FRAME FOR OPERATORS IN FINITE DIMENSIONAL HILBERT SPACE

VAHID REZA MORSHEDI，MOHAMMAD JANFADA AND RAJABALI KAMYABI GOL

Abstract

In this paper，we study frames for operators（ K－frames）in finite dimensional Hilbert spaces and express the dual of K－frames．Some properties of K－dual frames are investigated．Furthermore，the notion of their oblique K－dual and some properties are presented．

1．Introduction

Frames were first introduced by Duffin and Schaeffer in the study of nonharmonic Fourier series in 1952，［8］，and were widely studied from 1986 since the great work by Daubechies et al，［7］．Now，frames play an important role not only in the theoretic but also in many kinds of applications，for example，signal processing［10］，filter bank theory［3］and many other fields ［9，13，15］．

The notion of K－frames was considered for the first time in［11］，in connection with atomic decompositions for operators in Hilbert spaces．Basic properties and examples of K－frames are given in［11］and［12］．

Let $K \in B(\mathscr{H})$ ，the space of all bounded linear operators on a Hilbert space \mathscr{H} ．A se－ quence $\left\{\varphi_{j}\right\}_{j \in 』}$ is said to be a K－frame for \mathscr{H} if there exist constants $A, B>0$ such that

$$
\begin{equation*}
A\left\|K^{*} x\right\|^{2} \leq \sum_{j \in \mathbb{J}}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2} \leq B\|x\|^{2}, \quad(x \in \mathscr{H}) . \tag{1.1}
\end{equation*}
$$

We call A, B the lower and the upper K－frame bounds for $\left\{\varphi_{j}\right\}_{j \in 』}$ ，respectively．If $K=I_{\mathscr{H}}$ ， then $\left\{\varphi_{j}\right\}_{j \in\lrcorner}$ is the ordinary frame．If only the right inequality holds，then $\left\{\varphi_{j}\right\}_{j \in \downharpoonleft}$ is called a Bessel sequence．Suppose that $\Phi=\left\{\varphi_{j}\right\}_{j \in \downharpoonleft}$ is a K－frame for \mathscr{H} ．The operator $T_{\Phi}: \mathscr{H} \rightarrow \ell^{2}(\mathbb{J})$ defined by $T_{\Phi}(x)=\left\{\left\langle x, \varphi_{j}\right\rangle\right\}_{j \in \downharpoonleft}$ is called the analysis operator．T_{Φ} is bounded and $T_{\Phi}^{*}: \ell^{2}(\mathbb{J}) \rightarrow$ \mathscr{H} is given by $T_{\Phi}^{*}\left(\left\{c_{j}\right\}_{j \in J}\right)=\sum_{j \in 』} c_{j} \varphi_{j} . T_{\Phi}^{*}$ is called the pre－frame or synthesis operator．The

[^0]operator $S_{\Phi}: \mathscr{H} \rightarrow \mathscr{H}$ defined by $S_{\Phi}(x)=T_{\Phi}^{*} T_{\Phi}(x)=\sum_{j \in \downarrow}\left\langle x, \varphi_{j}\right\rangle \varphi_{j}$ is called the frame operator of Φ. Note that, frame operator of a K-frame is not invertible on \mathscr{H} in general, but it is invertible on the subspace $R(K) \subset \mathscr{H}$, that $R(K)$ is the range of K, and for all $x \in S_{\Phi}(R(K))$ we have
\[

$$
\begin{equation*}
B^{-1}\|x\| \leq\left\|S_{\Phi}^{-1} x\right\| \leq A^{-1}\left\|K^{\dagger}\right\|^{2}\|x\| \tag{1.2}
\end{equation*}
$$

\]

where K^{\dagger} is the pseudo-inverse of K. If K is invertible then S_{Φ} is invertible. Also, in this case, we can see that any K-frame for \mathscr{H}^{N} is a frame for \mathscr{C}^{N}. Since we can write

$$
\frac{A}{\left\|K^{-1}\right\|^{2}}\|x\|^{2} \leq A\left\|K^{*} x\right\|^{2} \leq \sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2},
$$

and for all $x \in \mathscr{H}^{N}$ we have

$$
A\|x\|^{2}=A\left\|K^{*}\left(K^{*}\right)^{-1} x\right\|^{2} \leq \sum_{j=1}^{M}\left|\left\langle\left(K^{*}\right)^{-1} x, \varphi_{j}\right\rangle\right|^{2}=\sum_{j=1}^{M}\left|\left\langle x, K^{-1} \varphi_{j}\right\rangle\right|^{2} .
$$

Hence the sequence $\left\{K^{-1} \varphi_{j}\right\}_{j=1}^{M}$ is a frame.
Given a positive integer N. Throughout this paper, we suppose that \mathscr{H}^{N} is a real or complex N-dimensional Hilbert space. By $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ we denote the inner product on \mathscr{H}^{N} and its corresponding norm, respectively. I_{H} is the identity operator on \mathscr{H}^{N}. For two Hilbert spaces \mathscr{H}_{1} and H_{2} we denote by $B\left(\mathscr{H}_{1}, \mathscr{H}_{2}\right)$ the collection of all bounded linear operators between \mathscr{H}_{1} and \mathscr{H}_{2}, and we abbreviate $B(\mathscr{H}, \mathscr{H})$ by $B(\mathscr{H})$. In particular, $B\left(\mathscr{H}^{N}\right)=\mathscr{M}_{N \times N}(\mathbb{C})$. Denote by P_{W} the orthogonal projection of \mathscr{H} onto a closed subspace $W \subseteq \mathscr{H}$.

Finite frames and its properties were proposed by several researchers. In particular, the theory of finite frames in \mathscr{H}^{N} was developed by P. G. Casazza et al [4]. Also, the concept of oblique dual frames and their properties in finite dimensional Hilbert space were presented by X. C. Xiao, Y. C. Zhu and X. M. Zeng [18].

The paper is organized in the following manner. In Section 2, we study the notion of a finite K-frames and prove some properties in finite dimensional Hilbert space. In particular, we give a simple way to construct new K-frames from given ones. Also, we extend Theorem 1.1 in [10] to the setting of K-dual frame pairs. In Section 3, we introduce the concept of K dual of K-frames in \mathscr{H}^{N} and its properties are discussed. Also, in the last part of Section 3, the oblique K-dual is investigated.

