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TAUBERIAN THEOREMS FOR STATISTICAL CONVERGENCE

ERDAL GÜL AND MEHMET ALBAYRAK

Abstract. The Tauberian theorems for statistical limitable method are proved by both

Fridy and Khan [2] and Móricz [10]. Here we generalize these theorems to (C; i) statistical

limitable method.

1. Introduction

Let S be a subset of an ordered set of R or C numbers. Consider the set

S(n) := {i ≤ n|i ∈ S}.

We say thatS has density D(S), if the limit

D(S) := lim
n→∞

|S(n)|
n +1

,

exists. Here |S(n)| means the cardinality of the set S(n).

Let (un) be a sequence in S and consider the set

Sε(ℓ) := {k ∈ S : |uk −ℓ| ≥ ε}

for every ε> 0 and k = 0,1,2,3.... Hence D(Sε(ℓ)) denotes the density of the set Sε(ℓ).

Definition 1.1. A sequence u = (un) of real (or complex) numbers is said to be statistically

convergent to ℓ if D(Sε(ℓ)) = 0 for every ε> 0 and we write st-lim un = ℓ.

For i ∈N and n ∈N
∗, define

σi
n(u)=











1

n +1

n
∑

k=0

σi−1
k (u) if i ≥ 1,

un if i = 0.

Received Januery 22, 2017, accepted June 6, 2017.
2010 Mathematics Subject Classification. 40E05, 40G05, 40G10.
Key words and phrases. Statistical convergence, Tauberian theorems, slowly oscillating.
Corresponding author: Erdal Gül.

321

http://dx.doi.org/10.5556/j.tkjm.48.2017.2406


322 ERDAL GÜL AND MEHMET ALBAYRAK

Definition 1.2. We say that a sequence u = (un) is statistically summable (C,i) to ℓ for all i ∈N

if

st − limσi
n(u)= ℓ.

By [11], it is known that a sequence (un) of real (or complex) numbers is slowly oscillating

if for any given ε> 0, there exists δ=δ(ε) > 0 and N = N (ε) such that

|um −un| < ε if n ≥ N (ε) and n ≤ m ≤ (1+δ)n,

and a sequence (un) of real numbers is slowly deacreasing if

liminf(um −un) ≥ 0 whenever m > n →∞,
m

n
→ 1.

By [8], we say that a sequence (un) is statistically slowly decreasing if for each ε> 0,

inf
λ>1

limsup
N→∞

1

N +1

∣

∣

∣

∣

{

n ≤ N : min
n<m≤λn

(um −un) ≤−ε
}∣

∣

∣

∣

= 0,

or equivalently

inf
0<λ<1

limsup
N→∞

1

N +1

∣

∣

∣

∣

{

n ≤ N : min
λn<m≤n

(un −um) ≤−ε
}
∣

∣

∣

∣

= 0

and also, (un) is statistically slowly oscillating if for each ε> 0,

inf
λ>1

limsup
N→∞

1

N +1

∣

∣

∣

∣

{

n ≤ N : max
n<m≤λn

|um −un| ≥ ε)

}∣

∣

∣

∣

= 0,

or equivalently

inf
0<λ<1

limsup
N→∞

1

N +1

∣

∣

∣

∣

{

n ≤ N : max
λn<m≤n

|un −um | ≥ ε)

}∣

∣

∣

∣

= 0.

Definition 1.3 ([3]). A sequence (un ) of real numbers is called Abel convergent (or Abel summable)

to ℓ if the series Σ∞
k=0uk xk is convergent for 0 ≤ x < 1 and

lim
x→1−

(1−x)
∞
∑

k=0

uk xk = ℓ.

In this case, we write Abel − lim un = ℓ.

Moreover, by [5], the sequence (un) is Borel summable to ℓ provided that

lim
t→∞

e−t
∞
∑

k=0

uk t k

k !
= ℓ.

Consider the summability matrix B∗ = (bnk ) is given by

bnk = e−nnk

k !
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and the Abel matrix Aλ = [ai j ] associated with a strictly increasing sequence λ= (λn) of real

number with λ0 ≥ 1 is defined by

ai j =
1

λi

(

1−
1

λi

) j
, j = 0,1,2, . . . .

It will be convenient for us to extendλ to be defined over the interval [1,∞) by making it linear

and continuous over [ j , j +1] for j = 1,2, . . . .

