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FRAME FOR OPERATORS IN FINITE DIMENSIONAL
HILBERT SPACE

VAHID REZA MORSHEDI, MOHAMMAD JANFADA AND RAJABALI KAMYABI GOL

Abstract. In this paper, we study frames for operators (K-frames) in finite dimensional
Hilbert spaces and express the dual of K-frames. Some properties of K-dual frames are
investigated. Furthermore, the notion of their oblique K-dual and some properties are
presented.

1. Introduction

Frames were first introduced by Duffin and Schaeffer in the study of nonharmonic Fourier
series in 1952, [8], and were widely studied from 1986 since the great work by Daubechies et
al, [7]. Now, frames play an important role not only in the theoretic but also in many kinds of
applications, for example, signal processing [10], filter bank theory [3] and many other fields
[9, 13, 15].

The notion of K-frames was considered for the first time in [11], in connection with atomic
decompositions for operators in Hilbert spaces. Basic properties and examples of K-frames
are given in [11] and [12].

Let K € B(#), the space of all bounded linear operators on a Hilbert space /. A se-

quence {@}jey is said to be a K-frame for A if there exist constants A, B > 0 such that

AIK* x> < Y (x,9p)* < Blixl?, (xe 7). (1.1

jeJ
We call A, B the lower and the upper K-frame bounds for {¢} jcy, respectively. If K = Iz,
then {@;} ey is the ordinary frame. If only the right inequality holds, then {¢} ;e  is called a
Bessel sequence. Suppose that ® = {} jey is a K-frame for /. The operator To : A — %))
defined by To (x) = {{x, @)} jey is called the analysis operator. Tg is bounded and T : 2(J) —
J€ is given by Ty ({cj}jes) = Ljegcj@j. Ty is called the pre-frame or synthesis operator. The
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operator So : S — S defined by Se(x) = Tq"; Te(x) = Zj€j<x,(pj>(pj is called the frame oper-
ator of ®. Note that, frame operator of a K-frame is not invertible on . in general, but it is
invertible on the subspace R(K) c ., that R(K) is the range of K, and for all x € S¢(R(K)) we
have

B xl <115 xl = AT KT X1, (1.2)

where KT is the pseudo-inverse of K. If K is invertible then Sg is invertible. Also, in this case,

we can see that any K-frame for .#" is a frame for .. Since we can write

L”x”z < AlK*x|? < f | (x, ) 2
K112 = =L P,
Jj=1

and for all x € #Y we have

M M
Alxl? = AIK* K %P = Y KK 0P =Y Ko K o plP
j=1 j=1

Hence the sequence {K ¢ j}ﬁ‘i | is a frame.

Given a positive integer N. Throughout this paper, we suppose that 7" is a real or com-
plex N-dimensional Hilbert space. By (-,-) and |..|| we denote the inner product on #" and
its corresponding norm, respectively. Iy is the identity operator on .#". For two Hilbert
spaces ) and H, we denote by B(#, #>) the collection of all bounded linear operators be-
tween /) and .5, and we abbreviate B(A, /) by B(/). In particular, B(#N) = u vxn (C).
Denote by Py the orthogonal projection of . onto a closed subspace W < 7.

Finite frames and its properties were proposed by several researchers. In particular, the
theory of finite frames in AN was developed by P. G. Casazza et al [4]. Also, the concept of
oblique dual frames and their properties in finite dimensional Hilbert space were presented
by X. C. Xiao, Y. C. Zhu and X. M. Zeng [18].

The paper is organized in the following manner. In Section 2, we study the notion of a
finite K-frames and prove some properties in finite dimensional Hilbert space. In particular,
we give a simple way to construct new K-frames from given ones. Also, we extend Theorem
1.1 in [10] to the setting of K-dual frame pairs. In Section 3, we introduce the concept of K-
dual of K-frames in .7V and its properties are discussed. Also, in the last part of Section 3,
the oblique K-dual is investigated.

