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A CLASS OF SPACES AND THEIR ANTI SPACES

C. K. BASU

Abstract. The present paper is a continuation of the study of S-closed and s-closed topological
spaces as introduced by Thompson [11] and Maio and Noiri [7] respectively. Although there is
no relation between compactness with S-closedness or s-closedness, this paper yields some new

characterizations of these concepts in terms of compactness.

1. Introudction

Since the introduction of semi-open sets by N. Levine [6], many mathematicians
have introduced many new topological properties, using semi-open sets. Maio and Noiri
[7] initiated the study of a class of topological spaces under the terminology “s-closed
spaces”, which is properly contained in the class of S-closed spaces as introduced by
Thompson [11] and subsequently studied extensively by many mathematicians. Ganster
and Reilly [4] have shown a remarkable result towards the distinction between these
concepts that every infinite topological space can be represented as a closed subspace of
a connected S-closed space which is not s-closed. The aim of this paper is to study these
topological properties viz. S-closedness and s-closedness via compactness which reflect
the distinction between the concepts of compactness and S-closeness or s-closedness.
This, however, leads us to establish in a straight forward manner certain important
characterization theorems of S-closed spaces and s-closed spaces which are already well-
known. In the last section, we introduce and characterize the class of anti-S-closed and
anti-s-closed spaces.

By (X, T) or simply by X we shall denote a topological space, and for a subset A of
X, the closure of A and the interior of A will be denoted by cl A and int A respectively.
A subset A of X is said to be semi-open [6] if there exists an open set U of X such that
U C AcCclU. Biswas [2] used semi-open sets to define semi-closed sets and semi-closure
of a set. A subset A of X is semi-closed iff X — A is semi-open and the semi-closure of
A, denoted by scl A, is the intersection of all semi-closed sets containing A [2]. A set
which is semi-open as well as semi-closed is said to be a semi-regular set [7]. Maio and
Noiri [7] characterized semi regular sets in terms of regular open sets as follows: a set
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A is semi-regular iff there exists a regular open set U of X such that U C A C cl U.
The family of all semi-open (resp. semi-regular, regular-open, regular closed) sets of X
will be denoted by SO(X) (resp. SR(X), RO(X), RC(X)). While the collection of all
members of SO(X) (resp. SR(X), RO(X), RC(X)) each containing a point x of X will be
denoted by SO(z) (resp. SR(z), RO(z), RC(x)). A subset A of X is said to be S-closed
[9] (resp. s-closed [7]) relative to X or simply an S-set (s-set) iff every cover of A by sets
of SO(X) admits a finite subfamily whose closures (resp. semi-closures) cover A. In case
A = X and A is an S-set (s-set), then X is called an S-closed [11] (resp. s-closed [7])
space.

2. S—Closed and s—Closed Spaces

Analogous to a well known theorem on compactness, Asha Mathur [8] and Maio and
Noiri [7] respectively proved that a topological space X is S-closed (resp. s-closed) iff
every regular closed (resp. semi-regular) cover of X has a finite subcover. Although
it is well known that compactness and S-closedness (resp. s-closedness) are indepen-
dent notions, it is our intention in this section to study such spaces with the help of
compactness. An important and useful consequence of such study is to achieve a new
approach which not only simplifies (in a straightforward way) the proofs of some well-
known characterization theorems of S-closed and s-closed spaces but also improves some
characterization theorem of such spaces. Joseph and Kwack [5] and Ganguly and Basu
[3] initiated respectively (6, s)-continuous function and ~-continuous function to study
S-closed (resp. s-closed) spaces. Using those functions, we derive that a topological space
X is S-closed (resp. s-closed) iff it is a (6, s)-continuous (resp. y-continuous) image of a
compact space. For these purposes we require some definitions and results.

Definition 2.1. A filter base & on X is said to s-accumulate [11] (resp. SR-
accumulate [7]) to z € X iff for each V' € SO(z) and each F' € S satisfy FNclV # ¢
(resp. FNscl V # ¢).

Joseph and Kwack [5] and Maio and Noiri [7] respectively established that RC(z) =
{clV : V € SO(z)} and SR(z) = {sclV : V € SO(x)}. Therefore an equivalent
formulation of the above definition is that a filter base & on X is said to have an s-
accumulation (resp. SR-accumulation) point z iff for each F' € S and for each V' € RC(z)

(resp. V € SR(x)), FNV # ¢.

Definition 2.2. A filter base & on X is said to s-converge [11] (resp. SR-converge
[7]) to z iff for each V' € RC(z) (resp. V € SR(z)) there is an F' € ¥ satisfying FF C V.

The corresponding definitions for nets are obvious.