By [7], a sequence of real (or complex) numbers (un) is said to be summable (L,1) to ℓ if

limϕn = ℓ where

τn(u) = 1

hn

n
∑

k=1

uk

k
and hn =

n
∑

k=1

1

k
∼ log n, n = 1,2,3, . . . .

Throughout this paper, the symbols ∆un = un −un−1 = o(1) and un = O(1) mean that

un → 0 as n →∞ and that (un) is bounded for large enough n, respectively.

Theorem 1.4 ([2], [9], [10]). With preceding notation, we have:

(1) If st-limσ1
n(u) = ℓ and n∆un = n(un −un−1) =O(1) then lim un = ℓ.

(2) If st-limun = ℓ or st-limσ1
n(u)= ℓ and n∆un ≥−c for a positive number c then lim un = ℓ.

(3) Let λn be a strictly increasing sequence of real numbers tends to infinity such that

lim
δց0

lim
n

λn+δn

λn
= 1.

If st-lim Aλun = ℓ and (un) satisfies the slow decrease condition, then lim un = ℓ.

(4) Let B∗ be the Borel summability matrix associated with (un) such that satisfies (B∗) st-

lim B∗un = ℓ and ∆un =O( 1p
n

), then lim un = ℓ.

(5) If st- limτn(u) = ℓ and (un) slowly decreasig then limun = ℓ.

(6) If st- lim un = ℓ and (un) slowly decreasig then lim un = ℓ.

Now, we will prove that the hypothesis st-limσ1
n(u) = ℓ and st-lim Aλun = ℓ can be re-

placed by st-limσi
n(u) = ℓ and st-lim Aλσ

i
n(u) = ℓ. Similarly, the hypothesis st-lim un = ℓ and

st- limτn(u) = ℓ can be replaced by st-limσi
n(u) = ℓ and st- limτn(σi

n(u)) = ℓ. Moreover we

prove a different formulation of (2) above. Before proving our statements, we recall more re-

sults that we will need in the sequel.

Theorem 1.5 ([8], [11],[10]).

(i) Let a sequence (un) of real numbers be statistically slowly decreasing. Then

st − limσ1
n(u)= ℓ implies st − lim un = ℓ.
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(ii) Let a sequence (un) of complex numbers be statistically slowly oscillating. Then

st − limσ1
n(u) = ℓ implies st − lim un = ℓ.

(iii) Let a sequence (un) of real numbers be slowly decreasing. Then

Abel − lim un = ℓ implies lim un = ℓ.

(iv) If st- limun = ℓ and (un) slowly decreasing, then lim un = ℓ.

(v) If st- limun = ℓ and (un) slowly oscillating, then lim un = ℓ.

2. Main results

Lemma 2.1. If (un) is slowly oscillating then (σi
n(u)) for all i ≥ 1 is slowly oscillating.

Proof. By hypothesis, since (un) is slowly oscillating we write |um−un | ≤ ε whenever m > n →
∞, m

n → 1. Hence, we have |um −un | = |∑m
k=n+1∆uk | ≤ ε. We claim that (σi

n(u)) for all i ≥ 1 is

slowly oscillating that is |σi
m(u)−σi

n(u)| ≤ ε whenever m > n →∞, m
n → 1. We will prove this

by using mathematical induction. We show that our claims true for i = 1.

|σ1
m(u)−σ1

n(u)| =
∣

∣

∣

m
∑

k=n+1

(σ1
k (u)−σ1

k−1(u))
∣

∣

∣=
∣

∣

∣

m
∑

k=n+1

k

k

{ 1

k

k
∑

p=1
up −

1

k −1

k−1
∑

p=1
up

}∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

{

k −1
k
∑

p=1
up −k

k−1
∑

p=1
up

}∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

{

(k −1)up −
k−1
∑

p=1
up

}∣

∣

∣=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1
(uk −up )

∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1

k
∑

j=p+1

∆u j

∣

∣

∣≤
m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1

∣

∣

∣

k
∑

j=p+1

∆u j

∣

∣

∣

≤
m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1
ε= ε

m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1
= ε

m
∑

k=n+1

1

(k −1)k
(k −1)

= ε
m
∑

k=n+1

1

k
= ε

( 1

n +1
+

1

n +2
+·· ·+

1

m

)

≤ ε
( 1

n
+

1

n
+·· ·+

1

n

)

= ε
m −n

n
= ε

(m

n
−1

)

≤ ε, by
m

n
→ 1.