2. Finite K-frame

Frames in finite dimensional spaces, i.e., finite frames, are a very important class of

frames due to their significant relevance in applications. In this section, we present K-frame
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theory in finite-dimensional Hilbert spaces. Let K € B (A#N) and © = {@ j}ﬁ’i 1 be a family
of vectors in #N. If A|K* x| = 2?11 [{x, (pj)lz, then @ is called an A-tight K-frame and if
K*x|? = ijl |<x,(pj)|2, then ® is called a tight K-frame or Parseval K-frame. We can see
that, @ is an A-tight K-frame if and only if Sp = AKK*. If lgjll=1forall j=1,2,..., M, this
is an unit norm K-frame. Also, if a K-frame @ is independent in #N then it is call minimal

K-frame.

Note that, if K € B(#N) and ® = {(pj}y:1 is a frame for H", then ® is a K-frame. Since for

any K # 0 we can write

M
j=1

Remark 2.1.

(@) If spanip;:j=12,...,M} = R(K), then {(,oj}y[:1 is a frame for R(K). Thus {(,oj}?i1 isa
K-frame for R(K).

(ii) Any K-frame is not necessary a frame, in general. For example, let A8 =R3and K = Pre.
Then {e;, e} is a K-frame which is not a frame since

spaniey, ex} # R3.

Note that, if ® is a K-frame for /#~, then by Proposition 3.1 in [17], there exists a se-
quence ¥ = {i/ j}ﬁ | 7" such that

M
Kx=Y (x,ypej, (xe #N)
j=1

and this means that R(K) € spanig;: j = 1,2,..., M}. Furthermore, we have the following

proposition.

Proposition 2.2 ([16]). A sequence ® = {(,oj}?i1 is a K-frame for AN if and only if R(K) <
span{pj:j=1,2,...,M}.

Now, for an arbitrary K-frame, we obtain the optimal lower and upper K-frame bounds

by eigenvalues of its frame operator.

Proposition 2.3.

(i) Let0# K € B(AN). Let® = {(Pj}?il be a K -frame for R(K) with K -frame operator S¢ with
eigenvalues A1 = Ay = --- = Ay > 0. Then A, is the optimal upper K -frame bound and if
AN #0 then ”éﬁ is the optimal lower K -frame bound.
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(i) Supposethat® = {(pj}y:1 is a K -frame for R(K) and {/lj};V:l denotes the eigenvalues for S¢
and each eigenvalue appears in the list corresponding to its algebraic multiplicity. Then

N M
Y A=Yl
=1 =l

Proof. For the proof of (i), suppose that {e j}N_ , is an orthonormal eigen basis of the frame
operator S¢ with associated eigenvalues {1 ]}N , given in decreasing order. Hence we can
write x = Z?]:ﬁx» eje;j, for all x € #V. Also, we have

Spx = Z(x,e]>S¢>e] = Z Ajlx,ejve;j,
j=1
and thus
M N
Y 1@ P=(Sox,x) =Y Aj|(x,ej) I*
j=1 j=1

N
=AY 1¢xep) P=Aq x>
j=1

For the lower bound we have

IK*x)1? < Anllx]? —ANZ | (x,ej) |2

1K ||2 =1
- 2
<) Ajl(xep*=(Sox,x).
The proof of secondly part is similar to the proof of Theorem 1.1.12 [6]. O

Now, we introduce a constructive method to extend a given frame to a tight K-frame.

Theorem 2.4. Let K € B(AN). Let ® = {(pj}?/[:1 be a frame for AN . Assume that the frame
operator Se has the eigenvalues {1 ~}I.V ordered as Ay = Ay = --- = Any > 0. Let {ej}].\’_1 be a

corresponding eigenbasis. Then the collection {K(p]}M Ufy/A1—-A4; Ke]} _, is a Ay-tight K-
frame for 7N

N _y/ N 3 M
Proof. Set )}, =1 A=A Kej}_,. Suppose that S is the frame operator for {Kgj}iz, U
ty}L,. Now, for any x € 7" we can write

~ M

Sx =) (x,Ko)Ke;+ Z<x VY
]:

M
KY (K*x,0))pj+ Z xypy;
=1 j=2
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N N
=K)Y Ai{K*x,edei+K AM=Ai(K*x, e\ /A1 —Aie;
jZ:l J j’€j ];2 J AV, J€j

N N
=K) Aj(K*x,epyej+KY (M —Aj)(K x,ej)e;
j=1 j=2

= A]KK*X.

