A REFINEMENT OF HÖLDER'S INTEGRAL INEQUALITY

ZHENG LIU

Abstract. The purpose of this note is to show that there is monotonic continuous function p(t) such that

$$\int_a^b \left(\prod_{i=1}^n f_i(x)\right) dx \le p(t) \le \prod_{i=1}^n \left(\int_a^b f_i^{r_i}(x) dx\right)^{\frac{1}{r_i}},$$

where f_1, f_2, \ldots, f_n are real positive continuous functions on [a, b] and r_1, r_2, \ldots, r_n are real positive numbers with $\sum_{i=1}^{n} \frac{1}{r_i} = 1$.

It is well known that if f_1, f_2, \ldots, f_n are real positive continuous functions on [a, b]and r_1, r_2, \ldots, r_n are real positive numbers with $\sum_{i=1}^n \frac{1}{r_i} = 1$ then we have the Hölder's integral inequality

$$\int_a^b \left(\prod_{i=1}^n f_i(x)\right) dx \le \prod_{i=1}^n \left(\int_a^b f_i^{r_i}(x) dx\right)^{\frac{1}{r_i}},$$

with equality holding if and only if $f_1^{r_1}, f_2^{r_2}, \ldots, f_n^{r_n}$ are effectively proportional.

Our aim is to give a continuous strictly increasing function p(t) on [0, 1] such that

$$\int_{a}^{b} \left(\prod_{i=1}^{n} f_i(x)\right) dx \le p(t) \le \prod_{i=1}^{n} \left(\int_{a}^{b} f_i^{r_i}(x) dx\right)^{\frac{1}{r_i}}.$$
(1)

for all $t \in [0, 1]$.

Lemma.([1]) Let f and g be increasing functions on $[0, +\infty)$. Let v and h be non-negative measurable functions, and let a and b, a < b, be real numbers. Then

$$\int_{a}^{b} f(v(t))g(v(t))h(t)dt \int_{a}^{b} h(t)dt \ge \int_{a}^{b} f(v(t))h(t)dt \int_{a}^{b} g(v(t))h(t)dt.$$
(2)

Remark. By Theorem 10 of 2.5 in [2], we see that equality holds in (2) if and only if v(t) is a constant.

Received July 1, 2002.

2000 Mathematics Subject Classification. 26D15.

Key words and phrases. Hölder's integral inequality, refinement, strictly increasing function.

383

Theorem. Let f_1, f_2, \ldots, f_n be real positive continuous functions on [a, b]. Let r_1, r_2, \ldots, r_n be real positive numbers with $\sum_{i=1}^n \frac{1}{r_i} = 1$. Define a function p by

$$p(t) = \prod_{k=1}^{n} \left\{ \int_{a}^{b} \left[\prod_{i=1}^{n} f_{i}(x) \right]^{1-t} [f_{k}^{r_{k}}(x)]^{t} dx \right\}^{\frac{1}{r_{k}}}, \quad t \in (-\infty, +\infty).$$
(3)

Then $p'(t) \ge 0$ for t > 0, $p'(t) \le 0$ for t < 0, and p'(t) = 0 if and only if t = 0 or $f_1^{r_1}$, $f_2^{r_2}, \ldots, f_n^{r_n}$ are effectively proportional.

Proof. It is easy to find that for each $x \in [a, b]$ we have

$$\sum_{k=1}^{n} \frac{1}{r_k} \log \frac{f_k^{r_k}(x)}{\prod_{i=1}^{n} f_i(x)} = \sum_{k=1}^{n} \frac{1}{r_k} \left[r_k \log f_k(x) - \sum_{i=1}^{n} \log f_i(x) \right] = 0,$$

and hence

$$\sum_{k=1}^{n} \frac{1}{r_k} \int_a^b \left(\prod_{i=1}^n f_i(x) \right) \log \frac{f_k^{r_k}(x)}{\prod_{i=1}^n f_i(x)} dx = 0.$$
(4)

Let $g(x) = \prod_{i=1}^{n} f_i(x)$, $h_k(x) = \frac{f_k^{r_k}(x)}{g(x)}$, k = 1, 2, ..., n. Then g(x) and $h_1(x)$, $h_2(x), ..., h_n(x)$ are all real positive continuous functions on [a, b] and we can write (3) as

$$p(t) = \prod_{k=1}^{n} \left[\int_{a}^{b} g(x) h_{k}^{t}(x) dx \right]^{\frac{1}{r_{k}}}.$$

Let $P(t) = \log p(t)$. Observe that (4) can write as

$$\sum_{k=1}^{n} \frac{1}{r_k} \int_{a}^{b} g(x) \log h_k(x) dx = 0,$$

We obtain

$$\begin{split} P'(t) &= \frac{p'(t)}{p(t)} = \sum_{k=1}^{n} \frac{1}{r_k} \frac{\int_a^b g(x) h_k^t(x) \log h_k(x) dx}{\int_a^b g(x) h_k^t(x) dx} \\ &= \sum_{k=1}^{n} \frac{1}{r_k} \frac{\int_a^b g(x) h_k^t(x) \log h_k(x) dx}{\int_a^b g(x) h_k^t(x) dx} - \sum_{k=1}^{n} \frac{1}{r_k} \frac{\int_a^b g(x) \log h_k(x) dx}{\int_a^b g(x) dx} \\ &= \sum_{k=1}^{n} \frac{1}{r_k} \frac{\int_a^b g(x) h_k^t(x) \log h_k(x) dx \int_a^b g(x) dx - \int_a^b g(x) h_k^t(x) dx \int_a^b g(x) \log h_k(x) dx}{\int_a^b g(x) dx \int_a^b g(x) dx \int_a^b g(x) h_k^t(x) dx} \end{split}$$

Consequently, the results follow from the lemma and its remark.

384

Corollary. Let f_1, f_2, \ldots, f_n be real positive continuous functions on [a, b]. Let r_1, r_2, \ldots, r_n be real positive numbers with $\sum_{i=1}^n \frac{1}{r_i} = 1$. Then the function p defined by (3) has the following properties:

- (i) p(t) is continuous strictly increasing for $t \ge 0$ and continuous strictly decreasing for t < 0 or a constant.
- (ii) p(t) is a constant if and only if $f_1^{r_1}, f_2^{r_2}, \ldots, f_n^{r_n}$ are effectively proportional.
- (iii) $p(0) = \int_a^b (\prod_{i=1}^n f_i(x)) dx$ and $p(1) = \prod_{i=1}^n (\int_a^b f_i^{r_i}(x) dx)^{\frac{1}{r_i}}$. (iv) The inequalities (1) are valid for all $t \in [0, 1]$ with equalities holding if and only if $f_1^{r_1}, f_2^{r_2}, \ldots, f_n^{r_n}$ are effectively proportional.

References

- [1] D. S. Mitrinovic, J. E. Pecărić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
- [2] D. S. Mitrinovic, Analytic Inequalities, Springer Verlag, Berlin-Heidelberg-New York, 1970.

Institute of Applied Mathematics, Faculty of Science, Anshan University of Science and Technology, Anshan 114044, Liaoning, P. R. China.