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IN THE EUCLIDEAN 3-SPACE

BANG-YEN CHEN

In memory of Professor Tadashi Nagano

Abstract. A twisted curve in the Euclidean 3-space E
3 is called a rectifying curve if its

position vector field always lie in its rectifying plane. In this article we study geodesics on

an arbitrary cone in E
3, not necessary a circular one, via rectifying curves. Our main result

states that a curve on a cone in E
3 is a geodesic if and only if it is either a rectifying curve

or an open portion of a ruling. As an application we show that the only planar geodesics

in a cone in E
3 are portions of rulings.

1. Introduction

A geodesic on a surface is a curve connecting two nearby points such that any nearby

curve with the same endpoints is longer. The study of geodesics on surfaces is one of the

most fundamental and important problems in classical differential geometry (cf. [2, 9, 8, 10,

11]). The study of geodesics has many applications in mathematics, sciences and as well as in

engineerings.

Consider geodesics on a circular cone. If we cut the circular cone along a ruling, then the

cone unwraps into a sector of the Euclidean plane, and the geodesics on the cone must yield

straight line segments in the sector.

If we try to determine geodesics on a circular cone in E
3 analytically, the equations for

geodesics are messy in general and chock full of partial derivatives. If we put that approach

aside and consider the problem geometrically, then the following facts are well-known: The

number of distinct geodesics connecting two points is always finite and it depends essentially

only on the angle of the circular cone, plus there will be a few special cases, corresponding

to specially chosen boundary conditions. Distinct geodesics connecting the two points will

differ by how many times they wrap around the circular cone, and the shortest one will have

the smallest angle change.
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Next, let us consider a general cone with vertex at o ∈ E3. For a given curve y= y(t ) defined

on an open interval I lying on the unit sphere S2
o(1) centered at o ∈ E3. Let Cy denote the cone

with vertex at o over the curve y. Clearly, Cy can be parametrized as

Cy(t ,u)= uy(t ), u ∈ R+. (1.1)

For t0 ∈ I , we call the curve β(u) = Cy(t0,u), u ∈ R+, a ruling (or generating half line). Obvi-

ously, the cone Cy is generated by the rulings.

If we choose the curve y in (1.1) to be a small circle on S2
o(1), then the cone is well-known

as a circular cone. And if the curve y is a great circle on S2
o(1), the cone is a plane. Clearly,

geodesics on a plane are nothing but line segment. Therefore we only consider cones which

are not planes throughout this article.

The main purpose of this article is to classify all geodesics on a cone (not necessary a

circular one) via rectifying curves. Our main result states that a curve on a cone in E
3 is a

geodesic if and only if it is either a rectifying curve or an open portion of a ruling. As an

application we show that the only planar geodesics in a cone in E
3 are portions of rulings.

2. Rectifying curves

In differential geometry, most geometers describe a curve as a unit speed curve x = x(s)

whose position vector field (with reference point o) is expressed in term of an arc-length pa-

rameter s. In order to define curvature and torsion of a space curve, one needs the well-known

Frenet formulas which can be obtained as follows:

Consider a unit-speed curve x : I → E
3, defined on a real interval I = (α,β), that has at

least four continuous derivatives. Put t = x′(s). In general, it is possible that t′(s) = 0 for some

s; however, we assume that this never happens. Then we can introduce a unique vector field

n and positive function κ so that t′ = κn. We call t′ the curvature vector field, n the principal

normal vector field, and κ the curvature of the given curve x(t ). Since t is a constant length

vector field, n is orthogonal to t . The binormal vector field is defined by b = t×n which is

a unit vector field orthogonal to both t and n. One defines the torsion τ of the curve by the

equation b′
=−τn.

The famous Frenet formulas are given by



















t′ =κn,

n′ =−κt+τb,

b′
=−τn.

(2.1)

At each point of the curve, the planes spanned by {t,n}, {t,b} and {n,b} are known as the

osculating plane, the rectifying plane, and the normal plane, respectively.
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It is well-known that a curve in E
3 lies in a plane if its position vector lies in its osculating

plane at each point; and it lies on a sphere if its position vector lies in its normal plane at

each point. In view of these basic facts, the author asked the following very simple natural

geometric question in [3] (see also [6]):

Question. When does the position vector (with reference point o) of a space curve x : I → E
3

always lie in its rectifying plane ?

We simply call such a curve a rectifying curve in [3]. It is known that rectifying curves have

many interesting properties (see, for instance, [3, 4, 5, 6, 7]).

3. Main result

For our main theorem we need the following lemmas.

Lemma 1. Every open portion of a ruling is a geodesic of the cone.

Proof. Assume that γ is an open portion of a ruling defined by

β(u)= uy(t0), u ∈ (a,b), (3.1)

where y(t ) is a unit speed curve on the cone. It follows from (3.1) that

β′(u)= y(t0), β′′(u)= 0, (3.2)

which implies that β′(u) is a unit vector field and the geodesic curvature κg of γ in the cone

vanishes identically. Hence γ is a geodesic of the cone. ���

Lemma 2. Let y(t ) be a unit speed curve on the unit sphere S2
o(1) in E

3. Then, for each c ∈ R+,

the curve z(t ) = c y(t ) is not a geodesic of the cone C defined by (1.1).

Proof. Assume that y(t ) is a unit speed curve on S2
o(1). For a positive number c , consider the

curve z(t )= cy(t ). Let κg denote the geodesic curvature of z. It is well-known that the geodesic

curvature κg is an intrinsic invariant (cf., e.g., [8, Proposition 4.4, page 106]). Since the cone

is a flat surface and |z| = c , the geodesic curvature κg of z is equal to c−1 6= 0. Consequently,

z = cy cannot be a geodesic on the cone. ���

The main result of this article is the following theorem which classifies all geodesics on a

cone in a very simple way.