Therefore {K(pj}ﬁlu{,//ll Aj Ke]} is a A;-tight K-frame for #. O

Example 2.5. Let K € B(#°). Consider the frame ® = {g;}>_, := {3e1} U {e;15_, for the sub-
space W = spaniej, j = 1,2,...,5} of #% = C® where {ej}‘;:1 is the orthonormal basis for .#°.

We have 5

5
Sox=) Ajx.epe;= ) (x,ppg;, (xeW).
j=1 j=1

Thus we can see that the eigenvalues for the frame operator S¢ are 1, =9, 1; =1, j =
.,5. Hence by Theorem 2.1 there exist 4 vectors {y ;}4 Hiar= ={1/9-1;Ke ]} , such that

{K(Pj}j:1 u { 9-1; Kej}j:2 is a 9-tight K-frame for W.

In the following proposition, we express two inequality of A-tight K-frames.

Proposition 2.6.

() Ifd= {(pj}y:l is an A-tight K -frame for 76N, then
17 < AIK2.
j:rflz??iM”(p]” < AlK|
(i) Ifo= {‘Pj}yzl is an unit norm A-tight K -frame for 76V, then
A|IKII*N = M.

Proof.

(i) Note thatforany j=1,...,M, we have
4 2 & 2 2 2 2
loil*=1<@j @) IF< Y @i, @) 7= AIK @;lI” < ALK |7 ll@; 1%
i=1

Thus, maxj_12,..m @}l < AlIK|%.

(i) Let{e;}"Y . be an orthonormal basis for #". Then we can write
i=1

M= Z”(P]” _ZZ|<en(P]>| —ZZHel;(P]H

j=li=1 i=1j=1

z

=Y AllK*e;ll* < AlK|? Z leil? = AIKIN. O
i=1 i=1
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Remark 2.7. In the frame setting, if ® = {¢ j}ﬁi L isa finite sequence which is a frame for A4,
then ./ is finite-dimensional [2]. But in the K-frame setting, it is not true. For example, we
define K : ¢ — ¢? with Kx = Zy’:l(x, ej)e;. Clearly {Ke;}%, = {ej}?/il is a K-frame but ¢2 is

not finite-dimensional.

If we have information on the lower K-frame bound of an unit norm K-frame, we can
provide a criterion for how many elements we can remove so that the rest of the elements
forms a K-frame.

Proposition 2.8. Suppose that0 # K € B(A#N) and ® = {(pj}y[:1 is an unit norm K -frame for
AN with the lower K-frame bound A. Then for any index set I < {1,..., M} such that | I |
IKT |riy 2 < A, the family {@j}jer is a K-frame for R(K).

Proof. Let ® = {¢ j}]}]:l be an unit norm K-frame for #", then we can write

Y e P =Y leilPlxl? =T lxI? (x€RK)).
Jjel Jjel

Now, since for any x € R(K)

Ixl® < AIK* x> < Y 1<) P+ Y 19 .

IKT 1Ry 112 jer jel
So we have
(———————1IDIxI*= Y [{x,9)) %, (x€ R(K)).
IKT |reky 17 jZn !
Then @ is a frame and hence is a K-frame for R(K). O

In the last part of this section, we study conditions under which a linear combination of
two K-frames is K-frame too.

Definition 2.9. Let K € B(#N) and ® = {(,oj}y[:1 and ¥ = {wj}yzl be K-frames for #Y. ® and
W are called strongly disjoint if R(Tp) L R(Ty), where T and Ty are the analysis operators of
the sequences ® and V¥, respectively.

