This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst 📎

FRAME FOR OPERATORS IN FINITE DIMENSIONAL HILBERT SPACE

VAHID REZA MORSHEDI, MOHAMMAD JANFADA AND RAJABALI KAMYABI GOL

Abstract. In this paper, we study frames for operators (*K*-frames) in finite dimensional Hilbert spaces and express the dual of *K*-frames. Some properties of *K*-dual frames are investigated. Furthermore, the notion of their oblique *K*-dual and some properties are presented.

1. Introduction

Frames were first introduced by Duffin and Schaeffer in the study of nonharmonic Fourier series in 1952, [8], and were widely studied from 1986 since the great work by Daubechies et al, [7]. Now, frames play an important role not only in the theoretic but also in many kinds of applications, for example, signal processing [10], filter bank theory [3] and many other fields [9, 13, 15].

The notion of *K*-frames was considered for the first time in [11], in connection with atomic decompositions for operators in Hilbert spaces. Basic properties and examples of *K*-frames are given in [11] and [12].

Let $K \in B(\mathcal{H})$, the space of all bounded linear operators on a Hilbert space \mathcal{H} . A sequence $\{\varphi_i\}_{i \in \mathbb{J}}$ is said to be a *K*-frame for \mathcal{H} if there exist constants A, B > 0 such that

$$A\|K^*x\|^2 \le \sum_{j \in \mathbb{J}} |\langle x, \varphi_j \rangle|^2 \le B\|x\|^2, \quad (x \in \mathcal{H}).$$

$$(1.1)$$

We call *A*, *B* the lower and the upper *K*-frame bounds for $\{\varphi_j\}_{j \in \mathbb{J}}$, respectively. If $K = I_{\mathcal{H}}$, then $\{\varphi_j\}_{j \in \mathbb{J}}$ is the ordinary frame. If only the right inequality holds, then $\{\varphi_j\}_{j \in \mathbb{J}}$ is called a Bessel sequence. Suppose that $\Phi = \{\varphi_j\}_{j \in \mathbb{J}}$ is a *K*-frame for \mathcal{H} . The operator $T_{\Phi} : \mathcal{H} \to \ell^2(\mathbb{J})$ defined by $T_{\Phi}(x) = \{\langle x, \varphi_j \rangle\}_{j \in \mathbb{J}}$ is called the analysis operator. T_{Φ} is bounded and $T_{\Phi}^* : \ell^2(\mathbb{J}) \to \mathcal{H}$ is given by $T_{\Phi}^*(\{c_j\}_{j \in \mathbb{J}}) = \sum_{j \in \mathbb{J}} c_j \varphi_j$. T_{Φ}^* is called the pre-frame or synthesis operator. The

2010 Mathematics Subject Classification. 42C15, 46B15.

Key words and phrases. K-frame, K-dual, oblique K-dual.

Corresponding author: Mohammad Janfada.

Received December 20, 2016, accepted November 17, 2017.

operator $S_{\Phi} : \mathcal{H} \to \mathcal{H}$ defined by $S_{\Phi}(x) = T_{\Phi}^* T_{\Phi}(x) = \sum_{j \in \mathbb{J}} \langle x, \varphi_j \rangle \varphi_j$ is called the frame operator of Φ . Note that, frame operator of a *K*-frame is not invertible on \mathcal{H} in general, but it is invertible on the subspace $R(K) \subset \mathcal{H}$, that R(K) is the range of *K*, and for all $x \in S_{\Phi}(R(K))$ we have

$$B^{-1}\|x\| \le \|S_{\Phi}^{-1}x\| \le A^{-1}\|K^{\dagger}\|^2\|x\|,$$
(1.2)

where K^{\dagger} is the pseudo-inverse of *K*. If *K* is invertible then S_{Φ} is invertible. Also, in this case, we can see that any *K*-frame for \mathcal{H}^N is a frame for \mathcal{H}^N . Since we can write

$$\frac{A}{\|K^{-1}\|^2} \|x\|^2 \le A \|K^* x\|^2 \le \sum_{j=1}^M |\langle x, \varphi_j \rangle|^2,$$

and for all $x \in \mathcal{H}^N$ we have

$$A\|x\|^{2} = A\|K^{*}(K^{*})^{-1}x\|^{2} \le \sum_{j=1}^{M} |\langle (K^{*})^{-1}x, \varphi_{j}\rangle|^{2} = \sum_{j=1}^{M} |\langle x, K^{-1}\varphi_{j}\rangle|^{2}.$$

Hence the sequence $\{K^{-1}\varphi_j\}_{j=1}^M$ is a frame.

Given a positive integer *N*. Throughout this paper, we suppose that \mathscr{H}^N is a real or complex *N*-dimensional Hilbert space. By $\langle \cdot, \cdot \rangle$ and $\|.\|$ we denote the inner product on \mathscr{H}^N and its corresponding norm, respectively. I_H is the identity operator on \mathscr{H}^N . For two Hilbert spaces \mathscr{H}_1 and H_2 we denote by $B(\mathscr{H}_1, \mathscr{H}_2)$ the collection of all bounded linear operators between \mathscr{H}_1 and \mathscr{H}_2 , and we abbreviate $B(\mathscr{H}, \mathscr{H})$ by $B(\mathscr{H})$. In particular, $B(\mathscr{H}^N) = \mathscr{M}_{N \times N}(\mathbb{C})$. Denote by P_W the orthogonal projection of \mathscr{H} onto a closed subspace $W \subseteq \mathscr{H}$.

Finite frames and its properties were proposed by several researchers. In particular, the theory of finite frames in \mathscr{H}^N was developed by P. G. Casazza et al [4]. Also, the concept of oblique dual frames and their properties in finite dimensional Hilbert space were presented by X. C. Xiao, Y. C. Zhu and X. M. Zeng [18].

The paper is organized in the following manner. In Section 2, we study the notion of a finite *K*-frames and prove some properties in finite dimensional Hilbert space. In particular, we give a simple way to construct new *K*-frames from given ones. Also, we extend Theorem 1.1 in [10] to the setting of *K*-dual frame pairs. In Section 3, we introduce the concept of *K*-dual of *K*-frames in \mathcal{H}^N and its properties are discussed. Also, in the last part of Section 3, the oblique *K*-dual is investigated.

