) = 2 for some 3 ≤ i ≤ n, say i = 3. It follows that {x3x4, . . . , x3xn} ⊆ B . Since

∆(Kn −B ) ≤ n −2, we deduce that x1x2 ∈ B and so |B | ≥ n −2 ≥
⌈

2n
3

⌉

, a contradiction. Thus

br r 2(Kn) =
⌈

2n
3

⌉

and the proof is complete. ���

Proposition 3.3. For 3 ≤ n ≤ 8,

br r 2(Kn) = n −2.

Proof. If n = 3, then we have br r 2(K3) = 1. Let n ≥ 4 and V (Kn) = {x1, x2, . . . , xn} be the vertex

set of Kn . It follows from Theorem D that γr r 2(Kn − {x1x2, . . . , x1xn−1}) ≥ 3. Also the function f

defined by f (x1) = {1}, f (x2) = {1,2} and f (x) =; otherwise, is an R2RDF of Kn −B of weight 3

that implies γr r 2(Kn − {x1x2, . . . , x1xn−1}) = 3 >γr r 2(Kn). Hence br r 2(Kn) ≤n −2. If n = 4, then

it follows from Theorem D that γr r 2(K4−e)= 2 for each e ∈ E (K4) and so br r 2(K4) = 2. If n = 5,

then clearly for every two edges e1,e2 ∈ E (K5), we have∆(K5−{e1,e2}) = 4 and δ(K5−{e1,e2}) ≥

2. Hence, γr r 2(K5 − {e1,e2}) = 2 by Theorem D that implies br r 2(K5) = 3. Let 6 ≤ n ≤ 8. Since

n−2 =
⌈

2n
3

⌉

, using an argument similar to that described in the proof of Proposition 3.2 leads

to br r 2(Kn) = n −2. ���
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Proposition 3.4. For integers 2 ≤ p ≤ q and q 6= 2,

br r 2(Kp,q ) =















2 if p = 2

3 if p = 3

p −1 otherwise.

Proof. Let X = {x1, x2, . . . , xp } and Y = {y1, y2, . . . , yq } be the partite sets of Kp,q , and let B be a

br r 2(Kp,q )-set. We note that γr r 2(Kp,q ) = 4 for q ≥ p ≥ 2.

First let p = 2. For any edge xi y j ∈ E (K2,q ), say i = 1, j = 1, the function f : V (K2,q ) →

P ({1,2}) defined by f (y1) = {1}, f (y2)= {2}, f (x1) = {1,2} and f (u) =; otherwise, is a

γr r 2(K2,q − x1 y1)-function and so γr r (Kp,q − x1 y1) = 4. It follows that br r 2(K2,q ) ≥ 2. On the

other hand, it is clear that γr r 2(K2,q − {x1 y1, x2 y1}) = 5 that implies br r 2(K2,q ) = 2.

Now let p = 3. Let e1,e2 be two arbitrary distinct edges of K3,q . If e1 and e2 have a common

endpoint, then we may assume, without loss of generality, that e1 = x1 y1,e2 = x2 y1 or e1 =

x1 y1,e2 = x1 y2, and if e1 and e2 have no common endpoint, then we may assume that e1 =

x1 y1 and e2 = x2 y2. If e1 = x1 y1,e2 = x2 y1 or e1 = x1 y1,e2 = x1 y2 and q = 3 or e1 = x1 y1,e2 =

x2 y2 then define f : V (K3,q ) →P ({1,2}) by f (x1) = f (y1)= {1}, f (x2) = f (y2) = {2} and f (u)=;

otherwise, and if e1 = x1 y1,e2 = x1 y2 and q ≥ 4 then define f : V (K3,q ) →P ({1,2}) by f (x3) =

f (yq ) = {1,2} and f (u) =; otherwise. It is easy to see that f is a γr r 2(K3,q − {e1,e2})-function

of weight 4 and hence br r 2(K3,q ) ≥ 3. It is easy to see that γr r 2(K3,q−{x1 y1, x2 y1, x3 y1}) = 5 that

implies br r 2(K3,q ) = 3.

Finally let p ≥ 4. Considering B = {x2 y1, x3 y1, . . . , xp y1}, one can see that degKp,q−B (y1) = 1

and γr r 2(Kp,q − B ) = 5. It follows that br r 2(Kp,q ) ≤ p − 1. Now we show that br r 2(Kp,q ) ≥

p −1. Let F be an arbitrary set of edges with |F | ≤ p −2. It is clear that δ(Kp,q −F ) ≥ 2 and

degKp,q−F (xi1
) = degKp,q−F (xi2

) = q,degKp,q−F (y j1
) = degKp,q−F (y j2

) = p for some 1 ≤ i1, i2 ≤

p and 1 ≤ j1, j2 ≤ q . Define f : V (Kp,q ) → P ({1,2}) by f (xi1
) = f (y j1

) = {1,2} and f (u) = ;

otherwise. It is easy to see that f is aγr r 2(Kp,q−B )-function of weight 4 and hence br r 2(Kp,q ) ≥

p −1. Thus br r 2(Kp,q ) = p −1 when p ≥ 4 and the proof is complete. ���
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