
TAMKANG JOURNAL OF MATHEMATICS

Volume 34, Number 4, Winter 2003

ON ERRORS OF A UNIFIED FAMILY OF APPROXIMATION FORMS

OF BIVARIATE CONTINUOUS FUNCTIONS

CHUNG-SIUNG KAO

Abstract. Approximation forms for a regular bivariate functions f(x, y) were obtained by

putting expectation on a convergent bivariate stochastic sequence for which some proper error

bounds are herein derived to evaluate the applicability of the approximation forms when actually

applied to be approximates of regular bivariate functions.

1. Introduction

As is widely understood, Bernstein polynomials has become an important tool for
doing computer aided geometric design (CAGD) in industries for designing automobiles
and aircrafts, etc., as well as in producing simulated motion pictures. While univariate
Bernstein polynomials may be useful for designing curves, bivariate Bernstein polynomi-
als appear to be equally useful for designing desirable surfaces. In fact, more extensive
and generalized bivariate approximation forms have been shown by Kao (2002), with
which further flexibility and effectiveness on their use to CAGD may be expected. In
addition, it is normally feasible to obtain bivariate density estimates by applying an
approximation form for regular bivariate functions. Naturally, error bounds for the bi-
variate approximation forms should be available in order that idea about how good the
approximates will be and how fast the convergence of the approximation forms to the
actual value of the approximated function can be obtained. In this work, the author
make available some appropriate error bounds to meet the needs. In univariate case,
recently Ghosal (2001) investigated the convergence rates when Bernstein polynomials
were applied to estimating densities. Impens and Vernaeve (2001) gave some asymptotics
in regard to Bernstein approximation forms when the approximated function satisfies cer-
tain Lipschitz conditions. Furthermore, Petrone (1999) applied Bernstein polynomials to
density estimation under a Bayesian nonparametric framework. Regarding convergence
of Bernstein approximation form, Farouki (1999) investigated its convergent inversion
approximations. All such published pieces of intensive work on Bernstein polynomials
regarding their error and convergence offer strong indication about the important need
for use of Bernstein polynomials in CAGD. Attempts were recently made to expand the
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consideration into multivariate situation, primarily regarding how the multivariate ver-
sion should be formulated and their asymptotic expansions were provided. Notable work
include the results by Abel and Ivan (2000) specifically on simplex domain, and by Walz
(2000). Since bivariate treatment normally leads the way for any general multivariate
treatment, formulation for multivariate approximation forms and corresponding results
on error bounds of the approximation forms are expected to be obtainable without too
much difficulty through this bivariate work. Also, it is important to note that bivariate
Bernstein polynomials appear to be only one in a family of approximation forms pro-
posed by this author. There are other probably more powerful approximation forms in
this family that can be very useful to computer aided geometric design.

2. A Family of Approximation Forms

Assume f to be a continuous function, and according to practicality in applications
f is also assumed to be uniformly bounded. Then let there be a sequence of identically
and independently distributed (iid) random variables X1, X2, . . . , Xm with mean x and
finite variance σ2 > 0, and another sequence of iid random variables Y1, Y2, . . . , Yn with
mean y and finite variance w2 > 0. Without loss of generality, we assume x > 0 and
y > 0. Then let S

(X)
m and S

(Y )
n denote the sums of Xi’s and Yj ’s respectively, i.e.

S(x)
m = X1 + X2 + · · · + Xm and S(Y )

n = Y1 + Y2 + · · · + Yn.

According to the strong law of large numbers in probability, we have

S
(X)
m

m
−→ x as m → ∞ almost surely

and
S

(Y )
n

n
−→ y as n → ∞ almost surely

For any bivariate function f which is continuous at (x, y), it then follows that

f

(

S
(X)
m

m
,
S

(Y )
n

n

)

→ f(x, y) as (m, n) → (∞,∞) almost surely

Since f(x, y) is assumed to be uniformly bounded for any (x, y), the dominated conver-
gence theorem implies that

f(x, y) = lim
(m,n)→(∞,∞)

Ef

(

S
(X)
m

m
,
S

(Y )
n

n

)

(2.1)

if f is continuous at (x, y).
It should be noted that with same argument, we have

f(x, y) = lim
n→∞

Ef

(

S
(X)
n

n
,
S

(Y )
n

n
)