2. Finite K-frame

Frames in finite dimensional spaces, i.e., finite frames, are a very important class of frames due to their significant relevance in applications. In this section, we present *K*-frame

theory in finite-dimensional Hilbert spaces. Let $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ be a family of vectors in \mathcal{H}^N . If $A \| K^* x \|^2 = \sum_{j=1}^M |\langle x, \varphi_j \rangle|^2$, then Φ is called an A-tight K-frame and if $\| K^* x \|^2 = \sum_{j=1}^M |\langle x, \varphi_j \rangle|^2$, then Φ is called a tight K-frame or Parseval K-frame. We can see that, Φ is an A-tight K-frame if and only if $S_{\Phi} = AKK^*$. If $\| \varphi_j \| = 1$ for all j = 1, 2, ..., M, this is an unit norm K-frame. Also, if a K-frame Φ is independent in \mathcal{H}^N then it is call minimal K-frame.

Note that, if $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ is a frame for H^N , then Φ is a *K*-frame. Since for any $K \neq 0$ we can write

$$\frac{A}{\|K\|^2} \|K^* x\|^2 \le A \|x\|^2 \le \sum_{j=1}^M |\langle x, \varphi_j \rangle|^2, \ (x \in \mathcal{H}^N).$$

Remark 2.1.

- (i) If $span\{\varphi_j : j = 1, 2, ..., M\} = R(K)$, then $\{\varphi_j\}_{j=1}^M$ is a frame for R(K). Thus $\{\varphi_j\}_{j=1}^M$ is a *K*-frame for R(K).
- (ii) Any *K*-frame is not necessary a frame, in general. For example, let $\mathscr{H}^3 = \mathbb{R}^3$ and $K = P_{\mathbb{R}^2}$. Then $\{e_1, e_2\}$ is a *K*-frame which is not a frame since

$$span\{e_1, e_2\} \neq \mathbb{R}^3$$
.

Note that, if Φ is a *K*-frame for \mathcal{H}^N , then by Proposition 3.1 in [17], there exists a sequence $\Psi = \{\psi_j\}_{j=1}^M \subseteq \mathcal{H}^N$ such that

$$Kx = \sum_{j=1}^{M} \langle x, \psi_j \rangle \varphi_j, \ (x \in \mathcal{H}^N)$$

and this means that $R(K) \subseteq span\{\varphi_j : j = 1, 2, ..., M\}$. Furthermore, we have the following proposition.

Proposition 2.2 ([16]). A sequence $\Phi = \{\varphi_j\}_{j=1}^M$ is a *K*-frame for \mathcal{H}^N if and only if $R(K) \subseteq span\{\varphi_j : j = 1, 2, ..., M\}$.

Now, for an arbitrary *K*-frame, we obtain the optimal lower and upper *K*-frame bounds by eigenvalues of its frame operator.

Proposition 2.3.

(i) Let $0 \neq K \in B(\mathcal{H}^N)$. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for R(K) with K-frame operator S_{Φ} with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N > 0$. Then λ_1 is the optimal upper K-frame bound and if $\lambda_N \neq 0$ then $\frac{\lambda_N}{\|K\|^2}$ is the optimal lower K-frame bound.

(ii) Suppose that $\Phi = \{\varphi_j\}_{j=1}^M$ is a K-frame for R(K) and $\{\lambda_j\}_{j=1}^N$ denotes the eigenvalues for S_{Φ} and each eigenvalue appears in the list corresponding to its algebraic multiplicity. Then

$$\sum_{j=1}^N \lambda_j = \sum_{j=1}^M \|\varphi_j\|^2.$$

Proof. For the proof of (i), suppose that $\{e_j\}_{j=1}^N$ is an orthonormal eigen basis of the frame operator S_{Φ} with associated eigenvalues $\{\lambda_j\}_{j=1}^N$ given in decreasing order. Hence we can write $x = \sum_{j=1}^N \langle x, e_j \rangle e_j$, for all $x \in \mathcal{H}^N$. Also, we have

$$S_{\Phi}x = \sum_{j=1}^{N} \langle x, e_j \rangle S_{\Phi}e_j = \sum_{j=1}^{N} \lambda_j \langle x, e_j \rangle e_j,$$

and thus

$$\begin{split} \sum_{j=1}^{M} |\langle x, \varphi_j \rangle|^2 &= \langle S_{\Phi} x, x \rangle = \sum_{j=1}^{N} \lambda_j |\langle x, e_j \rangle|^2 \\ &\leq \lambda_1 \sum_{j=1}^{N} |\langle x, e_j \rangle|^2 = \lambda_1 ||x||^2. \end{split}$$

For the lower bound we have

$$\begin{split} \frac{\lambda_N}{\|K\|^2} \|K^* x\|^2 &\leq \lambda_N \|x\|^2 = \lambda_N \sum_{j=1}^M |\langle x, e_j \rangle|^2 \\ &\leq \sum_{j=1}^N \lambda_j |\langle x, e_j \rangle|^2 = \langle S_{\Phi} x, x \rangle. \end{split}$$

The proof of secondly part is similar to the proof of Theorem 1.1.12 [6].

Now, we introduce a constructive method to extend a given frame to a tight K-frame.

Theorem 2.4. Let $K \in B(\mathcal{H}^N)$. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a frame for \mathcal{H}^N . Assume that the frame operator S_{Φ} has the eigenvalues $\{\lambda_j\}_{j=1}^N$, ordered as $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N > 0$. Let $\{e_j\}_{j=1}^N$ be a corresponding eigenbasis. Then the collection $\{K\varphi_j\}_{j=1}^M \cup \{\sqrt{\lambda_1 - \lambda_j} Ke_j\}_{j=2}^N$ is a λ_1 -tight K-frame for \mathcal{H}^N .

