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TAUBERIAN THEOREMS FOR STATISTICAL CONVERGENCE

ERDAL GUL AND MEHMET ALBAYRAK

Abstract. The Tauberian theorems for statistical limitable method are proved by both
Fridy and Khan [2] and Méricz [10]. Here we generalize these theorems to (C; i) statistical
limitable method.

1. Introduction

Let S be a subset of an ordered set of R or C numbers. Consider the set
S(n):={i <nlieS}.
We say thatS has density D(S), if the limit

D(S) = lim 22!
n—oo n+1

exists. Here |S(n)| means the cardinality of the set S(n).
Let (1) be a sequence in S and consider the set

Se(0):={keS:|u—¢|=¢}
foreverye >0and k=0,1,2,3.... Hence D(S.(¢)) denotes the density of the set S.(¢).

Definition 1.1. A sequence u = (u,) of real (or complex) numbers is said to be statistically
convergent to ¢ if D(S.(¢)) = 0 for every € > 0 and we write st-lim u,, = ¢.

For i e Nand n € N*, define

n .
o tw) if i=1,

ol(wy=4"*+1iZ

Up if i=0.
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Definition 1.2. We say that a sequence u = (u,,) is statistically summable (C,i) to ¢ forall i € N
if
st —limaﬁl(u) =/.

By [11], it is known that a sequence (u,,) of real (or complex) numbers is slowly oscillating
if for any given € > 0, there exists 0 = d(€) > 0 and N = N(¢g) such that

i —uyl<e if n=N(E and n<=m<1+0)n,
and a sequence (u,) of real numbers is slowly deacreasing if
. m
liminf(u,, — u,;) =0 whenever m>n—oo, — — 1.

n

By [8], we say that a sequence (uy,) is statistically slowly decreasing if for each € > 0,

1
inf limsup {nsN: min (um—un)s—e} =0,
A>1 Nooo 1 n<m<A,
or equivalently
1
inf limsu n<N: min (up—uy)<-e/=0
0<A<1 N_,oop 1 { /1,,<msn( " m) }

and also, (u,,) is statistically slowly oscillating if for each € > 0,

1
inf limsup {nSN: max Ium—un|zg)H:0,
A>1 Neoo 1 n<ms<A,
or equivalently
1
inf limsup {nSN: max Iun—um|zg)H:0_
0<A<1l N—oo 1 An<msn

Definition 1.3 ([3]). Asequence (u,) of real numbersis called Abel convergent (or Abel summable)

k

to ¢ if the series X7 (ux" is convergent for 0 < x <1 and

o0
lim (1-x) ) upxk=2¢.
x—1- k=0

In this case, we write Abel —lim u,, = ¢.

Moreover, by [5], the sequence (u,,) is Borel summable to ¢ provided that

) Xy tk
lim e ! Z k2 _ l.
[—o0 k=0 k!

Consider the summability matrix B* = (b,,;) is given by

e "nk
k!

bur =
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and the Abel matrix Ay = [a; ;] associated with a strictly increasing sequence A = (1) of real
number with 1y = 1 is defined by

T VA
aj=—(1-=), i=012...

It will be convenient for us to extend A to be defined over the interval [1,00) by makingit linear
and continuous over [j, j+1] for j =1,2,....

By [7], a sequence of real (or complex) numbers (u,,) is said to be summable (L, 1) to ¢ if
lim¢g, = ¢ where

n

1
() = %t and hy,=) —~logn, n=123,....
w0 k

1
hnk

Throughout this paper, the symbols Au, = u, — u,—1 = 0o(1) and u, = O(1) mean that

u, — 0 as n — oo and that (u,) is bounded for large enough n, respectively.

Theorem 1.4 ([2], [9], [10]). With preceding notation, we have:
(@) Ifst—lima},(u) =¢ and nAu, =n(u, —u,-1) = 0Q1) thenlimu,, =¢.
(2) Ifst-limuy, = ¢ or stlimol, (u) = £ and nAu,, > —c for a positive number c thenlimu,, = ¢.

(3) Let A, be a strictly increasing sequence of real numbers tends to infinity such that

A
lim lim non 1.
NO Ay

If st-lim Ay u,, = ¢ and (u,) satisfies the slow decrease condition, thenlimu, = ¢.
(4) Let B* be the Borel summability matrix associated with (u,) such that satisfies (B*) st-
limB*u, =¥¢ and Au,, = O(ﬁ), thenlimu,, = ¢.
(5) Ifst-limt,(u) = ¢ and (uy) slowly decreasig thenlimu, = ¢.