Assume that it is true for i = t −1, and we will prove that it is true for i = t . By assumption,

since (σt−1
n (u)) is slowly oscillating we write |σt−1

m (u)−σt−1
n (u)| ≤ ε whenever m > n → ∞,

m
n → 1. Hence, we have

|σt−1
m (u)−σt−1

n (u)| =
∣

∣

∣

m
∑

k=n+1

σt−1
n (u)

∣

∣

∣≤ ε. For i = t ,
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|σt
m(u)−σt

n(u)| =
∣

∣

∣

m
∑

k=n+1

(σt
k (u)−σt

k−1(u))
∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

k

k

{ 1

k

k
∑

p=1
σt−1

p (u)− 1

k −1

k−1
∑

p=1
σt−1

p (u)
}
∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

{

k −1
k
∑

p=1
σt−1

p (u)−k
k−1
∑

p=1
σt−1

p (u)
}
∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k
{(k −1)σt−1

p (u)−
k−1
∑

p=1
σt−1

p (u)}
∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1
(σt−1

k (u)−σt−1
p (u))

∣

∣

∣

=
∣

∣

∣

m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1

k
∑

j=p+1

∆σt−1
j (u)

∣

∣

∣≤
m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1

∣

∣

∣

k
∑

j=p+1

∆σt−1
j (u)

∣

∣

∣

≤
m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1
ε= ε

m
∑

k=n+1

1

(k −1)k

k−1
∑

p=1
= ε

m
∑

k=n+1

1

(k −1)k
(k −1)

= ε
m
∑

k=n+1

1

k
= ε

( 1

n +1
+ 1

n +2
+·· ·+ 1

m

)

≤ ε
( 1

n
+ 1

n
+·· ·+ 1

n

)

= ε
m −n

n
= ε

(m

n
−1

)

≤ ε, by
m

n
→ 1.

Thus proof is done. ���

Lemma 2.2. If (un) is slowly decreasing then (σi
n(u)) for all i ≥ 1 is slowly decreasing.

Proof. Proof is similar to one of Lemma 2.1. ���

Lemma 2.3. If (un) is slowly decreasing then (σi
n(u)) for all i ≥ 1 is statistically slowly decreas-

ing.

Proof. By Lemma 2.2, as (un) is slowly decreasing (σi
n(u)) for all i ≥ 1 is slowly decreasing.

Since (σi
n(u)) is slowly decreasing we write for large enough n, n > N1, and

σi
m(u)−σi

n(u) =
m
∑

k=n+1

∆σi
k (u)≥−ε, whenever m > n →∞,

m

n
→ 1.

Since for N1 < n < m ≤λn , for N > N1 the set

{N1 < n ≤ N : min
n<m≤λn

(σi
m(u)−σi

n(u)) ≤−ε}

is empty. It follows that (σi
n (u)) is statistically slowly decreasing. ���

Lemma 2.4. If (un) is slowly oscillating then (σi
n(u)) for all i ≥ 1 is statistically slowly oscillat-

ing.
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Proof. Proof is similar to one of Lemma 2.3. ���

The following theorem generalizes (1) above which is given by Fridy and Khan in [2].

Theorem 2.5. If st − limσi
n(u) = ℓ and n∆un =O(1) then limun = ℓ.

Proof. If n∆un = O(1) for a positive number c then n∆σi
n(u) = O(1); we will this by using

mathematical induction. For i = 1 and n > 1,

n∆σ1
n(u) = n

{ 1

n

n
∑

k=1

uk −
1

n −1

n−1
∑

k=1

uk

}

=
1

n −1

{

n −1
n
∑

k=1

uk −n
n−1
∑

k=1

uk

}

=
1

n −1

{

(n −1)uk −
n−1
∑

k=1

uk

}

=
1

n −1

n−1
∑

k=1

(un −uk ) =
1

n −1

n−1
∑

k=1

n
∑

j=k+1

∆u j

=
1

n −1

n
∑

j=2

( j −1)∆u j =
1

n −1

n
∑

j=2

O(1) =O(1).