)
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However, we primarily apply Formula (2.1) to obtain a family of interesting and useful
approximation forms as previously given by Kao (2002). The approximation forms so
obtained include the following:

Approximation Form I

By setting Xi’s to be iid extended Bernoulli trials, i.e. P{Xi = t} = p and P{Xi =
0} = 1 − p, and Yj ’s to be iid extended Bernoulli trials with P{Yj = s} = q and
P{Yj = 0} = 1 − q, where t > 0, s > 0, 0 ≤ p, q ≤ 1, we can derive that

f(x, y) = lim
(m,n)→(∞,∞)

∑

0≤i≤m

0≤j≤n

f

(

it

m
,
js

n

)

·

(

m

i

)(

n

j

)(

x

t

)i(

1 − x

t

)m−i(
y

s

)j(

1 − y

s

)n−j

(2.2)

where t and s are arbitrary such that 0 ≤ x < t and 0 ≤ y < s. This form can be
regarded as bivariate Bernstein form.

Approximation Form II

By setting Xi/t, 1 ≤ i ≤ m to be iid negative binomial random variables with
distribution NB(K, p) and Yj/s, 1 ≤ j ≤ n, to be iid negative binomial random variables
with distribution NB(M, q) where t > 0 and s > 0, 0 ≤ p, q ≤ 1, K and M are positive
integers. Then Xi’s are independent of Yj ’s, E(Xi) = x = tK

p
and E(Yj) = y = sM

q
. If

follows that

f(x, y) = lim
(m,n)→(∞,∞)

Ef

(

1

m

m
∑

i=1

Xi,
1

n

n
∑

j=1

Yj

)

= lim
(m,n)→(∞,∞)

∑

mK≤i<∞

nM≤j<∞

f

(

it

m
,
js

n

)(

i − 1

mK − 1

)

·

(

j − 1

nM − 1

)(

tK

x

)mK(

1 − tK

x

)i−mK(

sM

y

)nM(

1 − sM

y

)j−nM

(2.3)

for any (x, y) such that 0 < t < x
K

and 0 < s < y
M

, with t and s both being arbitrary.
This form can be regarded as bivariate negative binomial form.

Approximation Form III

By setting Xi’s to be iid Poisson(x) and Yj ’s to be iid Poisson(y) with the Xi’s being
independent of the Yj ’s, where x > 0 and y > 0, then we can derive to obtain that

f(x, y) = lim
(m,n)→(∞,∞)

∑

0≤i,j<∞

f

(

i

m
,
j

n

)

(mx)i(ny)j

i!j!
e−(mx+ny) (2.4)
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for any (x, y) in first quadrant of R2.

This form can be regarded as bivariate Poisson form.

Approximation Form IV

By setting Xi’s to be iid normally distributed N(x, σ2)(σ2 > 0) and Yj ’s to be iid
normally distributed N(y, w2)(w2 > 0) and the Xi’s being independent of the Yj ’s, then

we can obtain that

f(x, y) = lim
(m,n)→(∞,∞)

√
mn

σw

∫ ∞

−∞

∫ ∞

−∞
f(t, s)φ

(√
m(t − x)

σ

)

φ

(√
n(s − y)

w

)

dtds (2.5)

where φ is the probability density function of standard normal distribution. This form
can be regarded as bivariate normal form.

Approximation Form V

By setting Xi’s to be iid exponential random variables with parameter 1
x

> 0 and

Yj ’s to be iid exponential random variables with parameter 1
y

> 0, and that the Xi’s are
independent of the Yj ’s, then we can obtain that

f(x, y) = lim
(m,n)→(∞,∞)

x−my−n

(m − 1)!(n − 1)!

∫ ∞

0

∫ ∞

0

f
( t

m
,
s

n

)

·

tm−1sn−1e−( t
x
+ s

y
)dtds for any (x, y). (2.6)

This form can be regarded as bivariate gamma form.
All of the bivariate approximation forms obtained in above may be applicable at

user’s discretion. Each of them may be suitable specifically for certain type of available

discrete data values of f to reach an approximation of f(x, y).