Proof. Set $\{\psi_j\}_{j=2}^N = \{\sqrt{\lambda_1 - \lambda_j} K e_j\}_{j=2}^N$. Suppose that \tilde{S} is the frame operator for $\{K\varphi_j\}_{j=1}^M \cup \{\psi_j\}_{j=2}^N$. Now, for any $x \in \mathcal{H}^N$ we can write

$$\begin{split} \tilde{S}x &= \sum_{j=1}^{M} \langle x, K\varphi_j \rangle K\varphi_j + \sum_{j=2}^{M} \langle x, \psi_j \rangle \psi_j \\ &= K \sum_{j=1}^{M} \langle K^* x, \varphi_j \rangle \varphi_j + \sum_{j=2}^{M} \langle x, \psi_j \rangle \psi_j \end{split}$$

$$\begin{split} &= K \sum_{j=1}^{N} \lambda_{j} \langle K^{*} x, e_{j} \rangle e_{j} + K \sum_{j=2}^{N} \sqrt{\lambda_{1} - \lambda_{j}} \langle K^{*} x, e_{j} \rangle \sqrt{\lambda_{1} - \lambda_{j}} e_{j} \\ &= K \sum_{j=1}^{N} \lambda_{j} \langle K^{*} x, e_{j} \rangle e_{j} + K \sum_{j=2}^{N} (\lambda_{1} - \lambda_{j}) \langle K^{*} x, e_{j} \rangle e_{j} \\ &= \lambda_{1} K K^{*} x. \end{split}$$

Therefore $\{K\varphi_j\}_{j=1}^M \cup \{\sqrt{\lambda_1 - \lambda_j} K e_j\}_{j=2}^N$ is a λ_1 -tight *K*-frame for \mathcal{H}^N .

Example 2.5. Let $K \in B(\mathcal{H}^6)$. Consider the frame $\Phi = \{\varphi_j\}_{j=1}^5 := \{3e_1\} \cup \{e_j\}_{j=2}^5$ for the subspace $W = span\{e_j, j = 1, 2, ..., 5\}$ of $\mathcal{H}^6 = \mathbb{C}^6$ where $\{e_j\}_{j=1}^6$ is the orthonormal basis for \mathcal{H}^6 . We have

$$S_{\Phi}x = \sum_{j=1}^{5} \lambda_j \langle x, e_j \rangle e_j = \sum_{j=1}^{5} \langle x, \varphi_j \rangle \varphi_j, \ (x \in W).$$

Thus we can see that the eigenvalues for the frame operator S_{Φ} are $\lambda_1 = 9$, $\lambda_j = 1$, j = 2,...,5. Hence by Theorem 2.1 there exist 4 vectors $\{\psi_j\}_{j=1}^4 = \{\sqrt{9 - \lambda_j} K e_j\}_{j=2}^5$ such that $\{K\varphi_j\}_{j=1}^5 \cup \{\sqrt{9 - \lambda_j} K e_j\}_{j=2}^5$ is a 9-tight *K*-frame for *W*.

In the following proposition, we express two inequality of A-tight K-frames.

Proposition 2.6.

(i)
$$If \Phi = \{\varphi_j\}_{j=1}^M$$
 is an A-tight K-frame for \mathcal{H}^N , then

$$\max_{j=1,2,\dots,M} \|\varphi_j\|^2 \le A \|K\|^2.$$

(ii) If $\Phi = \{\varphi_j\}_{i=1}^M$ is an unit norm A-tight K-frame for \mathcal{H}^N , then

 $A \|K\|^2 N \ge M.$

Proof.

(i) Note that for any j = 1, ..., M, we have

$$\|\varphi_{j}\|^{4} = |\langle \varphi_{j}, \varphi_{j} \rangle|^{2} \leq \sum_{i=1}^{M} |\langle \varphi_{j}, \varphi_{i} \rangle|^{2} = A \|K^{*}\varphi_{j}\|^{2} \leq A \|K^{*}\|^{2} \|\varphi_{j}\|^{2}.$$

Thus, $\max_{j=1,2,...,M} \|\varphi_j\|^2 \le A \|K\|^2$.

(ii) Let $\{e_i\}_{i=1}^N$ be an orthonormal basis for \mathcal{H}^N . Then we can write

$$M = \sum_{j=1}^{M} \|\varphi_{j}\|^{2} = \sum_{j=1}^{M} \sum_{i=1}^{N} |\langle e_{i}, \varphi_{j} \rangle|^{2} = \sum_{i=1}^{N} \sum_{j=1}^{M} |\langle e_{i}, \varphi_{j} \rangle|^{2}$$
$$= \sum_{i=1}^{N} A \|K^{*} e_{i}\|^{2} \le A \|K\|^{2} \sum_{i=1}^{N} \|e_{i}\|^{2} = A \|K\|^{2} N.$$

Remark 2.7. In the frame setting, if $\Phi = \{\varphi_j\}_{j=1}^M$ is a finite sequence which is a frame for \mathcal{H} , then \mathcal{H} is finite-dimensional [2]. But in the *K*-frame setting, it is not true. For example, we define $K : \ell^2 \longrightarrow \ell^2$ with $Kx = \sum_{j=1}^M \langle x, e_j \rangle e_j$. Clearly $\{Ke_j\}_{j=1}^\infty = \{e_j\}_{j=1}^M$ is a *K*-frame but ℓ^2 is not finite-dimensional.

If we have information on the lower *K*-frame bound of an unit norm *K*-frame, we can provide a criterion for how many elements we can remove so that the rest of the elements forms a *K*-frame.

Proposition 2.8. Suppose that $0 \neq K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ is an unit norm K-frame for \mathcal{H}^N with the lower K-frame bound A. Then for any index set $I \subseteq \{1, ..., M\}$ such that $|I| | ||K^{\dagger}|_{R(K)} ||^2 < A$, the family $\{\varphi_j\}_{j \notin I}$ is a K-frame for R(K).

Proof. Let $\Phi = \{\varphi_j\}_{j=1}^N$ be an unit norm *K*-frame for \mathcal{H}^N , then we can write

$$\sum_{j \in I} |\langle x, \varphi_j \rangle|^2 \le \sum_{j \in I} \|\varphi_j\|^2 \|x\|^2 = |I| \|x\|^2, \ (x \in R(K)).$$

Now, since for any $x \in R(K)$

$$\frac{A}{\|K^{\dagger}\|_{R(K)}\|^{2}}\|x\|^{2} \leq A\|K^{*}x\|^{2} \leq \sum_{j \in I} |\langle x, \varphi_{j} \rangle|^{2} + \sum_{j \notin I} |\langle x, \varphi_{j} \rangle|^{2}.$$

So we have

$$(\frac{A}{\|K^{\dagger}|_{R(K)}\|^{2}}-\mid I\mid)\|x\|^{2}\leq \sum_{j\notin I}\mid \langle x,\varphi_{j}\rangle\mid^{2},\,(x\in R(K)).$$

Then Φ is a frame and hence is a *K*-frame for *R*(*K*).