2. Finite K-frame

Frames in finite dimensional spaces, i.e., finite frames, are a very important class of frames due to their significant relevance in applications. In this section, we present K-frame
theory in finite-dimensional Hilbert spaces. Let $K \in B\left(\mathscr{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a family of vectors in \mathscr{C}^{N}. If $A\left\|K^{*} x\right\|^{2}=\sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2}$, then Φ is called an A-tight K-frame and if $\left\|K^{*} x\right\|^{2}=\sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2}$, then Φ is called a tight K-frame or Parseval K-frame. We can see that, Φ is an A-tight K-frame if and only if $S_{\Phi}=A K K^{*}$. If $\left\|\varphi_{j}\right\|=1$ for all $j=1,2, \ldots, M$, this is an unit norm K-frame. Also, if a K-frame Φ is independent in \mathscr{H}^{N} then it is call minimal K-frame.

Note that, if $K \in B\left(\mathscr{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a frame for H^{N}, then Φ is a K-frame. Since for any $K \neq 0$ we can write

$$
\frac{A}{\|K\|^{2}}\left\|K^{*} x\right\|^{2} \leq A\|x\|^{2} \leq \sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2},\left(x \in \mathscr{C}^{N}\right)
$$

Remark 2.1.

(i) If $\operatorname{span}\left\{\varphi_{j}: j=1,2, \ldots, M\right\}=R(K)$, then $\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a frame for $R(K)$. Thus $\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a K-frame for $R(K)$.
(ii) Any K-frame is not necessary a frame, in general. For example, let $\mathscr{H}{ }^{3}=\mathbb{R}^{3}$ and $K=P_{\mathbb{R}^{2}}$. Then $\left\{e_{1}, e_{2}\right\}$ is a K-frame which is not a frame since

$$
\operatorname{span}\left\{e_{1}, e_{2}\right\} \neq \mathbb{R}^{3} .
$$

Note that, if Φ is a K-frame for \mathscr{H}^{N}, then by Proposition 3.1 in [17], there exists a sequence $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M} \subseteq \mathscr{H}^{N}$ such that

$$
K x=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j},\left(x \in \mathscr{H}^{N}\right)
$$

and this means that $R(K) \subseteq \operatorname{span}\left\{\varphi_{j}: j=1,2, \ldots, M\right\}$. Furthermore, we have the following proposition.

Proposition 2.2 ([16]). A sequence $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a K-frame for \mathscr{H}^{N} if and only if $R(K) \subseteq$ $\operatorname{span}\left\{\varphi_{j}: j=1,2, \ldots, M\right\}$.

Now, for an arbitrary K-frame, we obtain the optimal lower and upper K-frame bounds by eigenvalues of its frame operator.

Proposition 2.3.

(i) Let $0 \neq K \in B\left(\mathscr{H}^{N}\right)$. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for $R(K)$ with K-frame operator S_{Φ} with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}>0$. Then λ_{1} is the optimal upper K-frame bound and if $\lambda_{N} \neq 0$ then $\frac{\lambda_{N}}{\|K\|^{2}}$ is the optimal lower K-frame bound.
(ii) Suppose that $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a K-frame for $R(K)$ and $\left\{\lambda_{j}\right\}_{j=1}^{N}$ denotes the eigenvalues for S_{Φ} and each eigenvalue appears in the list corresponding to its algebraic multiplicity. Then

$$
\sum_{j=1}^{N} \lambda_{j}=\sum_{j=1}^{M}\left\|\varphi_{j}\right\|^{2} .
$$

Proof. For the proof of (i), suppose that $\left\{e_{j}\right\}_{j=1}^{N}$ is an orthonormal eigen basis of the frame operator S_{Φ} with associated eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{N}$ given in decreasing order. Hence we can write $x=\sum_{j=1}^{N}\left\langle x, e_{j}\right\rangle e_{j}$, for all $x \in \mathscr{H}^{N}$. Also, we have

$$
S_{\Phi} x=\sum_{j=1}^{N}\left\langle x, e_{j}\right\rangle S_{\Phi} e_{j}=\sum_{j=1}^{N} \lambda_{j}\left\langle x, e_{j}\right\rangle e_{j},
$$

and thus

$$
\begin{aligned}
\sum_{j=1}^{M}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2} & =\left\langle S_{\Phi} x, x\right\rangle=\sum_{j=1}^{N} \lambda_{j}\left|\left\langle x, e_{j}\right\rangle\right|^{2} \\
& \leq \lambda_{1} \sum_{j=1}^{N}\left|\left\langle x, e_{j}\right\rangle\right|^{2}=\lambda_{1}\|x\|^{2}
\end{aligned}
$$

For the lower bound we have

$$
\begin{aligned}
\frac{\lambda_{N}}{\|K\|^{2}}\left\|K^{*} x\right\|^{2} & \leq \lambda_{N}\|x\|^{2}=\lambda_{N} \sum_{j=1}^{M}\left|\left\langle x, e_{j}\right\rangle\right|^{2} \\
& \leq \sum_{j=1}^{N} \lambda_{j}\left|\left\langle x, e_{j}\right\rangle\right|^{2}=\left\langle S_{\Phi} x, x\right\rangle .
\end{aligned}
$$

The proof of secondly part is similar to the proof of Theorem 1.1.12 [6].
Now, we introduce a constructive method to extend a given frame to a tight K-frame.
Theorem 2.4. Let $K \in B\left(\mathscr{H}^{N}\right)$. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a frame for \mathscr{H}^{N}. Assume that the frame operator S_{Φ} has the eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{N}$, ordered as $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{N}>0$. Let $\left\{e_{j}\right\}_{j=1}^{N}$ be a corresponding eigenbasis. Then the collection $\left\{K \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\sqrt{\lambda_{1}-\lambda_{j}} K e_{j}\right\}_{j=2}^{N}$ is a λ_{1}-tight K frame for \mathscr{H}^{N}.