Theorem 2.10. Suppose thatK € B(#N) and ® = {(,oj}y[:1 andV¥ = {wj}yzl are strongly disjoint
tight K -frames for 7N . Also, assume that A, B € B(#"N) are operators such that AKK* A* +
BKK*B* = Inxn, then {A®+BWY} is aK-frameforJfN. In particular, if KK* = mh\m\p
then {a® + BV} is a K -frame for 76N .

Proof. For any x € 7N

M
| (x, Apj + By j) P = 1(x, Apj + By pyiL 117

j=1
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= [(A™x, @) +(B* x, 9 )7L, 12
= (A" x, @ DY 17 + 1B 9 DL 12
+ (A VL BT w YL ) e
M M
(A%, @) P+ Y 1B *x,y ) I°
j=1 j=1
= |K* A*x|* + | K*B* x| = || x|1°.

Therefore {Ag + By j}?/i , is a tight frame for 7" and so is a K-frame for 7. O

Corollary 2.11. Assume that (©1,®,, ..., D) is strongly disjoint k-tuple of tight K -frames on
76N and A; € B(7€N) such that ¥¥ | A;KK* A} = In«n. Then {£¥_| A;®;} is a K-frame for
N,

Proposition 2.12. With assumption of Theorem 2.2, if AKK* A* + BKK*B* = KK*Inxn, then
{A® + BY} is a tight K -frame for 7N .

Remark 2.13. Theorem 2.2, Corollary 2.1 and Proposition 2.5 actually hold in
infinite-dimensional Hilbert spaces.

3. Dual of K-frame

Dual frames are important to reconstruct of vectors (or signals) in terms of the frame
elements. In the other words, two frames ® = {¢;} jcy and ¥ = {y/j} jcy are dual frames for A
if for all x € A2,

X=) (Y@= (%eNy;. (3.1)
jed jed
Also, if {@;}jecy is a K-frame, a Bessel sequence ¥ = {y}jcy is called a K-dual of {¢;} ey
(see [1]) if
Kx=) (x,yppj, (xeH). 3.2)
jeJ

We can see that, for every K-frame of # there exists at least a Bessel sequence {y/j} jey
which satisfies in K-dual equality and the sequences {@;}jcy and {¥;} ey in (3.2) are not in-
terchangeable in general [17]. Now, we study this notion in finite dimensional Hilbert spaces.

Definition 3.1. If ® = {(pj}y:l is a K-frame for #", a sequence ¥ = {Wj}ﬁyil is called a K-dual
frame for @ if

M
Kx=3 (xy ), (xe M) (3.3)

j=1

The systems ® = {¢ j}ﬁi 1 and ¥ = {y j}ﬁi , are referred to as a K-dual frame pair.
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If T and Ty, are the N x M matrices whose j-th columns are ® = {¢ j}ﬁi and ¥ = {y ]} =1

respectively, then (3.3) is equivalent to K = Ty Tyy.

Note that ® = {¢ j}ﬁ’i 1 and ¥ = {y ]} | are not interchangeable in general. Indeed, ® =
{p j}ﬁ‘i yand ¥ = {y j}ﬁ‘i ,in (3.3) are mterchangeable if and only if K is self adjoint. Also, always
there is at least a K-dual of any arbitrary K-frame.

Example 3.2. Consider the standard orthonormal basis ¥ = {y/ j}*;le ={e j}?:l of Hilbert space

C°. Define K € B(C®) as follows Ke; = e),Kez = e1,Kes = 2. Set @ = {¢p;}7_, = {Ke;}j_,, that

is, ® = {(/)j}:']‘.:l is a K-frame. Since x = 233:1(% ejyej, xeC*, then Kx = 233:1(%1//]‘)(0]‘- Hence
200

¥ is a K-dual of ® which is not interchangeable. The frame operatorof ®isS=]0 1 0
00O

In the following proposition, trace formula for a tight K-frames is stated that is associated
to its K-dual.