In the last part of this section, we study conditions under which a linear combination of two *K*-frames is *K*-frame too.

Definition 2.9. Let $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ be *K*-frames for \mathcal{H}^N . Φ and Ψ are called strongly disjoint if $R(T_{\Phi}) \perp R(T_{\Psi})$, where T_{Φ} and T_{Ψ} are the analysis operators of the sequences Φ and Ψ , respectively.

Theorem 2.10. Suppose that $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are strongly disjoint tight K-frames for \mathcal{H}^N . Also, assume that $A, B \in B(\mathcal{H}^N)$ are operators such that $AKK^*A^* + BKK^*B^* = I_{N \times N}$, then $\{A\Phi + B\Psi\}$ is a K-frame for \mathcal{H}^N . In particular, if $KK^* = \frac{1}{2(|\alpha|^2 + |\beta|^2)}I_{N \times N}$, then $\{\alpha \Phi + \beta \Psi\}$ is a K-frame for \mathcal{H}^N .

Proof. For any $x \in \mathcal{H}^N$

$$\sum_{j=1}^{M} |\langle x, A\varphi_j + B\psi_j \rangle|^2 = \|\{\langle x, A\varphi_j + B\psi_j \rangle\}_{j=1}^{M}\|^2$$

$$= \|\{\langle A^* x, \varphi_j \rangle + \langle B^* x, \psi_j \rangle\}_{j=1}^M \|^2$$

= $\|\{\langle A^* x, \varphi_j \rangle\}_{j=1}^M \|^2 + \|\{\langle B^* x, \psi_j \rangle\}_{j=1}^M \|^2$
+ $\langle\{A^* x, \varphi_j \rangle\}_{j=1}^M, \{B^* x, \psi_j \rangle\}_{j=1}^M \rangle_{\mathcal{H}^N}$
= $\sum_{j=1}^M |\langle A^* x, \varphi_j \rangle|^2 + \sum_{j=1}^M |\langle B^* x, \psi_j \rangle|^2$
= $\|K^* A^* x\|^2 + \|K^* B^* x\|^2 = \|x\|^2.$

Therefore $\{A\varphi_j + B\psi_j\}_{j=1}^M$ is a tight frame for \mathcal{H}^N and so is a *K*-frame for \mathcal{H}^N .

Corollary 2.11. Assume that $(\Phi_1, \Phi_2, ..., \Phi_k)$ is strongly disjoint k-tuple of tight K-frames on \mathcal{H}^N and $A_i \in B(\mathcal{H}^N)$ such that $\sum_{i=1}^k A_i K K^* A_i^* = I_{N \times N}$. Then $\{\sum_{i=1}^k A_i \Phi_i\}$ is a K-frame for \mathcal{H}^N .

Proposition 2.12. With assumption of Theorem 2.2, if $AKK^*A^* + BKK^*B^* = KK^*I_{N\times N}$, then $\{A\Phi + B\Psi\}$ is a tight K-frame for \mathcal{H}^N .

Remark 2.13. Theorem 2.2, Corollary 2.1 and Proposition 2.5 actually hold in infinite-dimensional Hilbert spaces.

3. Dual of K-frame

Dual frames are important to reconstruct of vectors (or signals) in terms of the frame elements. In the other words, two frames $\Phi = \{\varphi_j\}_{j \in \mathbb{J}}$ and $\Psi = \{\psi_j\}_{j \in \mathbb{J}}$ are dual frames for \mathcal{H} if for all $x \in \mathcal{H}$,

$$x = \sum_{j \in \mathbb{J}} \langle x, \psi_j \rangle \varphi_j = \sum_{j \in \mathbb{J}} \langle x, \varphi_j \rangle \psi_j.$$
(3.1)

Also, if $\{\varphi_j\}_{j \in \mathbb{J}}$ is a *K*-frame, a Bessel sequence $\Psi = \{\psi_j\}_{j \in \mathbb{J}}$ is called a *K*-dual of $\{\varphi_j\}_{j \in \mathbb{J}}$ (see [1]) if

$$Kx = \sum_{j \in \mathbb{J}} \langle x, \psi_j \rangle \varphi_j, \quad (x \in \mathcal{H}).$$
(3.2)

We can see that, for every *K*-frame of \mathcal{H} there exists at least a Bessel sequence $\{\psi_j\}_{j \in \mathbb{J}}$ which satisfies in *K*-dual equality and the sequences $\{\varphi_j\}_{j \in \mathbb{J}}$ and $\{\psi_j\}_{j \in \mathbb{J}}$ in (3.2) are not interchangeable in general [17]. Now, we study this notion in finite dimensional Hilbert spaces.

Definition 3.1. If $\Phi = {\{\varphi_j\}}_{j=1}^M$ is a *K*-frame for \mathscr{H}^N , a sequence $\Psi = {\{\psi_j\}}_{j=1}^M$ is called a *K*-dual frame for Φ if

$$Kx = \sum_{j=1}^{M} \langle x, \psi_j \rangle \varphi_j, \ (x \in \mathcal{H}^N).$$
(3.3)

The systems $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are referred to as a *K*-dual frame pair.

If T_{Φ}^* and T_{Ψ}^* are the $N \times M$ matrices whose *j*-th columns are $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$, respectively, then (3.3) is equivalent to $K = T_{\Phi}^* T_{\Psi}$.

Note that $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are not interchangeable in general. Indeed, $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ in (3.3) are interchangeable if and only if *K* is self adjoint. Also, always there is at least a *K*-dual of any arbitrary *K*-frame.

Example 3.2. Consider the standard orthonormal basis $\Psi = \{\psi_j\}_{j=1}^3 = \{e_j\}_{j=1}^3$ of Hilbert space \mathbb{C}^3 . Define $K \in B(\mathbb{C}^3)$ as follows $Ke_1 = e_1, Ke_2 = e_1, Ke_3 = e_2$. Set $\Phi = \{\phi_j\}_{j=1}^3 = \{Ke_j\}_{j=1}^3$, that is, $\Phi = \{\phi_j\}_{j=1}^3$ is a *K*-frame. Since $x = \sum_{j=1}^3 \langle x, e_j \rangle e_j, x \in \mathbb{C}^3$, then $Kx = \sum_{j=1}^3 \langle x, \psi_j \rangle \phi_j$. Hence Ψ is a *K*-dual of Φ which is not interchangeable. The frame operator of Φ is $S = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

In the following proposition, trace formula for a tight *K*-frames is stated that is associated to its *K*-dual.