Proof. Set $\left\{\psi_{j}\right\}_{j=2}^{N}=\left\{\sqrt{\lambda_{1}-\lambda_{j}} K e_{j}\right\}_{j=2}^{N}$. Suppose that \tilde{S} is the frame operator for $\left\{K \varphi_{j}\right\}_{j=1}^{M} \cup$ $\left\{\psi_{j}\right\}_{j=2}^{N}$. Now, for any $x \in \mathscr{H}^{N}$ we can write

$$
\begin{aligned}
\tilde{S} x & =\sum_{j=1}^{M}\left\langle x, K \varphi_{j}\right\rangle K \varphi_{j}+\sum_{j=2}^{M}\left\langle x, \psi_{j}\right\rangle \psi_{j} \\
& =K \sum_{j=1}^{M}\left\langle K^{*} x, \varphi_{j}\right\rangle \varphi_{j}+\sum_{j=2}^{M}\left\langle x, \psi_{j}\right\rangle \psi_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =K \sum_{j=1}^{N} \lambda_{j}\left\langle K^{*} x, e_{j}\right\rangle e_{j}+K \sum_{j=2}^{N} \sqrt{\lambda_{1}-\lambda_{j}}\left\langle K^{*} x, e_{j}\right\rangle \sqrt{\lambda_{1}-\lambda_{j}} e_{j} \\
& =K \sum_{j=1}^{N} \lambda_{j}\left\langle K^{*} x, e_{j}\right\rangle e_{j}+K \sum_{j=2}^{N}\left(\lambda_{1}-\lambda_{j}\right)\left\langle K^{*} x, e_{j}\right\rangle e_{j} \\
& =\lambda_{1} K K^{*} x .
\end{aligned}
$$

Therefore $\left\{K \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\sqrt{\lambda_{1}-\lambda_{j}} K e_{j}\right\}_{j=2}^{N}$ is a λ_{1}-tight K-frame for \mathscr{H}^{N}.
Example 2.5. Let $K \in B\left(\mathscr{H}^{6}\right)$. Consider the frame $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{5}:=\left\{3 e_{1}\right\} \cup\left\{e_{j}\right\}_{j=2}^{5}$ for the subspace $W=\operatorname{span}\left\{e_{j}, j=1,2, \ldots, 5\right\}$ of $\mathscr{H}^{6}=\mathbb{C}^{6}$ where $\left\{e_{j}\right\}_{j=1}^{6}$ is the orthonormal basis for \mathscr{H}^{6}. We have

$$
S_{\Phi} x=\sum_{j=1}^{5} \lambda_{j}\left\langle x, e_{j}\right\rangle e_{j}=\sum_{j=1}^{5}\left\langle x, \varphi_{j}\right\rangle \varphi_{j},(x \in W) .
$$

Thus we can see that the eigenvalues for the frame operator S_{Φ} are $\lambda_{1}=9, \lambda_{j}=1, j=$ $2, \ldots, 5$. Hence by Theorem 2.1 there exist 4 vectors $\left\{\psi_{j}\right\}_{j=1}^{4}=\left\{\sqrt{9-\lambda_{j}} K e e_{j}\right\}_{j=2}^{5}$ such that $\left\{K \varphi_{j}\right\}_{j=1}^{5} \cup\left\{\sqrt{9-\lambda_{j}} K e_{j}\right\}_{j=2}^{5}$ is a 9-tight K-frame for W.

In the following proposition, we express two inequality of A-tight K-frames.

Proposition 2.6.

(i) If $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is an A-tight K-frame for \mathscr{H}^{N}, then

$$
\max _{j=1,2, \ldots, M}\left\|\varphi_{j}\right\|^{2} \leq A\|K\|^{2}
$$

(ii) If $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is an unit norm A-tight K-frame for \mathscr{H}^{N}, then

$$
A\|K\|^{2} N \geq M
$$

Proof.

(i) Note that for any $j=1, \ldots, M$, we have

$$
\left\|\varphi_{j}\right\|^{4}=\left|\left\langle\varphi_{j}, \varphi_{j}\right\rangle\right|^{2} \leq \sum_{i=1}^{M}\left|\left\langle\varphi_{j}, \varphi_{i}\right\rangle\right|^{2}=A\left\|K^{*} \varphi_{j}\right\|^{2} \leq A\left\|K^{*}\right\|^{2}\left\|\varphi_{j}\right\|^{2} .
$$

Thus, $\max _{j=1,2, \ldots, M}\left\|\varphi_{j}\right\|^{2} \leq A\|K\|^{2}$.
(ii) Let $\left\{e_{i}\right\}_{i=1}^{N}$ be an orthonormal basis for \mathscr{H}^{N}. Then we can write

$$
\begin{aligned}
M & =\sum_{j=1}^{M}\left\|\varphi_{j}\right\|^{2}=\sum_{j=1}^{M} \sum_{i=1}^{N}\left|\left\langle e_{i}, \varphi_{j}\right\rangle\right|^{2}=\sum_{i=1}^{N} \sum_{j=1}^{M}\left|\left\langle e_{i}, \varphi_{j}\right\rangle\right|^{2} \\
& =\sum_{i=1}^{N} A\left\|K^{*} e_{i}\right\|^{2} \leq A\|K\|^{2} \sum_{i=1}^{N}\left\|e_{i}\right\|^{2}=A\|K\|^{2} N .
\end{aligned}
$$

Remark 2.7. In the frame setting, if $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a finite sequence which is a frame for \mathscr{H}, then \mathscr{H} is finite-dimensional [2]. But in the K-frame setting, it is not true. For example, we define $K: \ell^{2} \longrightarrow \ell^{2}$ with $K x=\sum_{j=1}^{M}\left\langle x, e_{j}\right\rangle e_{j}$. Clearly $\left\{K_{j}\right\}_{j=1}^{\infty}=\left\{e_{j}\right\}_{j=1}^{M}$ is a K-frame but ℓ^{2} is not finite-dimensional.

If we have information on the lower K-frame bound of an unit norm K-frame, we can provide a criterion for how many elements we can remove so that the rest of the elements forms a K-frame.

Proposition 2.8. Suppose that $0 \neq K \in B\left(\mathscr{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is an unit norm K-frame for \mathscr{H}^{N} with the lower K-frame bound A. Then for any index set $I \subseteq\{1, \ldots, M\}$ such that $|I|$ $\left\|\left.K^{\dagger}\right|_{R(K)}\right\|^{2}<A$, the family $\left\{\varphi_{j}\right\}_{j \notin I}$ is a K-frame for $R(K)$.

Proof. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{N}$ be an unit norm K-frame for \mathscr{H}^{N}, then we can write

$$
\sum_{j \in I}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2} \leq \sum_{j \in I}\left\|\varphi_{j}\right\|^{2}\|x\|^{2}=|I|\|x\|^{2},(x \in R(K)) .
$$

Now, since for any $x \in R(K)$

$$
\frac{A}{\left\|\left.K^{\dagger}\right|_{R(K)}\right\|^{2}}\|x\|^{2} \leq A\left\|K^{*} x\right\|^{2} \leq \sum_{j \in I}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2}+\sum_{j \notin I}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2} .
$$

So we have

$$
\left(\frac{A}{\left\|\left.K^{\dagger}\right|_{R(K)}\right\|^{2}}-|I|\right)\|x\|^{2} \leq \sum_{j \notin I}\left|\left\langle x, \varphi_{j}\right\rangle\right|^{2},(x \in R(K)) .
$$

Then Φ is a frame and hence is a K-frame for $R(K)$.
In the last part of this section, we study conditions under which a linear combination of two K-frames is K-frame too.