3. Error Bounds for the Bivariate Approximation Forms

For purpose of simplicity in the arguments to follow we assume that function f has

continuous and bounded second derivatives in either argument for any point in the defined

domain. Then due to the fact that f(
S(X)

m

m
,

S(Y )
n

n
) converges to f(x, y) almost surely, where

x = E(Xi), y = E(Yj), S
(X)
m = X1 + X2 + · · · + Xm and S

(Y )
n = Y1 + Y2 + · · · + Yn, we

may have

f

(

S
(X)
m

m
,
S

(Y )
n

n

)

= f(x, y) + ▽f(x, y) d′
∼

+
1

2
d
∼

H(θ, ξ) d′
∼

where d
∼

is the row vector (
S(X)

m

m
− x,

S(Y )
n

n
− y), ▽f(x, y) denotes the gradient of f at

(x, y) and H(θ, ξ) denotes the Hermitian of f at (θ, ξ) with θ in between
S(X)

m

m
and x, and

ξ in between
S(Y )

n

n
and y. In addition, (θ, ξ) approaches (x, y) as (m, n) → (∞,∞).
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Therefore, by taking expectation we have

Ef

(

S
(X)
m

m
,
S

(Y )
n

n

)

= f(x, y) + ▽f(x, y)E(d′
∼

) +
1

2
E[d

∼
H(θ, ξ) d′

∼
]

= f(x, y) +
1

2
E[d

∼
H(θ, ξ) d′

∼
] (3.1)

since E(d
∼
) = (0, 0)′.

We assume that the second derivatives of f are uniformly bounded by C, i.e. ∂2

∂x2 f ,
∂2

∂y2 f and ∂2

∂x∂y
f are all bounded by C uniformly. Then it follows that

E[d
∼

H(θ, ξ) d′
∼

]

≤ C

[

E

(

S
(X)
m

m
− x

)2

+2E

∣

∣

∣

∣

∣

(

S
(X)
m

m
− x

)(

S
(Y )
n

n
− y

)

∣

∣

∣

∣

∣

+ E

(

S
(Y )
n

n
− y

)2
]

≤ C







Var

(

S
(X)
m

m

)

+2

[

Var

(

S
(X)
m

m

)

Var

(

S
(Y )
n

n

)

]
1
2

+ Var

(

S
(Y )
n

n

)







= C

[

(

Var

(

S
(X)
m

m

))
1
2

+

(

Var

(

S
(Y )
n

n

))
1
2

]2

(3.2)

where the second inequality holds according to Schwarz inequality regarding to expecta-
tion of product of two random variables.

It is important to note that when n is sufficiently large, we have (θ, ξ) ≈ (x, y) since

(
S(X)

m

m
,

S(Y )
n

n
) approaches (x, y), and therefore

f(x, y) ≈ Am,n(x, y) − 1

2
E[d

∼
H(x, y) d′

∼
] (3.3)

where Am,n(x, y) = Ef(
S(X)

m

m
,

S(Y )
n

n
), d

∼
= (

S
(X)
m

m
− x,

S
(Y )
n

n
− y) and H(x, y) denotes the

Hermitian of f at (x, y).
By applying (3.1) and (3.2) to each of the bivariate approximation forms provided in

the previous section, we may immediately obtain error bound for each of the bivariate
approximation forms as in what follows.

Bivariate Bernstein Form:

It is apparent that

Var (Xi) = t2p(1 − p) = x(t − x) and Var (Yj) = y(s − y)

which implies that

Var

(

S
(X)
m

m

)

=
1

m
t2p(1 − p) =

x(t − x)

m
and Var

(

S
(Y )
n

n

)

=
y(s − y)

n
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Therefore, by (3.1) and (3.2) we have

∣

∣

∣

∣

∣

∣

∣

f(x, y) −
∑

0≤i≤m

0≤j≤n

f

(

it

m
,
js

n

)(

m

i

)(

n

j

)(

x

t

)i(

1 − x

t

)m−i(
y

s

)j(

1 − y

s

)n−j

∣

∣

∣

∣

∣

∣

∣

≤ C

2

[

x(t − x)

m
+

y(s − y)

n
+ 2

√

xy(t − x)(s − y)

mn

]

(3.4)

for any (x, y), where (t, s) is arbitrary such that 0 ≤ x < t and 0 ≤ y < s.