Definition 2.3. Let (X,T) be a topological space. We define Trc-topology (resp.
Tsr-topology) on X as the topology on X which has RC(X) (resp. SR(X)) as a subbase.
It is to be noted that intersection of even two regular closed (resp. semi-regular) sets may
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fail to be regular closed (resp. semi-regular). Therefore these collections do not form a
base for topology.

Definition 2.4. A filter base & in (X, T) is said to be Trc-convergent (resp. Tsr-
convergent) to x if & converges to = in (X, Trc) (resp. in (X, Tsr)).

Proposition 2.5. A filterbase S in (X, T) s-converges (resp. SR-converges) to x iff
S Tre-converges (resp. Tsr-converges) to x.

Proof. Straightforward.
The corresponding proposition using nets is also obvious.

Definition 2.6. A filter base & on (X, T) is said to have = as a Tro-accumulation
(resp. Tsr-accumulation) point if  is an accumulation point of & in (X, Trc) (resp. in
(X,TsR))-

Similarly, Tre (resp. Tsr)-accumulation point of a net can be defined.

Remark 2.7. Every Trc-accumulation (resp. Tgr-accumulation) point of a filter or
a net is also an s-accumulation (resp. SR-accumulation) point. But the converse is not
necessarily true follows from the following example.

Example 2.8. Let X = R, be the set of reals with the usual topology then (X, Trc)
(resp. (X,Tsr)) is clearly the discrete topology. Let x, = (—1)".1/n for each positive
integer n, then the net {z, }nen and the filter & based on the net {z, }nen both have 0
as the s-accumulation (resp. SR-accumulation) point. But 0 is not a Trc-accumulation
(resp. Tsg-accumulation) point of {z, }nen or S.

Theorem 2.9. A topological space (X,T) is S-closed iff (X, Trc) is compact.

Proof. Let (X,T) be S-closed. Then every regular closed cover of X has a finite
subcover. But the collection of all regular closed sets of (X,T) is a subbase for Trc.
Therefore every subbasic open cover of (X,Trc) has a finite subcover. By Alexander
subbase theorem, (X, Trc) is compact.

Conversely, let (X, Trc) be compact. Since RC(X) C Trce, every regular closed cover
of (X, T) has a finite subcover. So (X, T) is S-closed by [Theorem 1 of Asha Mathur [8]].

Theorem 2.10. A topological space (X,T) is s-closed iff (X,Tsr) is compact.
Proof. It is similar to Theorem 2.9 and is thus omitted.

The following theorem for S-closed spaces improves Theroem 1 of Asha Mathur [8],
Theorem 1.3 of T. Noiri [9] and Theorem 2 of Thompson [11]; and the theorem for
s-closed spaces improves proposition 3.1 of Maio and Noiri [7].

Theorem 2.11. Let (X,T) be a topological space. Then the following are equiva-
lent.
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) (X,T) is S-closed (resp. s-closed)
ii) every proper regular open (resp. Semi-reqular) set is an S-set (resp. s-set) in (X, T).
) every closed set of (X, Tre) [resp. (X,Tsr)] is an S-set (resp. s-set) in (X, T).
) every family of reqular open (resp. Semi-reqular) subsets of (X,T) with the finite
intersection property (f.i.p. for short) has non-void intersection.
v) every family of closed subsets of (X, Trc) [resp. (X,Tsr)] with the f.i.p. has non-
void intersection.

vi) every filter base in (X, T) has an s-accumulation (resp. SR-accumulation) point.
vii) every net in (X,T) has an s-accumulation (resp. SR-accumulation) point.
viii) every filter base in (X, T) has a Tre-accumulation (resp. Tsg-accumulation) point.

every net in (X,T) has a Tre-accumulation (resp. Tsg-accumulation) point.
every net in (X,T) has a Trc-convergent (resp. Trs convergent) subnet.

every filter S in (X, T) has a sub-ordinate filter So of S which is Tre-convergent
(resp. Tsgr-convergent).

xii) every universal net in (X,T) is Trc-convergent (resp. Tsr-convergent).

xiii) every ultrafilter in (X, T) is Tro-convergent (resp. T'sg-convergent).

Proof. The facts discussed above prove the theorem immediately.

Definition 2.12. A function f : (X,T) — (Y, T") is said to be (6, s)-continuous [5]
(resp. y-continuous [3]) if for each z € X and each W € SO(f(z)), there is an open set
V containing = such that f(V) C cl W (resp. f(V) C scl W).

Since RC(z) = {cl W : W € SO(x)} [5] (resp. SR(x) = {scl W : W € SO(z)} [7]),
the above definition can equivalently be stated as: a function f : (X,T) — (Y, T")
(6, s)-continuous (resp. y-continuous) iff f~1(W) is open in X, for every W € RC(Y)
(resp. W € SR(Y)).

1S

Theorem 2.13. A topological space (X,T) is S-closed iff it is a (0, s)-continuous
image of a compact space.

