TAUBERIAN THEOREMS FOR STATISTICAL CONVERGENCE

ERDAL GÜL AND MEHMET ALBAYRAK

Abstract

The Tauberian theorems for statistical limitable method are proved by both Fridy and Khan [2] and Móricz [10]. Here we generalize these theorems to (C; i) statistical limitable method.

1. Introduction

Let S be a subset of an ordered set of \mathbb{R} or \mathbb{C} numbers. Consider the set

$$
S(n):=\{i \leq n \mid i \in S\} .
$$

We say that S has density $D(S)$, if the limit

$$
D(S):=\lim _{n \rightarrow \infty} \frac{|S(n)|}{n+1},
$$

exists. Here $|S(n)|$ means the cardinality of the set $S(n)$.
Let $\left(u_{n}\right)$ be a sequence in S and consider the set

$$
S_{\varepsilon}(\ell):=\left\{k \in S:\left|u_{k}-\ell\right| \geq \varepsilon\right\}
$$

for every $\varepsilon>0$ and $k=0,1,2,3 \ldots$. Hence $D\left(S_{\varepsilon}(\ell)\right)$ denotes the density of the set $S_{\varepsilon}(\ell)$.
Definition 1.1. A sequence $u=\left(u_{n}\right)$ of real (or complex) numbers is said to be statistically convergent to ℓ if $D\left(S_{\varepsilon}(\ell)\right)=0$ for every $\varepsilon>0$ and we write st-lim $u_{n}=\ell$.

For $i \in \mathbb{N}$ and $n \in \mathbb{N}^{*}$, define

$$
\sigma_{n}^{i}(u)= \begin{cases}\frac{1}{n+1} \sum_{k=0}^{n} \sigma_{k}^{i-1}(u) & \text { if } \quad i \geq 1, \\ u_{n} & \text { if } \quad i=0 .\end{cases}
$$

Received Januery 22, 2017, accepted June 6, 2017. 2010 Mathematics Subject Classification. 40E05, 40G05, 40G10.
Key words and phrases. Statistical convergence, Tauberian theorems, slowly oscillating. Corresponding author: Erdal Gül.

Definition 1.2. We say that a sequence $u=\left(u_{n}\right)$ is statistically summable (C,i) to ℓ for all $i \in \mathbb{N}$ if

$$
s t-\lim \sigma_{n}^{i}(u)=\ell .
$$

By [11], it is known that a sequence (u_{n}) of real (or complex) numbers is slowly oscillating if for any given $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ and $N=N(\varepsilon)$ such that

$$
\left|u_{m}-u_{n}\right|<\varepsilon \quad \text { if } \quad n \geq N(\varepsilon) \text { and } n \leq m \leq(1+\delta) n,
$$

and a sequence $\left(u_{n}\right)$ of real numbers is slowly deacreasing if

$$
\liminf \left(u_{m}-u_{n}\right) \geq 0 \quad \text { whenever } \quad m>n \rightarrow \infty, \frac{m}{n} \rightarrow 1
$$

By [8], we say that a sequence $\left(u_{n}\right)$ is statistically slowly decreasing if for each $\varepsilon>0$,

$$
\inf _{\lambda>1} \limsup _{N \rightarrow \infty} \frac{1}{N+1}\left|\left\{n \leq N: \min _{n<m \leq \lambda_{n}}\left(u_{m}-u_{n}\right) \leq-\varepsilon\right\}\right|=0
$$

or equivalently

$$
\inf _{0<\lambda<1} \limsup _{N \rightarrow \infty} \frac{1}{N+1}\left|\left\{n \leq N: \min _{\lambda_{n}<m \leq n}\left(u_{n}-u_{m}\right) \leq-\varepsilon\right\}\right|=0
$$

and also, $\left(u_{n}\right)$ is statistically slowly oscillating if for each $\varepsilon>0$,

$$
\left.\left.\inf _{\lambda>1} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \right\rvert\,\left\{n \leq N: \max _{n<m \leq \lambda_{n}}\left|u_{m}-u_{n}\right| \geq \varepsilon\right)\right\} \mid=0
$$

or equivalently

$$
\left.\left.\inf _{0<\lambda<1} \limsup _{N \rightarrow \infty} \frac{1}{N+1} \right\rvert\,\left\{n \leq N: \max _{\lambda_{n}<m \leq n}\left|u_{n}-u_{m}\right| \geq \varepsilon\right)\right\} \mid=0 .
$$

Definition 1.3 ([3]). A sequence (u_{n}) of real numbers is called Abel convergent (or Abel summable) to ℓ if the series $\sum_{k=0}^{\infty} u_{k} x^{k}$ is convergent for $0 \leq x<1$ and

$$
\lim _{x \rightarrow 1^{-}}(1-x) \sum_{k=0}^{\infty} u_{k} x^{k}=\ell
$$

In this case, we write Abel $-\lim u_{n}=\ell$.
Moreover, by [5], the sequence $\left(u_{n}\right)$ is Borel summable to ℓ provided that

$$
\lim _{t \rightarrow \infty} e^{-t} \sum_{k=0}^{\infty} \frac{u_{k} t^{k}}{k!}=\ell
$$

Consider the summability matrix $B^{*}=\left(b_{n k}\right)$ is given by

$$
b_{n k}=\frac{e^{-n} n^{k}}{k!}
$$

and the Abel matrix $A_{\lambda}=\left[a_{i j}\right]$ associated with a strictly increasing sequence $\lambda=\left(\lambda_{n}\right)$ of real number with $\lambda_{0} \geq 1$ is defined by

$$
a_{i j}=\frac{1}{\lambda_{i}}\left(1-\frac{1}{\lambda_{i}}\right)^{j}, \quad j=0,1,2, \ldots .
$$

It will be convenient for us to extend λ to be defined over the interval $[1, \infty)$ by making it linear and continuous over $[j, j+1]$ for $j=1,2, \ldots$.