Assume that it is true for i = t−1, and we prove that it is true for i = t . By assumption, we write

n∆σt−1
n (u) =O(1). For i = t and n > 1,

n∆σt
n(u) = n

{ 1

n

n
∑

k=1

σt−1
k (u)−

1

n −1

n−1
∑

k=1

σt−1
k (u)

}

= 1

n −1

{

n −1
n
∑

k=1

σt−1
k (u)−n

n−1
∑

k=1

σt−1
k (u)

}

= 1

n −1

{

(n −1)σt−1
k (u)−

n−1
∑

k=1

σt−1
k (u)

}

= 1

n −1

n−1
∑

k=1

(σt−1
n (u)−σt−1

k (u)) = 1

n −1

n−1
∑

k=1

n
∑

j=k+1

∆σt−1
j (u)

= 1

n −1

n
∑

j=2

( j −1)∆σt−1
j (u) = 1

n −1

n
∑

j=2

O(1) =O(1).

Hence, we have n∆σi−1
n (u)=O(1) is a Tauberian condition for statistical convergence. There-

fore, st-limσi
n(u) = ℓ implies that limσi−1

n (u) = ℓ. By the fact that every sequence (C,i-1)

limitable is (C,i-1) statistical limitable, we have st- limσi−1
n (u) = ℓ. From this it follows that

st − limσ1
n(u) = ℓ. By (1) above, one obtains lim un = ℓ. ���

The following theorem extends (2) above.

Theorem 2.6. If st −limσi
n(u)= ℓ and n∆un ≥−c for a positive number c and for every n, then

lim un = ℓ.

Proof. If n∆un ≥ −c for a positive number c satifies then satisfies n∆σi
n(u) ≥ −c ; for, by the

proof of Theorem 2.5,

n∆σi
n(u) = 1

n −1

n
∑

j=2

( j −1)∆σi−1
j (u) ≥ −(n −1)c

n −1
=−c.
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So by (ii) above, limσi−1
n (u) = ℓ. By the fact that every sequence (C,i-1) limitable is (C,i-1) sta-

tistical limitable, we have st- limσi−1
n (u) = ℓ. Continuing in this way, we obtain st−limσ1

n(u)=
ℓ. By (ii) above, lim un = ℓ. ���

Theorem 2.7 extends the (6) above which is given by Móricz [10].

Theorem 2.7. Let (un) be a sequence for real numbers be slowly decreasing. Then

st − limσi
n(u)= ℓ ⇒ st − lim un = ℓ ⇒ lim un = ℓ.

Proof. By Lemma 2.3, as (un) is slowly decreasing (σi−1
n (u)) for all i ≥ 1 is statistically slowly

decreasing. Since σi
n(u) is statistically convergence to ℓ, st − limσi−1

n (u) = ℓ, by (i) above. It

follows that (σi−2
n (u)) is statistically slowly decreasing st − limσi−2

n (u) = ℓ. Continuing in this

way, we obtain st−limσ1
n(u)= ℓ. By (i) above, st−limun = ℓ. Furthermore, since (un) is slowly

decreasing, lim un = ℓ by (iv) above. ���

Corollary 2.8. If st − limσi
n(u)= ℓ and n∆un ≥−c for a positive number c then lim un = ℓ.

Proof. The condition n∆un ≥ −c for some c > 0 implies that (un) is slowly decreasing (See

[8]). Thus the proof follows immediately from Theorem 2.7. ���

Note that, if the sequence (un) is bounded and statistically slowly decreasing, we obtain

an analogue to (i).

Corollary 2.9. Let (un) be a sequence of real numbers which is statistically slowly decreasing

and bounded. Then

st − limσi
n(u)= ℓ implies st − lim un = ℓ.

Proof. The proof is similar to one of Theorem 2.7. ���

Remark 2.10. Theorem 2.7 remains true if the term ”decreasing” is replaced by ”increasing.”

Furthermore, condition where (un) is slowly increasing [8] can be replaced if there exists a

positive constant c such that n∆un ≤ c for all n large enough. Thus, we give a Tauberian

condition for the sequences of complex numbers in connection (2) above and the following

theorem extends the result of Móricz in [10].

Theorem 2.11. Let (un) be a sequence for complex numbers which is slowly oscillating. Then

st − limσi
n(u)= ℓ ⇒ st − lim un = ℓ ⇒ lim un = ℓ.
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Proof. By Lemma 2.1, as (un) is slowly oscillating, (σi−1
n (u)) for all i ≥ 1 is slowly oscillating.