Proposition 3.3. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a tight *K*-frame for \mathcal{H}^N . Then

$$Tr(K) = \sum_{j=1}^{M} \langle \varphi_j, \psi_j \rangle, \qquad (3.4)$$

where $\Psi = \{\psi_j\}_{j=1}^M$ is a K-dual of $\Phi = \{\varphi_j\}_{j=1}^M$.

Proof. We know that if $\{e_i\}_{i=1}^N$ is an arbitrary orthonormal basis for \mathcal{H}^N , then by definition, $Tr(K) = \sum_{i=1}^N \langle Ke_i, e_i \rangle$. Now, we can write

$$Tr(K) = \sum_{i=1}^{N} \langle Ke_i, e_i \rangle = \sum_{i=1}^{N} \langle \sum_{j=1}^{M} \langle e_i, \psi_j \rangle \varphi_j, e_i \rangle = \sum_{j=1}^{M} \sum_{i=1}^{N} \langle e_i, \psi_j \rangle \langle \varphi_j, e_i \rangle$$
$$= \sum_{j=1}^{M} \sum_{i=1}^{N} \langle \varphi_j, e_i \rangle \langle e_i, \psi_j \rangle = \sum_{j=1}^{M} \langle \sum_{i=1}^{N} \langle \varphi_j, e_i \rangle e_i, \psi_j \rangle = \sum_{j=1}^{M} \langle \varphi_j, \psi_j \rangle.$$

In the following theorem, we characterize the scalar sequences $v = \{v_j\}_{j=1}^M$ for which there exists a *K*-dual pair of frames $\{\varphi_j\}_{j=1}^M$ and $\{\psi_j\}_{j=1}^M$ such that $v_j = \langle \varphi_j, \psi_j \rangle$ for all j = 1, 2, M.

Theorem 3.4. Let $K \in B(\mathcal{H}^N)$ and $v = \{v_j\}_{j=1}^M \subset \mathbb{C}$ with $M > \dim(R(K)) = rank(K)$ be given. Suppose that there exist K-dual frame pairs $\{\varphi_j\}_{j=1}^M$ and $\{\psi_j\}_{j=1}^M$ for \mathcal{H}^N such that $v_j = \langle \varphi_j, \psi_j \rangle$ for all j = 1, 2, M. Then there exists a tight K^* -frame $\{\theta_j\}_{j=1}^M$ and a corresponding dual frame $\Gamma = \{\gamma_j\}_{j=1}^M$ for \mathcal{H}^N such that $v_j = \langle \theta_j, \gamma_j \rangle$ for all j = 1, 2, M. Furthermore $Tr(K) = \sum_{j=1}^M v_j$. **Proof.** Fix $v = \{v_j\}_{j=1}^M \subset \mathbb{C}$ such that there exists a *K*-dual frame pairs $\{\varphi_j\}_{j=1}^M$ and $\{\psi_j\}_{j=1}^M$ such that satisfying $v_j = \langle \varphi_j, \psi_j \rangle$ for all j = 1, 2, M. Hence we can write $T_{\Phi}^* T_{\Psi} = K$ and $v = \text{diag}(T_{\Phi}^* T_{\Psi})$, where $\text{diag}(\cdot)$ denotes the column vector of entries on the main diagonal of a matrix. Set $\theta_j = K^* S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_j$ and $\gamma_j = S_{\Phi}^{\frac{1}{2}} (K^{\dagger} \mid_{R(K)})^* \psi_j$. Thus $\Theta = \{\theta_j\}_{j=1}^M$ is a tight K^* -frame, since

$$\begin{split} S_{\Theta}x &= \sum_{j=1}^{M} \langle x, \theta_{j} \rangle \theta_{j} \\ &= \sum_{j=1}^{M} \langle x, K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j} \rangle K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j} \\ &= K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \sum_{j=1}^{M} \langle x, K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_{j} \rangle \varphi_{j} \\ &= K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \sum_{j=1}^{M} \langle (S_{\Phi}^{-\frac{1}{2}})^{*} K x, \varphi_{j} \rangle \varphi_{j} \\ &= K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} S_{\Phi} (S_{\Phi}^{-\frac{1}{2}})^{*} K x \\ &= K^{*} S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} S_{\Phi}^{\frac{1}{2}} S_{\Phi}^{\frac{1}{2}} (S_{\Phi}^{-\frac{1}{2}})^{*} K x \\ &= K^{*} S_{\Phi}^{-\frac{1}{2}} (S_{\Phi}^{-\frac{1}{2}})^{*} K x \\ &= K^{*} (S_{\Phi}^{-\frac{1}{2}} S_{\Phi}^{\frac{1}{2}})^{*} K x \\ &= K^{*} (S_{\Phi}^{-\frac{1}{2}} S_{\Phi}^{\frac{1}{2}})^{*} K x \\ &= K^{*} K x. \end{split}$$

So we have $\langle S_{\Theta}x, x \rangle = \langle K^*Kx, x \rangle = \langle Kx, Kx \rangle = ||Kx||^2$. Also, the synthesis operator associated with $\{\theta_j\}_{j=1}^M$ is $K^*S_{\Phi}^{-\frac{1}{2}}P_{S_{\Phi}^{\frac{1}{2}}(R(K))}T_{\Phi}^*$ and the synthesis operator associated with $\{\gamma_j\}_{j=1}^M$ is $S_{\Phi}^{\frac{1}{2}}(K^{\dagger}|_{R(K)}))^*T_{\Psi}^*$. Since

$$\begin{split} T^*_{\Theta}(\{c_j\}_{j=1}^M) &= \sum_{j=1}^M c_j K^* S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \varphi_j \\ &= K^* S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} \sum_{j=1}^M c_j \varphi_j \\ &= K^* S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} T_{\Phi}^*. \end{split}$$