Bivariate Negative Binomial Form:

It is apparent that

Var (Xi) =
t2K(1 − p)

p2
=

x(x − tK)

K
and Var (Yj) =

y(y − sM)

M

which implies that

Var

(

S
(X)
m

m

)

=
t2K(1 − p)

mp2
=

x(x − tK)

mK
and Var

(

S
(Y )
n

n

)

=
y(y − sM)

nM

Therefore, by (3.1) and (3.2) we have

∣

∣

∣

∣

∣

∣

∣

f(x, y) −
∑

mK≤i<∞
nM≤j<∞

f

(

it

m
,
js

n

)(

i − 1

mK − 1

)(

j − 1

nM − 1

)(

tK

x

)mK(

1 − tK

x

)i−mK

·

(

sM

y

)nM(

1 − sM

y

)j−nM
∣

∣

∣

∣

∣

≤ C

2

[

x(x − tK)

mK
+

y(y − sM)

nM
+ 2

√

xy(x − tK)(y − sM)

mnKM

]

(3.5)

for any (x, y), where (t, s) is arbitrary such that 0 < t < x
K

and 0 < s < y
M

.

Bivariate Poisson Form:

It is apparent that

Var (Xi) = x and Var (Yj) = y (x > 0, y > 0)

which implies that

Var

(

S
(X)
m

m

)

=
x

m
and Var

(

S
(Y )
n

n

)

=
y

n
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Therefore, by (3.1) and (3.2) we have

∣

∣

∣

∣

∣

∣

f(x, y) −
∑

0≤i,j<∞
f

(

i

m
,
j

n

)

(mx)i(ny)j

i!j!
e−(mx+ny)

∣

∣

∣

∣

∣

∣

≤ C

2

(

x

m
+

y

n
+ 2

√

xy

mn

)

(3.6)

for any (x, y) such that x > 0 and y > 0.

Bivariate Normal Form:

It is apparent that

Var (Xi) = σ2 and Var (Yj) = w2 (σ2 > 0, w2 > 0)

which implies that

Var

(

S
(X)
m

m

)

=
σ2

m
and Var

(

S
(Y )
n

n

)

=
w2

n

Therefore, by (3.1) and (3.2) we have

∣

∣

∣

∣

f(x, y) −
√

nm

σw

∫ ∞

−∞

∫ ∞

−∞
f(t, s)φ

(√
m(t − x)

σ

)

φ

(√
n(s − y)

w

)

dtds

∣

∣

∣

∣

≤ C

2

(

σ2

m
+

w2

n
+ 2

σw√
mn

)

(3.7)

for any (x, y) in R2, where φ is the probability density function of standard normal

distribution.

Bivariate Gamma Form:

It is apparent that Var (Xi) = x2 and Var (Yj) = y2 (x > 0, y > 0), which implies

that

Var

(

S
(x)
m

m

)

=
x2

m
and Var

(

S
(Y )
n

n

)

=
y2

n

Therefore, by (3.1) and (3.2) we have

∣

∣

∣

∣

f(x, y) − x−my−n

(m − 1)!(n − 1)!

∫ ∞

0

∫ ∞

0

f

(

t

m
,
s

n

)

tm−1sn−1e−( t
x
+ s

y
)dtds

∣

∣

∣

∣

≤ C

2

(

x2

m
+

y2

n
+

2xy√
mn

)

(3.8)

for any x > 0 and y > 0.
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As pointed out before at Formula (3.3), when m and n are sufficiently large we have

the approximation forms Am,n(x, y) differ from f(x, y) by
1

2
E[d

∼
H(x, y) d′

∼
] asymptot-

ically, which is of the order of magnitude O(max( 1
m

, 1
n
)). In addition to the almost

equality of Formula (3.3), its derivation also give light to the following theorems.

Theorem 1. If f(x, y) is a linear form of x and y individually, then for any bivariate

approximation form Am,n(x, y) given herein we have

Am,n(x, y) = f(x, y)

for any (x, y) in the defined domain of f(x, y).