Definition 2.9. Let $K \in B\left(\mathscr{C}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ be K-frames for \mathscr{H}^{N}. Φ and Ψ are called strongly disjoint if $R\left(T_{\Phi}\right) \perp R\left(T_{\Psi}\right)$, where T_{Φ} and T_{Ψ} are the analysis operators of the sequences Φ and Ψ, respectively.

Theorem 2.10. Suppose that $K \in B\left(\mathscr{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are strongly disjoint tight K-frames for \mathscr{H}^{N}. Also, assume that $A, B \in B\left(\mathscr{H}^{N}\right)$ are operators such that $A K K^{*} A^{*}+$ $B K K^{*} B^{*}=I_{N \times N}$, then $\{A \Phi+B \Psi\}$ is a K-frame for \mathscr{H}^{N}. In particular, if $K K^{*}=\frac{1}{2\left(|\alpha|^{2}+|\beta|^{2}\right)} I_{N \times N}$, then $\{\alpha \Phi+\beta \Psi\}$ is a K-frame for \mathscr{H}^{N}.

Proof. For any $x \in \mathscr{H}^{N}$

$$
\sum_{j=1}^{M}\left|\left\langle x, A \varphi_{j}+B \psi_{j}\right\rangle\right|^{2}=\left\|\left\{\left\langle x, A \varphi_{j}+B \psi_{j}\right\rangle\right\}_{j=1}^{M}\right\|^{2}
$$

$$
\begin{aligned}
& =\left\|\left\{\left\langle A^{*} x, \varphi_{j}\right\rangle+\left\langle B^{*} x, \psi_{j}\right\rangle\right\}_{j=1}^{M}\right\|^{2} \\
& =\left\|\left\{\left\langle A^{*} x, \varphi_{j}\right\rangle\right\}_{j=1}^{M}\right\|^{2}+\left\|\left\{\left\langle B^{*} x, \psi_{j}\right\rangle\right\}_{j=1}^{M}\right\|^{2} \\
& \left.\left.+\left\langle\left\{A^{*} x, \varphi_{j}\right\rangle\right\}_{j=1}^{M},\left\{B^{*} x, \psi_{j}\right\rangle\right\}_{j=1}^{M}\right\rangle_{\mathscr{H}^{N}} \\
& =\sum_{j=1}^{M}\left|\left\langle A^{*} x, \varphi_{j}\right\rangle\right|^{2}+\sum_{j=1}^{M}\left|\left\langle B^{*} x, \psi_{j}\right\rangle\right|^{2} \\
& =\left\|K^{*} A^{*} x\right\|^{2}+\left\|K^{*} B^{*} x\right\|^{2}=\|x\|^{2} .
\end{aligned}
$$

Therefore $\left\{A \varphi_{j}+B \psi_{j}\right\}_{j=1}^{M}$ is a tight frame for \mathscr{H}^{N} and so is a K－frame for \mathscr{H}^{N} ．
Corollary 2．11．Assume that $\left(\Phi_{1}, \Phi_{2}, \ldots, \Phi_{k}\right)$ is strongly disjoint k－tuple of tight K－frames on \mathscr{H}^{N} and $A_{i} \in B\left(\mathscr{H}^{N}\right)$ such that $\sum_{i=1}^{k} A_{i} K K^{*} A_{i}^{*}=I_{N \times N}$ ．Then $\left\{\sum_{i=1}^{k} A_{i} \Phi_{i}\right\}$ is a K－frame for \mathscr{H}^{N} ．

Proposition 2．12．With assumption of Theorem 2．2，if $A K K^{*} A^{*}+B K K^{*} B^{*}=K K^{*} I_{N \times N}$ ，then $\{A \Phi+B \Psi\}$ is a tight K－frame for \mathscr{H}^{N} ．

Remark 2．13．Theorem 2．2，Corollary 2.1 and Proposition 2.5 actually hold in infinite－dimensional Hilbert spaces．

3．Dual of K－frame

Dual frames are important to reconstruct of vectors（or signals）in terms of the frame elements．In the other words，two frames $\Phi=\left\{\varphi_{j}\right\}_{j \in 』}$ and $\Psi=\left\{\psi_{j}\right\}_{j \in 』}$ are dual frames for \mathscr{H} if for all $x \in \mathscr{H}$ ，

$$
\begin{equation*}
x=\sum_{j \in 』}\left\langle x, \psi_{j}\right\rangle \varphi_{j}=\sum_{j \in 』}\left\langle x, \varphi_{j}\right\rangle \psi_{j} . \tag{3.1}
\end{equation*}
$$

Also，if $\left\{\varphi_{j}\right\}_{j \in 』}$ is a K－frame，a Bessel sequence $\Psi=\left\{\psi_{j}\right\}_{j \in 』}$ is called a K－dual of $\left\{\varphi_{j}\right\}_{j \in 』}$ （see［1］）if

$$
\begin{equation*}
K x=\sum_{j \in 』}\left\langle x, \psi_{j}\right\rangle \varphi_{j}, \quad(x \in \mathscr{H}) . \tag{3.2}
\end{equation*}
$$

We can see that，for every K－frame of \mathscr{H} there exists at least a Bessel sequence $\left\{\psi_{j}\right\}_{j \in 』}$ which satisfies in K－dual equality and the sequences $\left\{\varphi_{j}\right\}_{j \in 』}$ and $\left\{\psi_{j}\right\}_{j \in 』}$ in（3．2）are not in－ terchangeable in general［17］．Now，we study this notion in finite dimensional Hilbert spaces．
Definition 3．1．If $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ is a K－frame for \mathscr{H}^{N} ，a sequence $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is called a K－dual frame for Φ if

$$
\begin{equation*}
K x=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j},\left(x \in \mathscr{H}^{N}\right) . \tag{3.3}
\end{equation*}
$$

The systems $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are referred to as a K－dual frame pair．

If T_{Φ}^{*} and T_{Ψ}^{*} are the $N \times M$ matrices whose j-th columns are $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$, respectively, then (3.3) is equivalent to $K=T_{\Phi}^{*} T_{\Psi}$.

Note that $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are not interchangeable in general. Indeed, $\Phi=$ $\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ in (3.3) are interchangeable if and only if K is self adjoint. Also, always there is at least a K-dual of any arbitrary K-frame.