We know that $K^{\dagger}|_{R(K)}: R(K) \longrightarrow \mathscr{H}^N$, thus $(K^{\dagger}|_{R(K)})^*: \mathscr{H}^N \longrightarrow R(K)$. So

$$T_{\Theta}^{*}T_{\Gamma} = KS_{\Phi}^{-\frac{1}{2}}P_{S_{\Phi}^{\frac{1}{2}}(R(K))}T_{\Phi}^{*}(S_{\Phi}^{\frac{1}{2}}(K^{\dagger}|_{R(K)})^{*}T_{\Psi}^{*})^{*}$$
$$= KS_{\Phi}^{-\frac{1}{2}}P_{S_{\Phi}^{\frac{1}{2}}(R(K))}T_{\Phi}^{*}T_{\Psi}K^{\dagger}|_{R(K)}S_{\Phi}^{\frac{1}{2}}$$

$$= K S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} K I_{N \times N} K^{\dagger} |_{R(K)} S_{\Phi}^{\frac{1}{2}}$$
$$= K S_{\Phi}^{-\frac{1}{2}} P_{S_{\Phi}^{\frac{1}{2}}(R(K))} S_{\Phi}^{\frac{1}{2}}$$
$$= K.$$

Therefore $\Theta = \{\theta_j\}_{j=1}^M$ and $\Gamma = \{\gamma_j\}_{j=1}^M$ are *K*-dual frame pairs. Moreover, we have $T_{\Theta}^* T_{\Gamma} = K = T_{\Phi}^* T_{\Psi}$, that gives

$$\operatorname{diag}(T_{\Phi}^{*}T_{\Psi}) = \operatorname{diag}(T_{\Theta}^{*}T_{\Gamma}) = \nu = \sum_{j=1}^{M} \langle \varphi_{j}, \psi_{j} \rangle = Tr(K).$$

In the following results we characterize K-duals of a K-frame.

Proposition 3.5. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a *K*-frame for \mathcal{H}^N . Then $\Psi = \{\psi_j\}_{j=1}^M$ is a *K*-dual for Φ if and only if $R(T_{\Phi}) \perp R(T_{\Theta})$, where T_{Θ} is the analysis operator of the sequence $\Theta = \{\theta_j\}_{j=1}^M = \{\psi_j - K^* S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j\}_{j=1}^M$.

Proof. Let $\Phi = {\{\varphi_j\}}_{j=1}^M$ be a *K*-frame for \mathcal{H}^N with *K*-dual $\Psi = {\{\psi_j\}}_{j=1}^M$, then

$$\begin{split} Kx &= \sum_{j=1}^{M} \langle x, \psi_j \rangle \varphi_j \\ &= \sum_{j=1}^{M} \langle x, \psi_j - K^* S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j + K^* S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j \rangle \varphi_j \\ &= \sum_{j=1}^{M} \langle x, \theta_j \rangle \varphi_j + \sum_{j=1}^{M} \langle x, K^* S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j \rangle \varphi_j \\ &= \sum_{j=1}^{M} \langle x, \theta_j \rangle \varphi_j + \sum_{j=1}^{M} \langle Kx, S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j \rangle \varphi_j \\ &= T_{\Phi}^* T_{\Theta} x + K x. \end{split}$$

Recall that two *K*-frames $\Phi = \{\phi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ in a Hilbert space \mathcal{H}^N are isomorphic *K*-frames if there exists an invertible operator $U : \mathcal{H}^N \longrightarrow \mathcal{H}^N$ so that $U\phi_j = \psi_j$ for all $1 \le j \le M$.

Proposition 3.6. Let $K \in B(\mathcal{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for $R(K^*)$ with the two different K-dual frames $\Psi = \{\psi_j\}_{j=1}^M$ and $\Gamma = \{\gamma_j\}_{j=1}^M$. Then Ψ and Γ are not isomorphic.

Proof. Assume that $\Psi = \{\psi_j\}_{j=1}^M$ and $\Gamma = \{\gamma_j\}_{j=1}^M$ are isomorphic. Hence there exists an invertible operator $U \in B(\mathcal{H}^N)$ satisfying $U\psi_j = \gamma_j$, j = 1, 2, ..., M. Now, for any $x \in R(K^*)$ we can write

$$KU^* x = \sum_{j=1}^M \langle U^* x, \gamma_j \rangle \varphi_j = \sum_{j=1}^M \langle x, U\gamma_j \rangle \varphi_j = \sum_{j=1}^M \langle x, \psi_j \rangle \varphi_j = Kx.$$

Therefore $U|_{R(K^*)} = Id$ which is a contradiction.

Proposition 3.7. Let $K \in B(H^N)$. Let $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for $R(K^*)$, then the only K-dual frame of Φ , which is isomorphic to Φ is $\{K^*S_{\Phi}^{-1}P_{S_{\Phi}(R(K))}\varphi_j\}_{j=1}^M$.

Proof. Suppose that $\Psi = \{\psi_j\}_{j=1}^M$ is a *K*-dual frame of Φ and there is an invertible operator *U* so that $\psi_j = UK^* S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j$ for all i = 1, 2, M. Then, for every $x \in R(K^*)$ we have

$$\begin{split} KU^* x &= \sum_{j=1}^M \langle KU^* x, S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j \rangle \varphi_j \\ &= \sum_{j=1}^M \langle x, UK^* S_{\Phi}^{-1} P_{S_{\Phi}(R(K))} \varphi_j \rangle \varphi_j \\ &= \sum_{j=1}^M \langle x, \psi_j \rangle \varphi_j = Kx. \end{split}$$

Hence $U|_{R(K^*)} = I_{N \times N}$. Thus

$$\psi_{j} = UK^{*}S_{\Phi}^{-1}P_{S_{\Phi}(R(K))}\varphi_{j} = K^{*}S_{\Phi}^{-1}P_{S_{\Phi}(R(K))}\varphi_{j}.$$

Oblique dual frames were proposed by several researchers. In particular, oblique dual frames in finite dimensional Hilbert space were studied in [18]. In the last part of this section, we study this notion for K-frames.