Proof. Since E(Xi) = x, E(Yj) = y and S
(X)
m =

∑m
i=1 Xi, S

(Y )
n =

∑n
j=1 Yj , we see that

E(
S(X)

m

m
) = x and E(

S(Y )
n

n
) = y. When f(x, y) is linear in both x and y individually, it is

immediate that

Ef

(

S
(X)
m

m
,
S

(Y )
n

n

)

= f

(

E

(

S
(X)
m

m
,
S

(Y )
n

n

))

= f(x, y)

by also using the assumption that the Xi’s are independent of the Yj ’s. This then
establishes the proof.

Theorem 2. If f(t, s) is convex both in t and s in neighborhood of (x, y), then when m
and n are sufficiently large we have

Am,n(x, y) − C

2





(

Var

(

S
(X)
m

m

)

)
1
2

+

(

Var

(

S
(Y )
n

n

))
1
2





2

≤ f(x, y) ≤ Am,n(x, y)

where Am,n(x, y) = Ef(
S(X)

m

m
,

S(Y )
n

n
) is the approximation form and C is a uniform bound

of the second derivatives of f(t, s) as given for Formula (3.2).

Proof. According to Formula (3.2), the left inequality holds. Therefore, proof only

for f(x, y) ≤ Am,n(x, y) is required. When m and n are sufficiently large,
S(X)

m

m
and

S(Y )
n

n
approach x and y respectively, and both have the joint distributional support in a

neighborhood of (x, y) wherein f is convex in both components.
By iteratively using the well-known Jensen’s inequality with the assumption that the

Xi’s are independent of the Yj ’s, we have

Ef

(

S
(X)
m

m
,
S

(Y )
n

n

)

= EY

[

EXf

(

S
(X)
m

m
,
S

(Y )
n

n

)

]

≥ EY

[

f

(

E

(

S
(X)
m

m
,
S

(Y )
n

n

))

]

≥ f

(

x, EY

(

S
(Y )
n

n

))

= f(x, y)
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which proves the theorem.
In practical applications of the bivariate approximation forms, there normally exist

some known values of f(xi, yi) at (xi, yi), 1 ≤ i ≤ N . Such values of f(xi, yi) are the basis
for obtaining an approximate of any f(x, y). It is advisable that we apply the integral
approximating forms, including the bivariate normal form and the bivariate gamma form,
for doing the approximation task in view of the ease such two forms may offer. Let there
be a bounded convex set Ω in R2 such that (xi, yi), 1 ≤ i ≤ N are interior points. This
convex set is normally obtainable. Then we may undertake a partition on Ω such that

Ω =

N
⋃

i=1

Di

where Di’s are disjoint and (xi, yi) is an interior point of Di.
For notational ease, let z

∼
= (t, s) and d z

∼
= dtds to be the 2-dimensional differential.

Then in light of Formula (2.5) we consider

Um,n,N(x, y) =

√
mn

σw

N
∑

k=1

f(xk, yk)

∫

Dk

φ

(√
m(t − x)

σ

)

φ

(√
n(s − y)

w

)

d z
∼

where φ is the probability density of standard normal distribution. Corresponding to
Formula (2.6), we may similarly consider

Vm,n,N(x, y) =
mmx−mnny−n

(m − 1)!(n − 1)!

N
∑

k=1

f(xk, yk)

∫

Dk

tm−1sn−1e−( mt
x

+ ns
y

)d z
∼

while it should be noted that Ω should only be in the first quadrant of R2, where bivariate
gamma form is defined.

Then Um,n,N(x, y) and Vm,n,N (x, y) are the proposed approximates for f(x, y) based
on the known values of f(xk, yk), 1 ≤ k ≤ N .

Theorem 3. Regarding the approximates Um,n,N(x, y) and Vm,n,N (x, y), we have

lim
(m,n)→(∞,∞)

Um,n,N(xk, yk) = f(xk, yk) = lim
(m,n)→(∞,∞)

Vm,n,N (xk, yk)

for any (xk, yk), 1 ≤ k ≤ N .