(6) Ifst-limuy, = ¢ and (uy,) slowly decreasig thenlimu,, = ¢.

Now, we will prove that the hypothesis st-limo,(«) = ¢ and st-lim Ay u,, = ¢ can be re-
placed by st-limo (1) = ¢ and st-lim Ay o, (1) = ¢. Similarly, the hypothesis st-lim u,, = ¢ and
st- lim 7, (1) = ¢ can be replaced by st-limo (1) = ¢ and st- lim7, (0, (1)) = £. Moreover we
prove a different formulation of (2) above. Before proving our statements, we recall more re-
sults that we will need in the sequel.

Theorem 1.5 ([8], [11],[10]).

(i) Let asequence (uy) of real numbers be statistically slowly decreasing. Then

st—lima%(u)zf implies st—limu,=2¢.
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(i) Let a sequence (uy) of complex numbers be statistically slowly oscillating. Then
St— limo%l(u) =¢ implies st-limu,=>~¢.
(iii) Let a sequence (u,) of real numbers be slowly decreasing. Then
Abel-limu,=¢ implies limu,="~¢.

(iv) Ifst-limu, = ¢ and (u,) slowly decreasing, thenlimu,, = ¢.

) Ifst-limu, = ¢ and (u;) slowly oscillating, thenlimu,, = ¢.

2. Main results

Lemma 2.1. If (u,) is slowly oscillating then (02 (w) foralli =1 is slowly oscillating.

Proof. By hypothesis, since (u,,) is slowly oscillating we write |u,, — u,| < e whenever m > n —
oo, 7t — 1. Hence, we have |uy, — un| =X /L, | Augl < €. We claim that (UZ(u)) foralli=1is
slowly oscillating that is |0}, (1) — o/, (1)| < € whenever m > n — oo, % — 1. We will prove this
by using mathematical induction. We show that our claims true for i = 1.

ohw-ctwi=| 3 ©lw-ol w)|=| ¥ k{lfu —#kfu}'
" " k=n+1 k ko k=n+1 kle P k_lpzl g
m k k-1
-2 el 1wk L wl
m 1 k-1
) k:;ﬂ(k—nk{(k_l)u” pzup| | Zl(k 1)kz(”’“_””)'
— Au;
an:+1(k kaX:l]Xp:ﬂ | Xn: )kzl|]%:+1 ]|
3 Y 3 k-1
k%l(k ch = Z =
1 1 1 1 1 1
€k§+1 (n+1+n+2+m+E)S€(n+ﬁ+m+ﬁ)
m-—n m m
=€ p. :e(;—l)se, by ;—»1.

Assume that it is true for i = f — 1, and we will prove that it is true for i = ¢. By assumption,
since (0% () is slowly oscillating we write |0’ (1) — 07! (u)| < € whenever m > n — oo,

% — 1. Hence, we have

lottw -0l 1(u)|—| Z o 1(u)'<zs For i=t,
k=n+1
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ot w-otwi=| 3 @lw-o!_ )|
k=n+1
| k
= I )—— O't 1(u)
k:Zn:Hk{kpX::l Z H
_ i 1 {k—li l‘—]( )_kkil t—l( )}‘
BRI = R R =R
_ h -1 -1
- an:H(k Dk{(k Dok () - Za w)|
_ L t 1
gRNr= l)kZ(Uk = (u))‘
m 1 -
- Aot < Ao w)
kzn:+1 (k— l)k;;]§+l ’ k= n+1 (k— l)k Z:: ’]§+1 |
< 3 3 k-1
k;uk ch RN l)kz o 2 kY
1 1 1 1 1 1
IR e R S B PR R
m-n m m
=€ . ZE(;—I)SE by ;—»1.
Thus proof is done. O

Lemma 2.2. If(u,) is slowly decreasing then (ail (w)) foralli =1 is slowly decreasing.

Proof. Proof is similar to one of Lemma 2.1. O

Lemma 2.3. If(u,,) is slowly decreasing then (UZ(u)) foralli =1 is statistically slowly decreas-
ing.
Proof. By Lemma 2.2, as (u,) is slowly decreasing (UZ(M)) for all i = 1 is slowly decreasing.

Since (0}, (u)) is slowly decreasing we write for large enough n, n > Nj, and

oW —ohw= ) Ao (wz=-¢, wheneverm>n—»oo,;—»l.
k=n+1

Since for Ny < n<m< A, for N> Nj the set

{Ni<n<N: min (¢ (u)-0ol(w)<-e
n<m<A\A,

is empty. It follows that (o, (1)) is statistically slowly decreasing. O

Lemma 2.4. If (uy,) is slowly oscillating then (02 (w)) for alli = 1 is statistically slowly oscillat-

ing.