Definition 3.8. Let \mathscr{U} and \mathscr{W} be two subspaces of \mathscr{H}^N and suppose that $\Phi = \{\varphi_j\}_{j=1}^M$ and $\Psi = \{\psi_j\}_{j=1}^M$ are in \mathscr{H}^N and $\mathscr{W} = \operatorname{span}\{\varphi_j : j = 1, 2, ..., M\}, \ \mathscr{U} = \operatorname{span}\{\psi_j : j = 1, 2, ..., M\}$. The sequence $\Psi = \{\psi_j\}_{j=1}^M$ is an oblique *K*-dual frame of the *K*-frame $\Phi = \{\varphi_j\}_{j=1}^M$ on \mathscr{W} if

$$Kx = \sum_{j=1}^{M} \langle x, \psi_j \rangle \varphi_j, \quad (x \in \mathcal{W}).$$
(3.5)

Note that (3.5) implies that $R(K|_{\mathcal{W}}) \subseteq \mathcal{W}$.

In the following two propositions a characterization of the oblique *K*-dual frames pair that are obtained by adding a pair of vector sequences to a given Bessel sequence is given. Also, characterize the uniqueness of the oblique *K*-dual frame pair.

Proposition 3.9. Suppose that \mathcal{W} is a subspace of \mathcal{H}^N and sequences $\Phi = \{\varphi_j\}_{j=1}^M$, $\Psi = \{\psi_j\}_{j=1}^L$ and $\Gamma = \{\gamma_j\}_{j=1}^L$ in \mathcal{H}^N satisfy that $span(\Phi \cup \Gamma) = \mathcal{W}$. Then the following statements are equivalent:

- (i) $\Phi \cup \Psi$ is an oblique *K*-dual frame of $\Phi \cup \Gamma$ on \mathcal{W} .
- (ii) For any $x \in \mathcal{W}$, $(K S_{\Phi})x = \sum_{j=1}^{L} \langle x, \psi_j \rangle \gamma_j$.

Proof. (i) and (ii) are equivalent, since $\Phi \cup \Psi$ is an oblique *K*-dual frame of $\Phi \cup \Gamma$ on \mathcal{W} , if and only for all $x \in \mathcal{W}$

$$\begin{split} Kx &= \sum_{j=1}^{M} \langle x, \varphi_j \rangle \varphi_j + \sum_{j=1}^{L} \langle x, \psi_j \rangle \gamma_j \\ &= S_{\Phi} x + \sum_{j=1}^{L} \langle x, \psi_j \rangle \gamma_j, \end{split}$$

so

$$(K - S_{\Phi})x = \sum_{j=1}^{L} \langle x, \psi_j \rangle \gamma_j.$$

Proposition 3.10. If $\Psi = \{\psi_j\}_{j=1}^M$ is an oblique *K*-dual frame of $\Phi = \{\varphi_j\}_{j=1}^M$ on \mathcal{W} and Φ is *K*-minimal, then the oblique *K*-dual frame of Φ on \mathcal{W} is unique in the sense that if $\Gamma = \{\gamma_j\}_{j=1}^M$ is another oblique *K*-dual frame of Φ , then $\psi_j = \gamma_j$, j = 1, ..., M, where Ψ , Γ are restricted in \mathcal{W} .

Proof. Due to the fact that $\Psi = \{\psi_j\}_{j=1}^M$ and $\Gamma = \{\gamma_j\}_{j=1}^M$ are oblique *K*-dual frames of Φ on \mathcal{W} , then we can write

$$Kx = \sum_{j=1}^{M} \langle x, \psi_j \rangle \varphi_j = \sum_{j=1}^{M} \langle x, \gamma_j \rangle \varphi_j, \ (x \in \mathcal{W}).$$

Hence $\sum_{j=1}^{M} \langle x, \psi_j - \gamma_j \rangle \varphi_j = 0, x \in \mathcal{W}$. Now by *K*-minimality of Φ , we have

$$\langle x, \psi_j - \gamma_j \rangle = 0, \ j = 1, 2, \dots, M, \ x \in \mathcal{W},$$

and therefore $\psi_j = \gamma_j, j = 1, ..., M$.

Here, we state that if Φ is a *K*-frame for *R*(*K*), then we can make an oblique *K*-dual frame of algebraic multiplicity of $\{\varphi_j\}_{j=1}^M \cup \{e_j\}_{j\neq j_0}$ where $\{e_j\}_{j=1}^d$ is an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalues $\{\lambda_j\}_{j=1}^d$.

Theorem 3.11. Let $K \in B(\mathscr{H}^N)$ and $\Phi = \{\varphi_j\}_{j=1}^M$ be a K-frame for $\mathscr{W} = R(K)$ with $\dim \mathscr{W} = d$. Let $\{e_j\}_{j=1}^d$ be an orthonormal eigenbasis of the frame operator S_{Φ} with associated eigenvalue $ues \{\lambda_j\}_{j=1}^d$. Then for any eigenvalue $0 \neq \lambda_{j_0}$, the sequence $\{\frac{1}{\sqrt{\lambda_{j_0}}}K^*\varphi_j\}_{j=1}^M \cup \{\frac{(\lambda_{j_0}-\lambda_j)^{\frac{1}{3}}}{\sqrt{\lambda_{j_0}}}K^*e_j + K^*\gamma_j\}_{j\neq j_0}$, is an oblique K-dual frame of $\{\frac{1}{\sqrt{\lambda_{j_0}}}\varphi_j\}_{j=1}^M \cup \{\frac{(\lambda_{j_0}-\lambda_j)^{\frac{2}{3}}}{\sqrt{\lambda_{j_0}}}e_j\}_{j\neq j_0}$ on \mathscr{W} , where $\{\gamma_j\}_{j_0\neq j=1}^d$ $\subset \mathscr{H}^N$ satisfies $\sum_{j=1}^d \langle x, K^*x_j \rangle e_j = 0$, $(x \in \mathscr{W})$

$$\sum_{j_0\neq j=1}^{u} \langle x, K^* \gamma_j \rangle e_j = 0, \ (x \in \mathcal{W}).$$

Proof. Let Φ be a *K*-frame for $\mathcal{W} = R(K)$ with the frame operator S_{Φ} . Also $\{e_j\}_{j=1}^d$ is an orthonormal eigenbasis, so for any $x \in \mathcal{W}$ we can write $Kx = \sum_{j=1}^d \langle Kx, e_j \rangle e_j$. Thus

$$S_{\Phi}Kx = \sum_{j=1}^{M} \langle Kx, \varphi_j \rangle \varphi_j = S_{\Phi} \sum_{j=1}^{d} \langle Kx, e_j \rangle e_j$$

$$= \sum_{j=1}^{d} \langle Kx, e_j \rangle S_{\Phi} e_j = \sum_{j=1}^{d} \langle Kx, e_j \rangle \lambda_j e_j$$
$$= \sum_{j=1}^{d} \lambda_j \langle Kx, e_j \rangle e_j.$$