Example 3.2. Consider the standard orthonormal basis $\Psi=\left\{\psi_{j}\right\}_{j=1}^{3}=\left\{e_{j}\right\}_{j=1}^{3}$ of Hilbert space \mathbb{C}^{3}. Define $K \in B\left(\mathbb{C}^{3}\right)$ as follows $K e_{1}=e_{1}, K e_{2}=e_{1}, K e_{3}=e_{2}$. Set $\Phi=\left\{\phi_{j}\right\}_{j=1}^{3}=\left\{K e_{j}\right\}_{j=1}^{3}$, that is, $\Phi=\left\{\phi_{j}\right\}_{j=1}^{3}$ is a K-frame. Since $x=\sum_{j=1}^{3}\left\langle x, e_{j}\right\rangle e_{j}, x \in \mathbb{C}^{3}$, then $K x=\sum_{j=1}^{3}\left\langle x, \psi_{j}\right\rangle \varphi_{j}$. Hence Ψ is a K-dual of Φ which is not interchangeable. The frame operator of Φ is $S=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$.

In the following proposition, trace formula for a tight K-frames is stated that is associated to its K-dual.

Proposition 3.3. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a tight K-frame for \mathscr{H}^{N}. Then

$$
\begin{equation*}
\operatorname{Tr}(K)=\sum_{j=1}^{M}\left\langle\varphi_{j}, \psi_{j}\right\rangle \tag{3.4}
\end{equation*}
$$

where $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is a K-dual of $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$.
Proof. We know that if $\left\{e_{i}\right\}_{i=1}^{N}$ is an arbitrary orthonormal basis for \mathscr{C}^{N}, then by definition, $\operatorname{Tr}(K)=\sum_{i=1}^{N}\left\langle K e_{i}, e_{i}\right\rangle$. Now, we can write

$$
\begin{aligned}
\operatorname{Tr}(K) & =\sum_{i=1}^{N}\left\langle K e_{i}, e_{i}\right\rangle=\sum_{i=1}^{N}\left\langle\sum_{j=1}^{M}\left\langle e_{i}, \psi_{j}\right\rangle \varphi_{j}, e_{i}\right\rangle=\sum_{j=1}^{M} \sum_{i=1}^{N}\left\langle e_{i}, \psi_{j}\right\rangle\left\langle\varphi_{j}, e_{i}\right\rangle \\
& =\sum_{j=1}^{M} \sum_{i=1}^{N}\left\langle\varphi_{j}, e_{i}\right\rangle\left\langle e_{i}, \psi_{j}\right\rangle=\sum_{j=1}^{M}\left\langle\sum_{i=1}^{N}\left\langle\varphi_{j}, e_{i}\right\rangle e_{i}, \psi_{j}\right\rangle=\sum_{j=1}^{M}\left\langle\varphi_{j}, \psi_{j}\right\rangle .
\end{aligned}
$$

In the following theorem, we characterize the scalar sequences $v=\left\{v_{j}\right\}_{j=1}^{M}$ for which there exists a K-dual pair of frames $\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\left\{\psi_{j}\right\}_{j=1}^{M}$ such that $v_{j}=\left\langle\varphi_{j}, \psi_{j}\right\rangle$ for all $j=$ $1,2, M$.

Theorem 3.4. Let $K \in B\left(\mathscr{H}^{N}\right)$ and $v=\left\{v_{j}\right\}_{j=1}^{M} \subset \mathbb{C}$ with $M>\operatorname{dim}(R(K))=\operatorname{rank}(K)$ be given. Suppose that there exist K-dual frame pairs $\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\left\{\psi_{j}\right\}_{j=1}^{M}$ for \mathscr{H}^{N} such that $v_{j}=\left\langle\varphi_{j}, \psi_{j}\right\rangle$ for all $j=1,2, M$. Then there exists a tight K^{*}-frame $\left\{\theta_{j}\right\}_{j=1}^{M}$ and a corresponding dual frame $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ for \mathscr{H}^{N} such that $v_{j}=\left\langle\theta_{j}, \gamma_{j}\right\rangle$ for all $j=1,2, M$. Furthermore $\operatorname{Tr}(K)=\sum_{j=1}^{M} v_{j}$.

Proof. Fix $v=\left\{v_{j}\right\}_{j=1}^{M} \subset \mathbb{C}$ such that there exists a K-dual frame pairs $\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\left\{\psi_{j}\right\}_{j=1}^{M}$ such that satisfying $v_{j}=\left\langle\varphi_{j}, \psi_{j}\right\rangle$ for all $j=1,2, M$. Hence we can write $T_{\Phi}^{*} T_{\Psi}=K$ and $v=$ $\operatorname{diag}\left(T_{\Phi}^{*} T_{\Psi}\right)$, where $\operatorname{diag}(\cdot)$ denotes the column vector of entries on the main diagonal of a matrix. Set $\theta_{j}=K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j}$ and $\gamma_{j}=S_{\Phi}^{\frac{1}{2}}\left(\left.K^{\dagger}\right|_{R(K)}\right)^{*} \psi_{j}$. Thus $\Theta=\left\{\theta_{j}\right\}_{j=1}^{M}$ is a tight K^{*} frame, since

$$
\begin{aligned}
S_{\Theta} x & =\sum_{j=1}^{M}\left\langle x, \theta_{j}\right\rangle \theta_{j} \\
& =\sum_{j=1}^{M}\left\langle x, K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j}\right\rangle K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j} \\
& =K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \sum_{j=1}^{M}\left\langle x, K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j}\right\rangle \varphi_{j} \\
& =K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \sum_{j=1}^{M}\left\langle\left(S_{\Phi}^{-\frac{1}{2}}\right)^{*} K x, \varphi_{j}\right\rangle \varphi_{j} \\
& =K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} S_{\Phi}\left(S_{\Phi}^{-\frac{1}{2}}\right)^{*} K x \\
& =K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} S_{\Phi}^{\frac{1}{2}} S_{\Phi}^{\frac{1}{2}}\left(S_{\Phi}^{-\frac{1}{2}}\right)^{*} K x \\
& =K^{*} S_{\Phi}^{\frac{1}{2}}\left(S_{\Phi}^{-\frac{1}{2}}\right)^{*} K x \\
& =K^{*}\left(S_{\Phi}^{-\frac{1}{2}} S_{\Phi}^{\frac{1}{2}}\right)^{*} K x \\
& =K^{*} K x .
\end{aligned}
$$