This by Lemma 2.4 implies that (σi−1
n (u)) is statistically slowly oscillating. Since σi

n(u) is sta-

tistically convergent to ℓ, we have st−limσi−1
n (u) = ℓ, by (ii) above. If we continue in that way,

we obtain st − limσ1
n(u) = ℓ. By (ii) above, st − lim un = ℓ. Furthermore, since (un) is slowly

oscillating, we have lim un = ℓ by (v) above. ���

Remark 2.12. The condition n∆un =n(un−un−1) =O(1) implies that (un) is slowly oscillating

[8]. Thus, Theorem 2.11 generalizes (1) above which is given by Fridy and Khan [2].

Corollary 2.13. If st − limσi
n(u)= ℓ and n∆un =O(1) then lim un = ℓ.

Proof. The proof is obvious from Theorem 2.11. ���

Note that, if the sequence (un) is bounded and statistically slowly decreasing, we obtain

an analogue to (ii).

Corollary 2.14. Let (un) be a sequence of complex numbers which is statistically slowly oscil-

lating and bounded. Then

st − limσi
n(u) = ℓ implies st − lim un = ℓ.

Proof. The proof is clear after Theorem 2.11. ���

Our next theorem generalizes (3) above.

Theorem 2.15. Let λn be a strictly increasing sequence of real numbers tends to infinity such

that

lim
δց0

lim
n

λn+δn

λn
= 1.

If the sequence (σi
n(u)) satisfies st-lim Aλσ

i
n(u)= ℓ and (un) satisfies the slowly decreasing con-

dition, then lim un = ℓ.

Proof. By Lemma 2.2 slowly decreasing of u = (un) implies slowly decreasing of (σi
n(u)) for

all i ≥ 1. By Lemma 2.2 in [2], we see that (Aλσ
i
n(u)) obeys slowly decreasing Tauberian con-

dition. By (2) above, we have lim Aλσ
i
n(u) = ℓ. Theorem 5 in [1] implies that σi

n(u) is Abel

summable to ℓ. Since Abel − limσi
n(u)= ℓ, limσi

n(u) = ℓ, by (iii) above. By the fact that every

sequence (C,i) limitable is (C,i) statistical limitable, we have st- limσi
n(u) = ℓ. Since (un) is

slowly decreasing, lim un = ℓ, by Theorem 2.7. ���

We now give Tauberian theorem for Borel summability.

Theorem 2.16. If the sequence (un) satisfies (B∗) st-limB∗σi
n(u) = ℓ and ∆un = O( 1

n ), then

lim un = ℓ.
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Proof. ∆un = O( 1
n ) implies both ∆un = O( 1p

n
) and ∆σi

n(u) = O( 1p
n

). By Lemma 3.1 in [2],

we obtain ∆B∗σi
n(u) = O( 1p

n
), which allows us to apply (4) above that limσi

n(u) = ℓ. By the

fact that every sequence (C, 1) limitable is Abel limitable, we have Abel − limσi−1
n (u) = ℓ.

By the proof of Theorem 2.5, ∆un = O( 1
n ) implies ∆σi−1

n (u) = O( 1
n ). Since (σi−1

n (u)) is Abel

summability to ℓ, limσi−1
n (u) = ℓ by Hardy’s theorem in [4]. Continuing in this way, we have

Abel − lim un = ℓ. By Hardy’s theorem in [4], lim un = ℓ. ���

Our last result generalizes (5) above which is given by Móricz [10].

Theorem 2.17. If (σi
n(un)) is statistical summable (L, 1) to ℓ and (un) is slowly decreasig then

lim un = ℓ.

Proof. By Lemma 2.2, as (un) is slowly decreasing (σi
n(u)) for all i ≥ 1 is slowly decreasing.

Since (σi
n(u)) is statistical summable (L,1), limσi

n(u) = ℓ, by theorem (5) above. By the fact

that every sequence (C,i) limitable is (C,i) statistical limitable, we have st- limσi
n(u)= ℓ. Since

(un) is slowly decreasing, lim un = ℓ, by Theorem 2.7. ���

Corollary 2.18. Let (un) be a sequence of complex numbers. If (σi
n (un)) is statistical summable

(L,1)and (un) is slowly oscillating, then lim un = ℓ.

Proof. It’s proof is similar to one of Theorem 2.17. ���
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