Now for all $x \in \mathcal{W}$ we have

$$\begin{split} & Kx = \frac{1}{\lambda_{j_0}} \sum_{j=1}^{a} \lambda_{j_0} \langle Kx, e_j \rangle e_j \\ &= \frac{1}{\lambda_{j_0}} (\lambda_{j_0} \langle Kx, e_{j_0} \rangle e_{j_0} + \sum_{j \neq j_0} \lambda_{j_0} \langle Kx, e_j \rangle e_j) \\ &= \frac{1}{\lambda_{j_0}} (\lambda_{j_0} \langle Kx, e_{j_0} \rangle e_{j_0} + \sum_{j \neq j_0} \lambda_j \langle Kx, e_j \rangle e_j - \sum_{j \neq j_0} \lambda_j \langle Kx, e_j \rangle e_j \\ &+ \sum_{j \neq j_0} \lambda_{j_0} \langle Kx, e_{j_0} \rangle e_{j_0} + \sum_{j \neq j_0} \lambda_j \langle Kx, e_j \rangle e_j \\ &= \frac{1}{\lambda_{j_0}} (\lambda_{j_0} - \lambda_j) \langle Kx, e_j \rangle e_j) \\ &= \frac{1}{\lambda_{j_0}} (\sum_{j=1}^{d} \lambda_j \langle Kx, e_j \rangle e_j + \sum_{j \neq j_0} (\lambda_{j_0} - \lambda_j) \langle Kx, e_j \rangle e_j) \\ &= \frac{1}{\lambda_{j_0}} \sum_{j=1}^{M} \langle Kx, \varphi_j \rangle \varphi_j + \sum_{j \neq j_0} (\frac{\lambda_{j_0} - \lambda_j}{\lambda_{j_0}}) \langle Kx, e_j \rangle e_j \\ &= \frac{1}{\lambda_{j_0}} \sum_{j=1}^{M} \langle Kx, \varphi_j \rangle \varphi_j + \sum_{j \neq j_0} (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}} (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}})^{\frac{2}{3}} \langle Kx, e_j + \gamma_j \rangle e_j \\ &= \frac{1}{\lambda_{j_0}} \sum_{j=1}^{M} \langle Kx, \varphi_j \rangle \varphi_j + \sum_{j \neq j_0} \langle Kx, (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}} e_j + \gamma_j) (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}})^{\frac{2}{3}} e_j \\ &= \sum_{j=1}^{M} \langle Kx, \frac{1}{\sqrt{\lambda_{j_0}}} \varphi_j \rangle \frac{1}{\sqrt{\lambda_{j_0}}} \varphi_j \\ &= \sum_{j=1}^{M} \langle x, (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}} e_j + \gamma_j) (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}} e_j + \sum_{j \neq j_0} \langle x, (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}} e_j + K^* \gamma_j) (\frac{\lambda_{j_0} - \lambda_j}{\sqrt{\lambda_{j_0}}} e_j, \end{split}$$

which complete the proof.

47

References

- [1] F. Arabyani and A. A. Arefijamaal, *Some constructions of K-frames and their duals*, To appear in Rocky Mountain J. Math. https://projecteuclid.org/euclid.rmjm/1455560377.
- [2] J. J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math., 18 (2003), 357–385.
- [3] H. Bolcskei, F. Hlawatsch and H. G. Feichtinger, *Frame-theoretic analysis of over-sampled filter banks*, IEEE Trans. Signal Process. **46** (1998), 3256–3268.
- [4] P. Casazza, G. Kutyniok and F. Philipp, Finite Frames: Theory and Applications. Birkhäuser, Berlin, 2013.
- [5] O. Christensen, A. M. Powell and X. C. Xiao, A note on finite dual frame pairs, Proc. Amer. Math. Soc., 140 (11) (2012), 3921–3930.
- [6] O. Christensen, Frames and Bases: An Introductory Course, Birkhäuser, Boston 2008.
- [7] I. Daubechies, A. Grossmann and Y. Meyer, *Painless non-orthogonal expansions*, J. Math. Physics, 27 (1986), 1271–1283.
- [8] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc., 72 (1952), 341–366.
- [9] Y. C. Eldar and G. D. Forney Jr., Optimal tight frames and quantum measurement. IEEE Trans. Inform. Theory, 48 (3) (2002), 599–610.
- [10] P. J. S. G. Ferreira, *Mathematics for multimedia signal processing II: Discrete finite frames and signal reconstruction*, In: Byrnes, J.S. (ed.) Signal processing for multimedia, IOS Press, Amsterdam (1999), 35–54.
- [11] L. Găvruța, Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139-144.
- [12] L. Găvruţa, Atomic decompositions for operators in reproducing kernel Hilbert spaces, Math. Rep., 17 (3) (2015), 303–314.
- [13] K. Gröchenig and C. Heil, *Modulation spaces and pseudodifferential operators*. Integral Equ. Oper. Theory 34 (4) (1999), 439–457.
- [14] D. Han and D. Larson, Frames, Bases and group representations, Mem. Amer. Math. Soc., 147 (697) 2000.
- [15] R. W. Heath Jr. and A. Paulraj, *Linear dispersion codes for MIMO systems based on frame theory*. IEEE Trans. Signal Process., **50** (10) (2002), 2429–2441.
- [16] Zh. Q. Xiang and Y. M. Li, Frame sequences and dual frames for operators, ScienceAsia, 42 (2016), 222–230.
- [17] X. Xiao, Y. Zhu and L. Găvruța, Some properties of K-frames in Hilbert spaces, Results. Math., 63 (3-4) (2013), 1243–1255.
- [18] X. C. Xiao, Y. C. Zhu and X. M. Zeng, *Oblique dual frames in finite-dimensional Hilbert spaces*, Int. J. Wavelets Multiresolut. Inf. Process, **11** (2) (2013), 1350011-1–1350011-14.

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.

E-mail: va_mo584@stu.um.ac.ir

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran.

E-mail: janfada@um.ac.ir

Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, P.O. Box 1159-91775, Iran. E-mail: kamyabi@um.ac.ir