TAMKANG JOURNAL OF MATHEMATICS
Volume 34, Number 4, Winter 2003

A REFINEMENT OF HOLDER’S INTEGRAL INEQUALITY

ZHENG LIU

Abstract. The purpose of this note is to show that there is monotonic continuous function p(t)

such that .\
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where f1, fa2,..., fn are real positive continuous functions on [a, b] and r1, ra2,...,7r, are real

positive numbers with Zn L L =1
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It is well known that if f1, fa,..., f, are real positive continuous functions on [a, b]
and rq, ra,..., 7, are real positive numbers with Z?zl Ti = 1 then we have the Holder’s
integral inequality
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with equality holding if and only if fi*, f32,..., fim are effectively proportional.
Our aim is to give a continuous strictly increasing function p(t) on [0, 1] such that
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for all t € [0,1].
Lemma.([1]) Let f and g be increasing functions on [0,+00). Let v and h be non-
negative measurable functions, and let a and b, a < b, be real numbers. Then
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Remark. By Theorem 10 of 2.5 in [2], we see that equality holds in (2) if and only
if v(¢) is a constant.
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Theorem. Let f1, fo,..., fn be real positive continuous functions on [a,b]. Let 71,
Ta, ,Tn be real positive numbers with Z =1.
Deﬁne a function p by
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Then p'(t) > 0 fort > 0, p/'(t) <0 fort <0, and p'(t) = 0 if and only if t =0 or f]*,
22, .., [in are effectively proportional.

Proof. It is easy to find that for each x € [a, b] we have
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Let g(z) = [T, file), hu(e) = 28 k=12, 0
Then g(z) and hi(x), ha(z),...,hs(x) are all real positive continuous functions on

[a,b] and we can write (3) as
n T b [
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Let P(t) = logp(t). Observe that (4) can write as

Z / ) log hy(x)dz = 0,

We obtain
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Consequently, the results follow from the lemma and its remark.
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Corollary. Let f1, fa,..., fn be real positive continuous functions on [a,b]. Let rq,
ro,...,Tn be real positive numbers with 2?21 Ti = 1. Then the function p defined by (3)
has the following properties:

(i) p(¢) is continuous strictly increasing for t > 0 and continuous strictly decreasing
fort <0 or a constant.
(ii) p(t) is a constant if and only if fi*, f32,..., fin are effectively proportional.
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(iii) p(0) = fa ([T~ fi(z))dz and p(1) = Hi:l(fa fii(z)dx)™.

(iv) The inequalities (1) are valid for all t € [0,1] with equalities holding if and only if
1Y f32, . fin are effectively proportional.
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