Proof. Let (X,T) be S-closed. Then by Theorem 2.9, (X,Trc) is compact. Let
i (X,Trc) — (X,T) be the identity function, which is obviously (6, s)-continuous.
Therefore there exist a compact space and a (6, s)-continuous function such that the
S-closed space (X, T) is the (6, s)-continuous image of a compact space.

Conversely, let f : (Y, T*) — (X,T) be (0, s)-continuous surjection and (Y,7*) be
compact. Let {V,, : & € I} be a cover of (X, T) be regular closed sets of (X,T). Then
{f7*(Va) : a € I} is a cover of the compact space (Y,T*) by open sets of (Y,T*).
Therefore there exists a finite subset Iy of I such that {f~1(V,) : a € Iy} covers Y and
hence {V, : « € Iy} covers X. Therefore (X, T) is S-closed.

Theorem 2.14. A topological space (X,T) is s-closed iff it is a y-continuous image
of a compact space.

Proof. The proof is similarl to Theorem 2.13 and thus omitted.
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Maio and Norir [7] initiated quasi-irresolute function and established that such func-
tions preserve s-sets. Here we introduce a weaker form of quasi-irresolute function which
also has the same property.

Definition 2.15. ([7]) A function f : X — Y is said to be quasi-irresolute if for each
xz € X and each V € SO(f(z)) there exists a U € SO(z) such that f(U) C scl V.

Definition 2.16. A function f: (X,T) — (Y,T") is said to be weakly quasi-irresolute
if f:(X,Tsr) — (Y, T§g) is continuous.

Theorem 2.17. Every quasi-irresolute function is weakly quasi-irresolute.

Proof. Let f : (X,T) — (Y,T') be quasi-irresolute. Then f~!(V) is semi-regular
set in (X, T) for every V € SR(Y). But the collection of all semi-regular sets of (Y,7T")
is a subbase for (Y,T{y). Hence f : (X,Tsr) — (Y, T4g) is continuous. Therefore
(X, T)— (Y,T") is weakly quasi-irresolute.

Remark 2.18. That the coverse of the above theorem is not necessarily true follows
from the following example.

Example 2.19. Let f: R — R where R is the set of reals with the usual topology
T be a function defined by

@) = ry if x is rational,
"\ ro if zis irrational, with 7o > r; > 0.

Clearly Tsg is the discrete topology; therefore f : (R, Tsg) — (R, Tsr) is continuous and
hence f is weakly quasi-irresolute function. But f is not a quasi-irresolute function. In
fact if § be such that 0 < § < |(re —r1)/2|, then the open interval J = (rg — 0,72 + J) is
a semi-regular set in (R,T); but f~1(J) is the set of all irrationals of R. Hence f~1(J)
is not even a semi-open set in R.

Hence we get an improved result of Corollary 5.1 of Maio and Noiri [7].

Theorem 2.20. If f : (X,T) — (Y,T") is weakly quasi-irresolute and K is an s-set
of (X,T), then f(K) is an s-set in Y.

Proof. Let {U, : a € I} be a cover of f(K) by semi-regular sets of (Y,7”). Since
f:(X,T) — (Y,T') is weakly quasi-irresolute, {f~*(U,) : a € I} is a cover of K by
open sets of (X,Tsg). By Theorem 2.10, K is compact in (X,Tsg). Therefore, there
exists a finite subset Iy of I such that K C U{f '(U,) : a € Iy}. Which implies
f(K) CUaer,Uq. Therefore f(K) is an s-set in Y.

Corollary 2.21. If f : (X,T) — (Y,T") is weakly quasi-irresolute surjection and
(X,T) is s-closed then (Y, T") is also s-closed.

Definition 2.22. ([7]) A space (X,T) is said to be weakly Hausdorff if every point
of X is the intersection of regular closed sets of X.
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The following theorem improves Corollary 5.2 of Maio and Noiri [7].

Theorem 2.23. Let f : (X,T) — (Y,T') be weakly quasi-irresolute, (X,T) is s-
closed and (Y, T') be weakly Hausdorff. Then the image of each semi-0-closed set [7] in
X is semi-0-closed in'Y .

Proof. Let K be a semi-f-closed set in (X,T'). Then by Proposition 4.2 of Maio and
Noiri [7], K is an s-set in X. By Theorem 2.20, f(K) is an s-set in Y. Therefore by
Proposition 4.3 of Maio and Noiri [7], f(K) is semi-6-closed set in (Y, T).

3. Anti—S—Closed and Anti—s—Closed Spaces

P. Bankston [1] studied topological anti-properties. Reilly & Vamanamurthy [10]
extended these concepts to semi-compact spaces. In a similar fashion [10], here we
introduce and characterize two new topological anti-properties under the terminology
‘anti-S-closedness’ and ‘anti-s-closedness’ along with their mutual relationships.