So we have $\left\langle S_{\Theta} x, x\right\rangle=\left\langle K^{*} K x, x\right\rangle=\langle K x, K x\rangle=\|K x\|^{2}$. Also, the synthesis operator associated with $\left\{\theta_{j}\right\}_{j=1}^{M}$ is $K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} T_{\Phi}^{*}$ and the synthesis operator associated with $\left\{\gamma_{j}\right\}_{j=1}^{M}$ is $\left.S_{\Phi}^{\frac{1}{2}}\left(\left.K^{\dagger}\right|_{R(K)}\right)\right)^{*} T_{\Psi}^{*}$. Since

$$
\begin{aligned}
T_{\Theta}^{*}\left(\left\{c_{j}\right\}_{j=1}^{M}\right) & =\sum_{j=1}^{M} c_{j} K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j} \\
& =K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \sum_{j=1}^{M} c_{j} \varphi_{j} \\
& =K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} T_{\Phi}^{*} .
\end{aligned}
$$

We know that $\left.K^{\dagger}\right|_{R(K)}: R(K) \longrightarrow \mathscr{H}^{N}$, thus $\left(\left.K^{\dagger}\right|_{R(K)}\right)^{*}: \mathscr{C}^{N} \longrightarrow R(K)$. So

$$
\begin{aligned}
T_{\Theta}^{*} T_{\Gamma} & =K S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} T_{\Phi}^{*}\left(S_{\Phi}^{\frac{1}{2}}\left(\left.K^{\dagger}\right|_{R(K)}\right)^{*} T_{\Psi}^{*}\right)^{*} \\
& =\left.K S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} T_{\Phi}^{*} T_{\Psi} K^{\dagger}\right|_{R(K)} S_{\Phi}^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\left.K S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} K I_{N \times N} K^{\dagger}\right|_{R(K)} S_{\Phi}^{\frac{1}{2}} \\
& =K S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} S_{\Phi}^{\frac{1}{2}} \\
& =K .
\end{aligned}
$$

Therefore $\Theta=\left\{\theta_{j}\right\}_{j=1}^{M}$ and $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ are K-dual frame pairs. Moreover, we have $T_{\Theta}^{*} T_{\Gamma}=K=$ $T_{\Phi}^{*} T_{\Psi}$, that gives

$$
\operatorname{diag}\left(T_{\Phi}^{*} T_{\Psi}\right)=\operatorname{diag}\left(T_{\Theta}^{*} T_{\Gamma}\right)=v=\sum_{j=1}^{M}\left\langle\varphi_{j}, \psi_{j}\right\rangle=\operatorname{Tr}(K)
$$

In the following results we characterize K-duals of a K-frame.
Proposition 3.5. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for \mathscr{H}^{N}. Then $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is a K-dual for Φ if and only if $R\left(T_{\Phi}\right) \perp R\left(T_{\Theta}\right)$, where T_{Θ} is the analysis operator of the sequence $\Theta=\left\{\theta_{j}\right\}_{j=1}^{M}=$ $\left\{\psi_{j}-K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\}_{j=1}^{M}$.
Proof. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for \mathscr{H}^{N} with K-dual $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$, then

$$
\begin{aligned}
K x & =\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j} \\
& =\sum_{j=1}^{M}\left\langle x, \psi_{j}-K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}+K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\rangle \varphi_{j} \\
& =\sum_{j=1}^{M}\left\langle x, \theta_{j}\right\rangle \varphi_{j}+\sum_{j=1}^{M}\left\langle x, K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\rangle \varphi_{j} \\
& =\sum_{j=1}^{M}\left\langle x, \theta_{j}\right\rangle \varphi_{j}+\sum_{j=1}^{M}\left\langle K x, S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\rangle \varphi_{j} \\
& =T_{\Phi}^{*} T_{\Theta} x+K x .
\end{aligned}
$$

Recall that two K-frames $\Phi=\left\{\phi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ in a Hilbert space \mathscr{H}^{N} are isomorphic K-frames if there exists an invertible operator $U: \mathscr{H}^{N} \longrightarrow \mathscr{H}^{N}$ so that $U \phi_{j}=\psi_{j}$ for all $1 \leq j \leq M$.

Proposition 3.6. Let $K \in B\left(\mathscr{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for $R\left(K^{*}\right)$ with the two different K-dual frames $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ and $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$. Then Ψ and Γ are not isomorphic.

Proof. Assume that $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ and $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ are isomorphic. Hence there exists an invertible operator $U \in B\left(\mathscr{H}^{N}\right)$ satisfying $U \psi_{j}=\gamma_{j}, j=1,2, \ldots, M$. Now, for any $x \in R\left(K^{*}\right)$ we can write

$$
K U^{*} x=\sum_{j=1}^{M}\left\langle U^{*} x, \gamma_{j}\right\rangle \varphi_{j}=\sum_{j=1}^{M}\left\langle x, U \gamma_{j}\right\rangle \varphi_{j}=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j}=K x .
$$

Therefore $\left.U\right|_{R\left(K^{*}\right)}=I d$ which is a contradiction.
Proposition 3.7. Let $K \in B\left(H^{N}\right)$. Let $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for $R\left(K^{*}\right)$, then the only K-dual frame of Φ, which is isomorphic to Φ is $\left\{K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\}_{j=1}^{M}$.

Proof. Suppose that $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is a K-dual frame of Φ and there is an invertible operator U so that $\psi_{j}=U K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}$ for all $\mathrm{i}=1,2$, M. Then, for every $x \in R\left(K^{*}\right)$ we have

$$
\begin{aligned}
K U^{*} x & =\sum_{j=1}^{M}\left\langle K U^{*} x, S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\rangle \varphi_{j} \\
& =\sum_{j=1}^{M}\left\langle x, U K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}\right\rangle \varphi_{j} \\
& =\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j}=K x .
\end{aligned}
$$

Hence $\left.U\right|_{R\left(K^{*}\right)}=I_{N \times N}$. Thus

$$
\psi_{j}=U K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}=K^{*} S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_{j}
$$

Oblique dual frames were proposed by several researchers. In particular, oblique dual frames in finite dimensional Hilbert space were studied in [18]. In the last part of this section, we study this notion for K-frames.

Definition 3.8. Let \mathscr{U} and \mathscr{W} be two subspaces of \mathscr{H}^{N} and suppose that $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ and $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ are in \mathscr{H}^{N} and $\mathscr{W}=\operatorname{span}\left\{\varphi_{j}: j=1,2, \ldots, M\right\}, \mathscr{U}=\operatorname{span}\left\{\psi_{j}: j=1,2, \ldots, M\right\}$. The sequence $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is an oblique K-dual frame of the K-frame $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ on \mathscr{W} if

$$
\begin{equation*}
K x=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j}, \quad(x \in \mathscr{W}) . \tag{3.5}
\end{equation*}
$$

Note that (3.5) implies that $R\left(\left.K\right|_{\mathscr{W}}\right) \subseteq \mathscr{W}$.
In the following two propositions a characterization of the oblique K-dual frames pair that are obtained by adding a pair of vector sequences to a given Bessel sequence is given. Also, characterize the uniqueness of the oblique K-dual frame pair.