326 ERDAL GUL AND MEHMET ALBAYRAK

Proof. Proof is similar to one of Lemma 2.3. g
The following theorem generalizes (1) above which is given by Fridy and Khan in [2].

Theorem 2.5. Ifst—limo! (u) = ¢ and nAu, = O(1) thenlimu, = ¢.

Proof. If nAu, = O(1) for a positive number c then nAc! (1) = O(1); we will this by using
mathematical induction. Fori=1and n > 1,

nAai,(u): {”k1 1 & } _l{n—liuk_nniluk}
= — {(n l)uk_il }:n_nz‘(un_uk)—;lz_iszlﬂAuj

1 & 1 ~
—— 2 U -DAuj=—— Z 0(1) = 0(1).

j=2 j=2

Assume that it is true for i = t—1, and we prove that it is true for i = ¢. By assumption, we write
nAc’ Hu)=0(1).Fori=tand n>1,

1 n-1
nAol(u) = { Za (u)——1 o (u)}
k=1
-1
_ ! {n—lZat_l(u)—nZat_l(u)}z {(n Dot ) - Zat 1(u)}
P k &k L k &k
1 — n
=— Z(at "w -0}, (u))— Z Z Aoy
k=1 j=l+

1
— Z(j ~DAoi W) =

IZomzmu
j=2 Tlj=2

Hence, we have nAc’, ! (1) = O(1) is a Tauberian condition for statistical convergence. There-
fore, st-limafi(u) = ¢ implies that lim 02‘1(u) = /. By the fact that every sequence (C,i-1)
limitable is (C,i-1) statistical limitable, we have st- limo~!(u) = ¢. From this it follows that

st —lima},(u) =¢. By (1) above, one obtains lim u,, = ¢. O
The following theorem extends (2) above.

Theorem 2.6. Ifst—limo! (u) = ¢ and nAu, = —c for a positive number c and for every n, then
limu, ="¢.

Proof. If nAu, > —c for a positive number c satifies then satisfies nAo’,(u) = —c; for, by the
proof of Theorem 2.5,
(n—-1)c

; 1 & ) -
A L = — i — 1A l._l > — = —C.
nAc' (u) n—1]§2” )Ao ™ (u) p— c
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So by (ii) above, lim 02‘1 (u) = ¢. By the fact that every sequence (C,i-1) limitable is (C,i-1) sta-
tistical limitable, we have st- lim 02‘1 (u) = ¢. Continuing in this way, we obtain s¢—lim 0% (w) =

£. By (ii) above, lim u, = ¢. Oa
Theorem 2.7 extends the (6) above which is given by Méricz [10].

Theorem 2.7. Let (u,,) be a sequence for real numbers be slowly decreasing. Then
st—limaﬁ,(u) =¢ > st-limu,=¢ = limu,=>".

Proof. By Lemma 2.3, as (1) is slowly decreasing (az_l(u)) for all i = 1 is statistically slowly
decreasing. Since o, (1) is statistically convergence to ¢, st —limo’ ! (u) = ¢, by (i) above. It
follows that (o/2(u)) is statistically slowly decreasing st —lim o, 2(u) = ¢. Continuing in this
way, we obtain sz —lim 0% (u) = ¢. By (i) above, st—lim u, = ¢. Furthermore, since (u,) is slowly

decreasing, lim u,;, = ¢ by (iv) above. Oa

Corollary 2.8. Ifst—limo’ (1) = ¢ and nAu,, = —c for a positive number c thenlimu,, = ¢.

Proof. The condition nAu, = —c for some ¢ > 0 implies that (u,) is slowly decreasing (See

[8]). Thus the proof follows immediately from Theorem 2.7. Oa

Note that, if the sequence (u;) is bounded and statistically slowly decreasing, we obtain

an analogue to (i).

Corollary 2.9. Let (uy) be a sequence of real numbers which is statistically slowly decreasing
and bounded. Then

st—limofl(u) =¢ implies st-limu,=>~¢.

Proof. The proof is similar to one of Theorem 2.7. O

Remark 2.10. Theorem 2.7 remains true if the term "decreasing” is replaced by "increasing.”
Furthermore, condition where (u,,) is slowly increasing [8] can be replaced if there exists a
positive constant c¢ such that nAu, < c for all n large enough. Thus, we give a Tauberian
condition for the sequences of complex numbers in connection (2) above and the following

theorem extends the result of Méricz in [10].