Definition 3.1. A topological space (X,T) is said to be anti-S-closed (resp. anti-s
-closed) if only the finite subsets of (X,T') are S-sets (resp. s-sets) of (X, T).

An infinite subset A of (X, T) is said to be anti-S-closed (resp. anti-s-closed) relative
to X if only the finite subsets of A are S-sets (resp. s-sets) in (X, T).

Theorem 3.2. A topological space (X,T) is anti-S-closed iff for every infinite set N
of X and each point x of X, there exists a reqular closed set R containing x such that
N\ R is not an S-set in (X, T).

Proof. Let the given condition hold. We have to show that (X,T) is anti-S-closed.
Let N be any infinite set and let x € X. Then by hypothesis, there exists a R € RC(x)
such that N \ R is not an S-set. Therefore there exists a cover A of N \ R by regular
closed sets of X which has no finite subcover. So N is not an S-set in (X, T'). Therefore
(X,T) is anti-S-closed.

Conversely, let (X, T') be anti-S-closed space. Let N be any infinite subset of X and
let = be any point of X. Then by definition of anti-S-closed space, N and hence N U{z}
is not an S-set. Therefore there exists a cover A of N U{x} by regular closed sets which
has no finite subcover. Hence there exists a member R € A such that z € R. So N\ R
is not an S-set in (X, T).

Theorem 3.3. A topological space (X, T) is anti-s-closed iff for every infinite set N
of X and each point x of X, there exists a V € SR(x) such that N\'V is not an s-set in
(X,T).

Proof. The proof is similar to that of the above theorem.

Theorem 3.4. If (X,T) is anti-S-closed then it is anti-s-closed.
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Proof. The proof immediately follows because of the fact that every s-set is an S-set.

Remark 3.5. That the converse of the above theorem is not necessarily true follows
from the following example.

Example 3.6. Let X be set of all integers with the topology T having the base
{X,{0},{-1},{—2},...}. Then no infinite set of X is an s-set; if we have ZT, the set
of positive integers, then {{0,1},{0,2},{0,3},...} is a semi-open cover of Z* and scl
{0,n} = {0,n}. Then Z* is not an s-set. But ZT is an S-set; if we consider Z — Z* then
{{0},{-1},{—2},...} is a semi-open cover of Z — Z* and scl{—n} = {—n}. Therefore
it has no finite subcover. So Z — Z% is not an s-set. If L C X be such that it is infinite
and contains finitely many points from Z* then again this can be shown to be a non
s-set; if it contains infinitely many elements from Z*, the same thing happens. Thus X
is anti-s-closed but not anti-S-closed.

Theorem 3.7. Any topological space (X,T) which is not S-closed (resp. not s-
closed) has a proper infinite subset which is anti-S-closed (resp. anti-s-closed) relative to
X.

Proof. Since (X,T) is not S-closed (resp. not s-closed), there exists, in particular,
a countable cover A of X by regular closed (resp. semi-regular) sets which has no finite
subcover. We pick up the points z,,4+1 € X — U, V; (where V; € A). Then the set
{Zm,m € N}, where N is the set of naturals, is a proper infinite subset of X which
is not S-set (resp. s-set). Therefore every infinite subset of {x,, : m € N} is not an
S-set (resp. s-set) in (X,T). Hence the infinite subset {z,, : m € N} is anti-S-closed
(resp. anti-s-closed) relative to X.

Definition 3.8. A topological space (X, T) is said to be hereditarily S-closed (resp.
hereditarily s-closed) if each of its subsets is S-set (resp. s-set) in (X, T).

Theorem 3.9. A topological space (X, T) is hereditarily S-closed (resp. hereditarily
s-closed) iff (X,T) is anti-(anti-S-closed) [resp. anti-(anti-s-closed)].

Proof. Let (X,T) be anti-(anti-S-closed) [resp. anti-(anti-s-closed)]. If possible let
(X,T) be not hereditarily S-closed (resp. hereditarily s-closed). Then there exists a
subset B of X such that B is not an S-set (resp. s-set) and hence B must be infinite.
Therefore by Theorem 3.7, B has an infinite subset M which is anti-S-closed (resp. anti-
s-closed) relative to X-a contradiction to the definition of anti-(anti-S- closed) [resp. anti-
(anti-s-closed)].

Coversely, let (X, T) be hereditarily S-closed (resp. hereditarily s-closed). If possible,
let (X, T') be not anti-(anti-S-closed) [resp. anti-(anti-s-closed)]. Then by definition there
exists an infinite subset V' of X which is anti-S-closed (resp. anti-s-closed) relative to X.
Therefore V' is not an S-set (resp. s-set) in (X, T')-a contradiction.
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