Proposition 3.9. Suppose that \mathbb{W} is a subspace of \mathscr{H}^{N} and sequences $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}, \Psi=\left\{\psi_{j}\right\}_{j=1}^{L}$ and $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{L}$ in \mathscr{H}^{N} satisfy that span $(\Phi \cup \Gamma)=\mathscr{W}$. Then the following statements are equivalent:
(i) $\Phi \cup \Psi$ is an oblique K-dual frame of $\Phi \cup \Gamma$ on \mathscr{W}.
(ii) For any $x \in \mathscr{W},\left(K-S_{\Phi}\right) x=\sum_{j=1}^{L}\left\langle x, \psi_{j}\right\rangle \gamma_{j}$.

Proof. (i) and (ii) are equivalent, since $\Phi \cup \Psi$ is an oblique K-dual frame of $\Phi \cup \Gamma$ on \mathscr{W}, if and only for all $x \in \mathscr{W}$

$$
\begin{aligned}
K x & =\sum_{j=1}^{M}\left\langle x, \varphi_{j}\right\rangle \varphi_{j}+\sum_{j=1}^{L}\left\langle x, \psi_{j}\right\rangle \gamma_{j} \\
& =S_{\Phi} x+\sum_{j=1}^{L}\left\langle x, \psi_{j}\right\rangle \gamma_{j},
\end{aligned}
$$

so

$$
\left(K-S_{\Phi}\right) x=\sum_{j=1}^{L}\left\langle x, \psi_{j}\right\rangle \gamma_{j} .
$$

Proposition 3.10. If $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ is an oblique K-dual frame of $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ on \mathbb{W} and Φ is K-minimal, then the oblique K-dual frame of Φ on \mathbb{W} is unique in the sense that if $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ is another oblique K-dual frame of Φ, then $\psi_{j}=\gamma_{j}, j=1, \ldots, M$, where Ψ, Γ are restricted in W.

Proof. Due to the fact that $\Psi=\left\{\psi_{j}\right\}_{j=1}^{M}$ and $\Gamma=\left\{\gamma_{j}\right\}_{j=1}^{M}$ are oblique K-dual frames of Φ on \mathscr{W}, then we can write

$$
K x=\sum_{j=1}^{M}\left\langle x, \psi_{j}\right\rangle \varphi_{j}=\sum_{j=1}^{M}\left\langle x, \gamma_{j}\right\rangle \varphi_{j},(x \in \mathscr{W}) .
$$

Hence $\sum_{j=1}^{M}\left\langle x, \psi_{j}-\gamma_{j}\right\rangle \varphi_{j}=0, x \in \mathscr{W}$. Now by K-minimality of Φ, we have

$$
\left\langle x, \psi_{j}-\gamma_{j}\right\rangle=0, j=1,2, \ldots, M, x \in \mathscr{W}
$$

and therefore $\psi_{j}=\gamma_{j}, j=1, \ldots, M$.
Here, we state that if Φ is a K-frame for $R(K)$, then we can make an oblique K-dual frame of algebraic multiplicity of $\left\{\varphi_{j}\right\}_{j=1}^{M} \cup\left\{e_{j}\right\}_{j \neq j_{0}}$ where $\left\{e_{j}\right\}_{j=1}^{d}$ is an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{d}$.
Theorem 3.11. Let $K \in B\left(\mathscr{H}^{N}\right)$ and $\Phi=\left\{\varphi_{j}\right\}_{j=1}^{M}$ be a K-frame for $\mathscr{W}=R(K)$ with dim $\mathscr{W}=d$. Let $\left\{e_{j}\right\}_{j=1}^{d}$ be an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\left\{\lambda_{j}\right\}_{j=1}^{d}$. Then for any eigenvalue $0 \neq \lambda_{j_{0}}$, the sequence $\left\{\frac{1}{\sqrt{\lambda_{j 0}}} K^{*} \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{1}{3}}}{\sqrt{\lambda_{j_{0}}}} K^{*} e_{j}+\right.$ $\left.K^{*} \gamma_{j}\right\}_{j \neq j_{0}}$, is an oblique K-dual frame of $\left\{\frac{1}{\sqrt{\lambda_{j_{0}}}} \varphi_{j}\right\}_{j=1}^{M} \cup\left\{\frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{2}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j}\right\}_{j_{j \neq j_{0}}}$ on \mathbb{W}, where $\left\{\gamma_{j}\right\}_{j_{0} \neq j=1}^{d}$ $\subset \mathscr{H}^{N}$ satisfies

$$
\sum_{j_{0} \neq j=1}^{d}\left\langle x, K^{*} \gamma_{j}\right\rangle e_{j}=0,(x \in \mathbb{W})
$$

Proof. Let Φ be a K-frame for $\mathscr{W}=R(K)$ with the frame operator S_{Φ}. Also $\left\{e_{j}\right\}_{j=1}^{d}$ is an orthonormal eigenbasis, so for any $x \in \mathscr{W}$ we can write $K x=\sum_{j=1}^{d}\left\langle K x, e_{j}\right\rangle e_{j}$. Thus

$$
S_{\Phi} K x=\sum_{j=1}^{M}\left\langle K x, \varphi_{j}\right\rangle \varphi_{j}=S_{\Phi} \sum_{j=1}^{d}\left\langle K x, e_{j}\right\rangle e_{j}
$$

$$
\begin{aligned}
& =\sum_{j=1}^{d}\left\langle K x, e_{j}\right\rangle S_{\Phi} e_{j}=\sum_{j=1}^{d}\left\langle K x, e_{j}\right\rangle \lambda_{j} e_{j} \\
& =\sum_{j=1}^{d} \lambda_{j}\left\langle K x, e_{j}\right\rangle e_{j} .
\end{aligned}
$$