Theorem 1. A curve on a cone C with vertex at o ∈ E
3 is a geodesic if and only if it is either a

rectifying curve (with reference point o) or it is an open portion of a ruling.
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Proof. Let C be a cone parametrized by Cy(t ,u) = uy(t ), where y(t ) is a curve on the unit

sphere S2
o(1) centered at o ∈ E

3. Without loss of generality, we may assume that y(t ) is a unit

speed curve.

Our goal is to determine all geodesics on the cone C . Now, let z be a curve on C . If z is

an open portion of a ruling, then it is a geodesic on C according to Lemma 1. Hence, from

now on, we may assume that z does not lie in any ruling. Clearly, if z is a geodesic and if an

open portion of z lies in a ruling, then that portion is a geodesic of the cone. Thus the whole

geodesic z lies in the ruling. Therefore we may assume that no open portion of z lies in any

ruling. Consequently, we may put

z(t ) = ρ(t )y(t ), t ∈ I , (3.3)

for some function ρ(t ), where I is an open interval.

If ρ is a constant, say c 6= 0, on an open subinterval J ⊂ I , then (3.3) becomes z(t ) = c y(t )

on J , which is never a geodesic of the cone by Lemma 2. Therefore we may further assume

that ρ′ 6= 0. Since y(t ) is a unit speed curve on S2
o(1), we find from (3.3) that

|z′(t )|2 = |ρ(t )|2 +|ρ′(t )|2. (3.4)

Let us consider the following integral functional with fixed end points:

L(t ,ρ,ρ′) =

∫t1

t0

√

ρ2 +ρ′2 d t , (3.5)

with the energy given by

f (t ,ρ,ρ′) =

√

ρ2 +ρ′2. (3.6)

Obviously, (3.5) is the length of curve z between the two endpoints z(t0) and z(t1). It is well-

known that the Euler-Lagrange equation of (3.5) is given by

∂ f

∂ρ
−

d

d t

(

∂ f

∂ρ′

)

= 0. (3.7)

Now, we may derive from (3.6) and (3.7) that the Euler-Lagrange equation of (3.5) is the fol-

lowing second order differential equation:

ρρ′′
−2ρ′2

−ρ2
= 0. (3.8)

After solving (3.8) we obtain ρ = a sec(t +b) for some real numbers a,b with a 6= 0. Combining

this with (3.3) gives

z(t )= a sec(t +b)y(t ). (3.9)

Therefore, after applying Theorem 3 of [3], we conclude that the curve z(t ) of (3.3) is a geodesic

on the cone C if and only if z(t ) is a rectifying curve. ���
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4. An application

A curve is the Euclidean 3-space E3 is called planar if it lies in a plane in E
3 . From Theorem

1 we have the following.

Corollary 1. The only planar geodesics in a cone C in E
3 are open portions of rulings.

Proof. It follows from the proof of Theorem 1 that if a geodesic on a cone does not lie in a

ruling, then it must be a curve of the following form:

z(t ) = a sec(t +b)y(t ), (4.1)

where a and b are constants with a 6= 0 and y(t ) is a unit speed curve lying in the unit sphere

S2
o(1) centered at o ∈ E3.

Now, we claim that the curve z(t ) has nonzero curvature κz. Without loss of generality,

we may assume a = 1 and b = 0. Thus (4.1) reduces to

z(t ) = (sec t )y(t ). (4.2)

From (4.2) we get

z′ = sec(t ){y′+ (tan t )y},

z′′ = (sec t ){(sec2 t + tan2 t )y+2(tan t )y′+y′′}.
(4.3)

It is well-known that the curvature κz of z(t ) is given by

κz =
|z′×z′′|

|z′|3
,

Thus κz = 0 holds if and only if z′×z′′ = 0 holds. After combining this with (4.3) we conclude

that κz = 0 holds if and only if we have

{y′+ (tan t )y}× {(sec2 t + tan2 t )y+2(tan t )y′+y′′} = 0. (4.4)

On the other hand, because z(t ) is a unit speed curve lying on S2
o(1), we know that κy 6= 0

and y satisfies (cf. [8, page 34])

y =

(

1

κy

)

ny +

(

1

κy

)′ ( 1

τy

)

by , (4.5)

whereκy,τy,ty,ny ,by are the curvature, the torsion, the unit tangent vector, the principal nor-

mal and the binormal of y, respectively. Now, by substituting (4.5) into (4.4) and also by ap-

plying the Frenet formulas for y, we find

(tan t )κy

(

1

κy

)′ ( 1

τy

)

ty +

(

1

κy

)′ ( 1

τy

)

ny +

(

κy −
1

κy

)

by = 0. (4.6)
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Since ty ,ny,by are linearly independent, the coefficient of by in (4.6) yields κy = 1. Hence (4.5)

reduces to y = ny. So, after differentiating this equation with respect to the arc-length t and

using the Frenet formula, we find τy = 0. Hence y is a planar curve with curvature κy = 1.

Therefore y is a great circle of S2
o(1), which contradicts to our definition of cone. Thus κz 6= 0,

which shows the claim.

Since y and y′ are orthonormal vector fields, the first equation in (4.3) gives

|z′|2 = sec4 t . (4.7)

Thus (4.2), (4.3) and (4.7) imply that the normal component zN of z satisfies

〈zN ,zN
〉 = 〈z,z〉−

〈z,z′〉
2

|z′|2
= 1. (4.8)

Hence we may conclude from Theorems 1 and 2 of [3] that z is rectifying with nonzero torsion.

Consequently, z is never planar. ���

Remark 1 (Added on December 28, 2016). The author thanks Prof. Dong-Soo Kim who pointed

out that rectifying curves had also been studied in [6].
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