Proposition 3.3. Let® = {(pj}y:1 be a tight K -frame for 7" . Then

M
Tr(K)=) (9, v (3.4)
j=1
whereV¥ = {wj}yzl isa K-dual of ® = {(pj}?/lzl.

Proof. We know that if {ei}ﬁ.\i | Is an arbitrary orthonormal basis for AN then by definition,

Tr(K) = Zﬁ\il(Kei, e;y. Now, we can write

N N M M N
Tr(K)=) (Kej,e)) =) (D (enwipgj e =) > (eny)¢pj e
-1 j=1 j=1i=1

i=1

M N M N M
ZZ pj eiie;,y Z Y pjedenwid = (@j, ;). O
j=1i=1 j=1i=1 j=1
In the following theorem, we characterize the scalar sequences v = {v ]} , for which
there exists a K-dual pair of frames {(p]}ﬁvil and {w]}]:1 such that v; = ((p],w]) forall j =
1,2, M.

Theorem 3.4. Let K € B(#N) and v = {vj}?/il c C with M > dim(R(K)) = rank(K) be given.
Suppose that there exist K -dual frame pairs {(pj}yzl and {wj}?/lzlforij suchthatv;=<{@;,y;)
forall j =1,2, M. Then there exists a tight K* -frame {0 ~}M_ , and a corresponding dual frame
I'= {yj} forJfN suchthatv;=<0j,y;) forall j=1,2, M Furthermore Tr(K) = Z Vi
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Proof. Fixv = {v j}ﬁi 1 € C such that there exists a K-dual frame pairs {¢ j}ﬁ’i , and {y j}ﬁi 1
such that satisfying v; = {(¢;,w;) for all j = 1,2, M. Hence we can write Ty Ty = K and v =

diag(Tq’i Ty), where diag( ) denotes the column vector of entries on the main diagonal of a

matrix. SetHj:K*S ip 1 @j and}f]—S td lrRa)* v j. Thus © = {01}?4—1 is a tight K*-
Sy (R(K)) -
frame, since

M
Sex = Z (x,Hj)Hj

j=1
3 -3 -3
=) (x,K"Sy’P , NK*S_2P ) ;
jzzl * s win® ® sz oy ¥
_1 M
=K"Sy,?P ) Z(xK Se ip (pj)(pj

32 (R(K)) 32 (R(K))

(]

1 1
=K*S 2P Se2) Kx,0))¢;j
® S%(R(K))j;« o) 0]

-1 -1
= K*S(;PS%(R(K) So(Sy7) " Kx
@

1
=K*S ’P

o S252(S57) K

1

SZ (R(K))
1 1

_ * 2 ToNk

= K*S2(S,°)" Kx

1 1

— * ) 2Nk

= K*(S,282)" Kx

= K*Kx.

So we have (Sgx, x) = (K Kx,x) = (Kx,Kx) = |Kx||®. Also, the synthesis operator associ-

ated with {6 j}?/i L is K *S Psz( ) Ty and the synthesis operator associated with {y j}?/i L is

1
S2 (K" [rix)))* T Since

TZ({ci} )— ciK* S 2 i
o\ljrj=] Z j SZ(R(K))(p]
. M

= K*S,*P cipj
® SE,(R(K))]Z:l 19

We know that KT |gx): R(K) — N, thus (KT |r)* : AN — R(K). So

_1 1
ToTr = KSu2P 3 Ta(S2(K' o) T
sz ©®
1 1
=KS,’P )y TaTyK'lgra S2
® " szruy ® ® %o
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1
))KINXNKT IR Sp

Therefore ® = {6 j}ﬁi 1 and T = {y j}ﬁ’i , are K -dual frame pairs. Moreover, we have T(; Tr=K=
Tg Ty, that gives

M
diag(Tg Ty) = diag(Tg Tr) =v =) (@)= Tr(K). O
j=1

In the following results we characterize K-duals of a K-frame.