Now for all $x \in \mathscr{W}$ we have

$$
\begin{aligned}
& K x=\frac{1}{\lambda_{j_{0}}} \sum_{j=1}^{d} \lambda_{j_{0}}\left\langle K x, e_{j}\right\rangle e_{j} \\
& =\frac{1}{\lambda_{j_{0}}}\left(\lambda_{j_{0}}\left\langle K x, e_{j_{0}}\right\rangle e_{j_{0}}+\sum_{j \neq j_{0}} \lambda_{j_{0}}\left\langle K x, e_{j}\right\rangle e_{j}\right) \\
& =\frac{1}{\lambda_{j_{0}}}\left(\lambda_{j_{0}}\left\langle K x, e_{j_{0}}\right\rangle e_{j_{0}}+\sum_{j \neq j_{0}} \lambda_{j}\left\langle K x, e_{j}\right\rangle e_{j}-\sum_{j \neq j_{0}} \lambda_{j}\left\langle K x, e_{j}\right\rangle e_{j}\right. \\
& \left.+\sum_{j \neq j_{0}} \lambda_{j_{0}}\left\langle K x, e_{j}\right\rangle e_{j}\right) \\
& =\frac{1}{\lambda_{j_{0}}}\left(\lambda_{j_{0}}\left\langle K x, e_{j_{0}}\right\rangle e_{j_{0}}+\sum_{j \neq j_{0}} \lambda_{j}\left\langle K x, e_{j}\right\rangle e_{j}\right. \\
& \left.+\sum_{j \neq j_{0}}\left(\lambda_{j_{0}}-\lambda_{j}\right)\left\langle K x, e_{j}\right\rangle e_{j}\right) \\
& =\frac{1}{\lambda_{j_{0}}}\left(\sum_{j=1}^{d} \lambda_{j}\left\langle K x, e_{j}\right\rangle e_{j}+\sum_{j \neq j_{0}}\left(\lambda_{j_{0}}-\lambda_{j}\right)\left\langle K x, e_{j}\right\rangle e_{j}\right) \\
& =\frac{1}{\lambda_{j_{0}}} \sum_{j=1}^{M}\left\langle K x, \varphi_{j}\right\rangle \varphi_{j}+\sum_{j \neq j_{0}}\left(\frac{\lambda_{j_{0}}-\lambda_{j}}{\lambda_{j_{0}}}\right)\left\langle K x, e_{j}\right\rangle e_{j} \\
& =\frac{1}{\lambda_{j_{0}}} \sum_{j=1}^{M}\left\langle K x, \varphi_{j}\right\rangle \varphi_{j}+\sum_{j \neq j_{0}} \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{1}{3}}}{\sqrt{\lambda_{j_{0}}}} \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{2}{3}}}{\sqrt{\lambda_{j_{0}}}}\left\langle K x, e_{j}+\gamma_{j}\right\rangle e_{j} \\
& =\frac{1}{\lambda_{j_{0}}} \sum_{j=1}^{M}\left\langle K x, \varphi_{j}\right\rangle \varphi_{j}+\sum_{j \neq j_{0}}\left\langle K x, \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{1}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j}+\gamma_{j}\right\rangle \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{2}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j} \\
& =\sum_{j=1}^{M}\left\langle K x, \frac{1}{\sqrt{\lambda_{j_{0}}}} \varphi_{j}\right\rangle \frac{1}{\sqrt{\lambda_{j_{0}}}} \varphi_{j} \\
& +\sum_{j \neq j_{0}}\left\langle K x, \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{1}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j}+\gamma_{j}\right\rangle \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{2}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j} \\
& =\sum_{j=1}^{M}\left\langle x, \frac{1}{\sqrt{\lambda_{j_{0}}}} K^{*} \varphi_{j}\right\rangle \frac{1}{\sqrt{\lambda_{j_{0}}}} \varphi_{j} \\
& +\sum_{j \neq j_{0}}\left\langle x, \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{1}{3}}}{\sqrt{\lambda_{j_{0}}}} K^{*} e_{j}+K^{*} \gamma_{j}\right\rangle \frac{\left(\lambda_{j_{0}}-\lambda_{j}\right)^{\frac{2}{3}}}{\sqrt{\lambda_{j_{0}}}} e_{j},
\end{aligned}
$$

which complete the proof.

References

[1] F. Arabyani and A. A. Arefijamaal, Some constructions of K-frames and their duals, To appear in Rocky Mountain J. Math. https://projecteuclid.org/euclid.rmjm/1455560377.
[2] J. J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math., 18 (2003), 357-385.
[3] H. Bolcskei, F. Hlawatsch and H. G. Feichtinger, Frame-theoretic analysis of over-sampled filter banks, IEEE Trans. Signal Process. 46 (1998), 3256-3268.
[4] P. Casazza, G. Kutyniok and F. Philipp, Finite Frames: Theory and Applications. Birkhäuser, Berlin, 2013.
[5] O. Christensen, A. M. Powell and X. C. Xiao, A note on finite dual frame pairs, Proc. Amer. Math. Soc., 140 (11) (2012), 3921-3930.
[6] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston 2008.
[7] I. Daubechies, A. Grossmann and Y. Meyer, Painless non-orthogonal expansions, J. Math. Physics, 27 (1986), 1271-1283.
[8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341-366.
[9] Y. C. Eldar and G. D. Forney Jr., Optimal tight frames and quantum measurement. IEEE Trans. Inform. Theory, 48 (3) (2002), 599-610.
[10] P. J. S. G. Ferreira, Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction, In: Byrnes, J.S. (ed.) Signal processing for multimedia, IOS Press, Amsterdam (1999), 35-54.
[11] L. Găvruţa, Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139-144.
[12] L. Găvruța, Atomic decompositions for operators in reproducing kernel Hilbert spaces, Math. Rep., 17 (3) (2015), 303-314.
[13] K. Gröchenig and C. Heil, Modulation spaces and pseudodifferential operators. Integral Equ. Oper. Theory 34 (4) (1999), 439-457.
[14] D. Han and D. Larson, Frames, Bases and group representations, Mem. Amer. Math. Soc., 147 (697) 2000.
[15] R. W. Heath Jr. and A. Paulraj, Linear dispersion codes for MIMO systems based on frame theory. IEEE Trans. Signal Process., 50 (10) (2002), 2429-2441.
[16] Zh. Q. Xiang and Y. M. Li, Frame sequences and dual frames for operators, ScienceAsia, 42 (2016), 222-230.
[17] X. Xiao, Y. Zhu and L. Găvruța, Some properties of K-frames in Hilbert spaces, Results. Math., 63 (3-4) (2013), 1243-1255.
[18] X. C. Xiao, Y. C. Zhu and X. M. Zeng, Oblique dual frames in finite-dimensional Hilbert spaces, Int. J. Wavelets Multiresolut. Inf. Process, 11 (2) (2013), 1350011-1-1350011-14.

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.
E-mail: va_mo584@stu.um.ac.ir
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.
E-mail: janfada@um.ac.ir
Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.
E-mail: kamyabi@um.ac.ir

[^0]: Received December 20，2016，accepted November 17， 2017. 2010 Mathematics Subject Classification．42C15，46B15． Key words and phrases．K－frame，K－dual，oblique K－dual． Corresponding author：Mohammad Janfada．