Proof. Proof for Vm,n,N can be established in similar way as the following for proving
the case of Um,n,N . According to the definition in above,

Um,n,N(xj , yj) =

N
∑

k=1

f(xk, yk)

√
mn

σw

∫

Dk

φ

(√
m(t − xj)

σ

)

φ

(√
n(s − yj)

w

)

d z
∼

=

N
∑

k=1

f(xk, yk)

∫

Em,n,j,k

φ(t′)φ(s′)d z′
∼
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where Em,n,z,k is the image of transforming Dk by t′ =
√

m(t−xj)
σ

and s′ =
√

n(s−yj)
w

for
varying k, while j is fixed. When k 6= j, 1 ≤ k ≤ N , we see that as (m, n) → (∞,∞)
all the element (t′, s′) in Em,n,j,k falls at a distance of approaching infinity from the
origin. This means that

∫

Em,n,j,k
φ(t′)φ(s′)d z′

∼
has the probability value for an area at

the extreme outskirt of standard bivariate normal distribution with zero correlation.
Therefore, when k 6= j we have

∫

Em,n,j,k

φ(t′)φ(s′)d z′
∼
→ 0 as (m, n) → (∞,∞)

On the other hand, when k = j we can see that as (m, n) → (∞,∞) Em,n,j,k extend out
on both components to the full support of standard bivariate normal distribution with
zero correlation. Therefore, when k = j we have

∫

Em,n,j,k

φ(t′)φ(s′)d z
∼
→ 1 as (m, n) → (∞,∞)

By summarizing the above results, we then have

lim
(m,n)→(∞,∞)

Um,n,N(xj , yj) =

N
∑

k=1

f(xk, yk) lim
(m,n)→(∞,∞)

∫

Em,nj,k

φ(t′)φ(s′)d z′
∼

= f(xj , yj) · 1 = f(xj , yj)

which completes the proof for Um,n,N .
It is apparent that Theorem 3 gives the assurance of consistency that the approximates

of f(x, y) at (x, y) = (xk, yk) (1 ≤ k ≤ N) obtained by using the bivariate normal
form or bivariate gamma form shall equal the originally given f(xk, yk)’s when we let
(m, n) → (∞,∞).

4. Some Example with Error Bounds

For the purpose of actually feeling about the performance of the proposed bivariate
approximation forms, we selectively show heretofore a few examples with error bounds
provided.

(1) Example 1: f(x, y) = xy, x ≥ 0 and y ≥ 0.
We take bivariate Bernstein form. Then it gives

Am,n(x, y) =
∑

0≤i≤m

0≤j≤n

it

m

js

n

(

m

i

)(

n

j

)(

x

t

)i(

1 − x

t

)m−i(

1 − y

s

)j(

1 − y

s

)n−j

=
ts

mn
· mx

t
· ny

s
= xy = f(x, y)

which is in line with the assertion of Theorem 1.
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(2) Example 2: f(x, y) = e−(x+y) for x ≥ 0, y ≥ 0.
The second derivatives are all bounded by C = 1 everywhere in the defined domain.
We take bivariate Poisson form. Then, by the fact that f is convex in both x and
y, Theorem 2 implies

∑

0≤i,j<∞
e−( i

m
+ j

n
) (mx)i(ny)j

i!j!
e−(mx+ny) − 1

2

(

x

m
+

y

n
+ 2

√

xy

mn

)

≤ e−(x+y) ≤
∑

0≤i,j<∞
e−( i

m
+ j

n
) (mx)i(ny)j

i!j!
e−(mx+ny)

(3) Example 3: f(x, y) =
1

(1 + x)(1 + y)
for x ≥ 0 and y ≥ 0.

It is obvious that the second derivatives are all bounded by C = 2 on the defined
domain, and that f(x, y) is convex in both x and y. Therefore by taking bivariate
normal form and by Theorem 2, we have

√
mn

2πσw

∫ ∞

−∞

∫ ∞

−∞

1

(1 + t)(1 + s)
e−

1
2 [

m(t−x)2

σ2 +
n(s−y)2

w2 ]dtds −
(

σ2

m
+

w2

n
+ 2

σw√
mn

)

≤ 1

(1 + x)(1 + y)
≤

√
mn

2πσw

∫ ∞

−∞

∫ ∞

−∞

1

(1 + t)(1 + s)
e−

1
2 [

m(t−x)2

σ2 +
n(s−y)2

w2 ]dtds
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