Proposition 3.5. Let ® = {(pj}?/[:1 be a K -frame for AN, Then ¥ = {wj}yzl is a K-dual for ®
if and only if R(Tg) L R(Te), where Tg is the analysis operator of the sequence © = {Hj}?il =
= K*Sg! Psy oy HL,

Proof. Let ® = {(p]}M be a K-frame for #" with K-dual ¥ = {1//]}] L then

M
Kx=) (x,yp)e;

[\’121'

(X, j = K*Sg' Psy (rin @ + K Sg' Psy (k@09
]:

[\’Jz

(x,0; >¢]+Z<XK So' Pso(RUNP )P
=1 j=1

~.

M
=) (0)¢p;+ ZU(X’S@ PSRk PP
j=1 =1

=Ty Tox+Kx. O

Recall that two K-frames ® = {¢ j}ﬁ‘i yand ¥ = {y j}ﬁ‘i , ina Hilbert space #" are isomor-
phic K-frames if there exists an invertible operator U : #Y — 7" so that U¢; =y ; for all
1<j<M.

Proposition3.6. LetK € B(#) and® = {¢ j}?/i | bea K-frame for R(K*) with the two different
K-dual frames ¥ = {1//]'}911 andT = {Yj}?/iy Then ¥ andT are not isomorphic.

Proof. Assume that ¥ = {¢/ j}ﬁi 1 andI'={y j}ﬁ’i | are isomorphic. Hence there exists an invert-
ible operator U € B(#N) satisfying Uy =vy;,j=1,2,..., M. Now, for any x € R(K™) we can
write

M M M

KU x=) {U'x,yppj=d (x,Uype;j=> (x,y))p;=Kx.
j=1 j=1 j=1
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Therefore U |grx+)= Id which is a contradiction. O

Proposition 3.7. LetK € B(HN). Let® = {(Pj}?il be a K -frame for R(K™), then the only K -dual
frame of ®, which is isomorphic to ® is {K* S(;IPS@(R(K))(P]‘}?/LI

Proof. Suppose that ¥ = {y j}?/i | is @ K-dual frame of ® and there is an invertible operator U
sothaty; = UK* S;PS@(R(K))(pj foralli=1, 2, M. Then, for every x € R(K*) we have

M

KU*x =) (KU"x,Sg' Ps, (a9 )9;
j=1
M

=) (x,UK"Sg ' PsyrK) PpP;
j=1

I
Mz

{x, w])(p] =Kx.

~.
Il
—

Hence U |R(K*): INxN- Thus
Vi =UK*S3' Ps,(ricy®j = K* S Ps,(rik) ;- a

Oblique dual frames were proposed by several researchers. In particular, oblique dual
frames in finite dimensional Hilbert space were studied in [18]. In the last part of this section,
we study this notion for K-frames.

Definition 3.8. Let % and # be two subspaces of .7 and suppose that ® = {¢ j}ﬁ’i , and
{w]} , are in #N and ¥ = spanfp;:j=1,2,...,M}, % =span{y;: j=1,2,...,M}. The
sequence ‘P fw ]} i=1 is an oblique K-dual frame of the K-frame ® = {¢ ]} on# if

M
Kx=) (x,yj)pj, (XeW). (3.5)
j=1

Note that (3.5) implies that R(K |y) < # .

In the following two propositions a characterization of the oblique K-dual frames pair
that are obtained by adding a pair of vector sequences to a given Bessel sequence is given.
Also, characterize the uniqueness of the oblique K-dual frame pair.

e e . N _ M _ L
Proposition 3.9. Suppose that# is a subspace of 7" and sequences ® = {‘pj}j:p Y= {wj}j:1
andl ={y j}]L.:1 in 7N satisfy that span(®UT) = # . Then the following statements are equiv-
alent:

(i) ®UVY isan oblique K-dual frame of uT on¥ .
(i) ForanyxeW,(K—-Sp)x= Zfzﬁx, vy
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Proof. (i) and (ii) are equivalent, since ® U ¥ is an oblique K-dual frame of ®uT on #/, if and

onlyforallxe %
M L
Kx=} (xpp@j+ ) (6y)y;
=1 =1
L
=Sox+ ) (%Y )Yj,
=1
SO
L
(K=Sp)x=) (X,y)y;. O
=1

Proposition 3.10. IfYV = {1//]'}911 is an oblique K -dual frame of ® = {(p]} LonW and ® is
K-minimal, then the oblique K -dual frame of ® on W is unique in the sense that ifT = {y]}j:1
is another oblique K -dual frame of ®, theny j =y, j=1,..., M, where¥, T arerestricted in ¥ .