Theorem 2.11. Let (u,) be a sequence for complex numbers which is slowly oscillating. Then

st—limaﬁ,(u)zf = st-limu,=¢ = limu,=>¥.
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Proof. By Lemma 2.1, as (u,) is slowly oscillating, (az_l(u)) for all i = 1 is slowly oscillating.
This by Lemma 2.4 implies that (02‘1 (u)) is statistically slowly oscillating. Since ai,(u) is sta-
tistically convergent to ¢, we have st—limai,_1 (u) = ¢, by (ii) above. If we continue in that way,
we obtain st — limo}l(u) = ¢. By (ii) above, st —lim u, = ¢. Furthermore, since (u,) is slowly
oscillating, we have lim u;, = ¢ by (v) above. a

Remark 2.12. The condition nAu, = n(u,—u,-1) = O(1) implies that (u,,) is slowly oscillating
[8]. Thus, Theorem 2.11 generalizes (1) above which is given by Fridy and Khan [2].

Corollary 2.13. Ifst—limai,(u) =¢ and nAu, = 0(Q) thenlimu,, = ¢.

Proof. The proof is obvious from Theorem 2.11. O

Note that, if the sequence (u,) is bounded and statistically slowly decreasing, we obtain

an analogue to (ii).

Corollary 2.14. Let (uy) be a sequence of complex numbers which is statistically slowly oscil-
lating and bounded. Then

st—limai,(u):é implies st—limu, ="¢.

Proof. The proof is clear after Theorem 2.11. a
Our next theorem generalizes (3) above.

Theorem 2.15. Let A, be a strictly increasing sequence of real numbers tends to infinity such
that

A
limlim neon _ 1.
SN0 Ay

If the sequence (a',(w)) satisfies st-lim Ay, (1) = ¢ and (u,) satisfies the slowly decreasing con-
dition, thenlimu, = ¢.

Proof. By Lemma 2.2 slowly decreasing of u = (u,) implies slowly decreasing of (o}, (1)) for
all i = 1. By Lemma 2.2 in [2], we see that (4,07, (1)) obeys slowly decreasing Tauberian con-
dition. By (2) above, we have lim Ayo%, (1) = ¢. Theorem 5 in [1] implies that o/, (u) is Abel
summable to £. Since Abel —lim o’ () = £, limo (1) = ¢, by (iii) above. By the fact that every
sequence (C,i) limitable is (C,i) statistical limitable, we have st- limo? (1) = £. Since (uy) is
slowly decreasing, lim u,, = ¢, by Theorem 2.7. g

We now give Tauberian theorem for Borel summability.

Theorem 2.16. If the sequence (u,) satisfies (B*) st-limB*ai,(u) = /¢ and Au, = O(%), then

limu, ="2¢.



TAUBERIAN THEOREMS FOR STATISTICAL CONVERGENCE 329

Proof. Au, = O(%) implies both Au,, = O(ﬁ) and Aail(u) = O(ﬁ). By Lemma 3.1 in [2],
we obtain AB*c (u) = O(%), which allows us to apply (4) above that lima?,(u) = ¢. By the
fact that every sequence (C, 1) limitable is Abel limitable, we have Abel —limo ! (u) = ¢.
By the proof of Theorem 2.5, Au, = O() implies Ao, ! (1) = O(3). Since (o}, ! (w) is Abel
summability to Z, lim 02‘1 (1) = ¢ by Hardy’s theorem in [4]. Continuing in this way, we have

Abel —limu,, = ¢. By Hardy’s theorem in [4], lim u,, = ¢. Oa
Our last result generalizes (5) above which is given by Méricz [10].

Theorem 2.17. If (o}, (u,)) is statistical summable (L, 1) to ¢ and (uy) is slowly decreasig then
limu, ="¢.

Proof. By Lemma 2.2, as (u,,) is slowly decreasing (o}, (u)) for all i = 1 is slowly decreasing.
Since (Uil(u)) is statistical summable (L, 1), lim Uil(u) = ¢, by theorem (5) above. By the fact
that every sequence (C,i) limitable is (C,i) statistical limitable, we have st- lim 02 (u) = ¢. Since

(uy,) is slowly decreasing, lim u,, = ¢, by Theorem 2.7. Oa

Corollary 2.18. Let (1) be a sequence of complex numbers. If (0!, (1)) is statistical summable
(L, 1)and (u,) is slowly oscillating, thenlim u, = ¢.

Proof. It’s proofis similar to one of Theorem 2.17. O
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