Proof. Due to the fact that ¥ = {¢ j}ﬁi 1 andT ={y ]} , are oblique K-dual frames of ® on #/,
then we can write

Kx= Z(xwﬂ(p,—Z(xY])(p,,(er)
j=1 j=1

Hence Z 16w j—vjpej=0,x€e¥ . Now by K-minimality of ®, we have
xyi—yp»=0,j=12,.... M, x€W,
and thereforey; =vy;, j=1,..., M. g
Here, we state that if ® is a K-frame for R(K), then we can make an oblique K-dual frame

of algebraic multiplicity of {¢ ]} L Ulejljzj, where {e ]} , is an orthonormal eigenbasis of the
frame operator S¢ with assomated eigenvalues {1 yd =1

Theorem 3.11. Let K € B(A#N) and ® = {(,oj}ﬁw1 be a K-frame for # = R(K) withdimW = d.
Let {e ]} , be an orthonormal eigenbasis of the frame operator So with associated ezgenval-

ues {/lj}jzl. Then for any eigenvalue 0 # A j,, the sequence {%K*¢j}?4:1 U {’0_7\//1_];[(* ej+

A; l)
K* Yiti#jo isan obliqueK - dualframeof{\/_(p] 1u{ m ejlizj,onW, where{y]}] £j=1
c AN satisfies
d
Y (x,K*'ypej=0, (xeW).
Jo#j=1

Proof. Let ® be a K-frame for # = R(K) with the frame operator S¢. Also {e j}?:l is an or-
thonormal eigenbasis, so for any x € #” we can write Kx = Z;izl (Kx,ej)ej. Thus
M d

SoKx = Z(Kx,(p]>(p] =So Z(Kx,ej>ej
j=1 j=1
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d
Z (Kx,ej)Sopej= Z(Kx eprje;
d
Z (Kx,ej)ej.

Now for all x € # we hax{;e

Kx= =2 Ap(Kx.eje;
]0] 1

= A—(Aj0<1<x,ejo>e,~0+ Y Aj(Kx, ejej)
jO J#Jo
(/IJO(Kx ej,)ej, + Z Aj(Kx,ej)ej— Z Aji{Kx,ej)e;
J#Jo Jj#Jo
+ Z Aj(Kx,ejye;)
J#Jo
1
= A—(/ljo(Kx,ejo)ejo+ Z /lj(Kx,ej)ej
Jo J#Jo
+ ) (A, —Aj)(Kx,ej)e))
J#Jo
1 d
= —(Z )Lj(Kx,ej)ej+ Z (/1]'0—/1]')<Kx;ej>ej)

Ajy j= j;éjo

1
' Z(Kx DI ( )L )(Kx eje;j
Jo j=1 J#Jo Jo

1 M (Ajo = A5 (j, = A5
— TZ<Kx»¢]>¢]+ Z Jo J Jo J
Jo j=1 J#Jo ,//1]‘0 ,//1]‘0

M (Ajy—A)3 (Ajo—A))3

_ Z Kx;(Pj>(,0j+ Z (Kx, Jo J . o 7T

J#Jo \/Tjo e]+Yj> \/Tjo
(Kx, \/_(p] \/7<p]

x, Lo~ As Qi -3

\/Tjo e]+y] 7\/7].0 ej
O

/’t. A —
+ (x,MK ej+K }/])( J0

76].7
i#ho Aj, VAo

which complete the proof.

€j

e
X

+ ) (K
J#Jjo

Wl

(Kx,ej +7/j)ej
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