By [7], a sequence of real (or complex) numbers $\left(u_{n}\right)$ is said to be summable $(L, 1)$ to ℓ if $\lim \varphi_{n}=\ell$ where

$$
\tau_{n}(u)=\frac{1}{h_{n}} \sum_{k=1}^{n} \frac{u_{k}}{k} \quad \text { and } \quad h_{n}=\sum_{k=1}^{n} \frac{1}{k} \sim \log n, \quad n=1,2,3, \ldots .
$$

Throughout this paper, the symbols $\Delta u_{n}=u_{n}-u_{n-1}=o(1)$ and $u_{n}=O(1)$ mean that $u_{n} \rightarrow 0$ as $n \rightarrow \infty$ and that (u_{n}) is bounded for large enough n, respectively.

Theorem 1.4 ([2], [9], [10]). With preceding notation, we have:
(1) If st $-\lim \sigma_{n}^{1}(u)=\ell$ and $n \Delta u_{n}=n\left(u_{n}-u_{n-1}\right)=O$ (1) then $\lim u_{n}=\ell$.
(2) If st- $\lim u_{n}=\ell$ or $s t-\lim \sigma_{n}^{1}(u)=\ell$ and $n \Delta u_{n} \geq-c$ for a positive number c then $\lim u_{n}=\ell$.
(3) Let λ_{n} be a strictly increasing sequence of real numbers tends to infinity such that

$$
\lim _{\delta \backslash 0} \lim _{n} \frac{\lambda_{n+\delta n}}{\lambda_{n}}=1
$$

If st $-\lim A_{\lambda} u_{n}=\ell$ and $\left(u_{n}\right)$ satisfies the slow decrease condition, then $\lim u_{n}=\ell$.
(4) Let B^{*} be the Borel summability matrix associated with $\left(u_{n}\right)$ such that satisfies $\left(B^{*}\right)$ st$\lim B^{*} u_{n}=\ell$ and $\Delta u_{n}=O\left(\frac{1}{\sqrt{n}}\right)$, then $\lim u_{n}=\ell$.
(5) If st- $\lim \tau_{n}(u)=\ell$ and $\left(u_{n}\right)$ slowly decreasig then $\lim u_{n}=\ell$.
(6) If st $-\lim u_{n}=\ell$ and $\left(u_{n}\right)$ slowly decreasig then $\lim u_{n}=\ell$.

Now, we will prove that the hypothesis st- $\lim \sigma_{n}^{1}(u)=\ell$ and st- $\lim A_{\lambda} u_{n}=\ell$ can be replaced by st- $\lim \sigma_{n}^{i}(u)=\ell$ and st- $-\lim A_{\lambda} \sigma_{n}^{i}(u)=\ell$. Similarly, the hypothesis st- $\lim u_{n}=\ell$ and st- $\lim \tau_{n}(u)=\ell$ can be replaced by st- $\lim \sigma_{n}^{i}(u)=\ell$ and st- $\lim \tau_{n}\left(\sigma_{n}^{i}(u)\right)=\ell$. Moreover we prove a different formulation of (2) above. Before proving our statements, we recall more results that we will need in the sequel.

Theorem 1.5 ([8], [11],[10]).
(i) Let a sequence (u_{n}) of real numbers be statistically slowly decreasing. Then

$$
s t-\lim \sigma_{n}^{1}(u)=\ell \quad \text { implies } \quad \text { st }-\lim u_{n}=\ell .
$$

(ii) Let a sequence (u_{n}) of complex numbers be statistically slowly oscillating. Then

$$
\text { st }-\lim \sigma_{n}^{1}(u)=\ell \quad \text { implies } \quad \text { st }-\lim u_{n}=\ell
$$

(iii) Let a sequence (u_{n}) of real numbers be slowly decreasing. Then

$$
\text { Abel }-\lim u_{n}=\ell \quad \text { implies } \quad \lim u_{n}=\ell .
$$

(iv) If st- $\lim u_{n}=\ell$ and $\left(u_{n}\right)$ slowly decreasing, then $\lim u_{n}=\ell$.
(v) If st $-\lim u_{n}=\ell$ and $\left(u_{n}\right)$ slowly oscillating, then $\lim u_{n}=\ell$.

2. Main results

Lemma 2.1. If $\left(u_{n}\right)$ is slowly oscillating then $\left(\sigma_{n}^{i}(u)\right)$ for all $i \geq 1$ is slowly oscillating.
Proof. By hypothesis, since $\left(u_{n}\right)$ is slowly oscillating we write $\left|u_{m}-u_{n}\right| \leq \varepsilon$ whenever $m>n \rightarrow$ $\infty, \frac{m}{n} \rightarrow 1$. Hence, we have $\left|u_{m}-u_{n}\right|=\left|\sum_{k=n+1}^{m} \Delta u_{k}\right| \leq \varepsilon$. We claim that $\left(\sigma_{n}^{i}(u)\right.$) for all $i \geq 1$ is slowly oscillating that is $\left|\sigma_{m}^{i}(u)-\sigma_{n}^{i}(u)\right| \leq \varepsilon$ whenever $m>n \rightarrow \infty, \frac{m}{n} \rightarrow 1$. We will prove this by using mathematical induction. We show that our claims true for $i=1$.

$$
\begin{aligned}
\left|\sigma_{m}^{1}(u)-\sigma_{n}^{1}(u)\right| & =\left|\sum_{k=n+1}^{m}\left(\sigma_{k}^{1}(u)-\sigma_{k-1}^{1}(u)\right)\right|=\left|\sum_{k=n+1}^{m} \frac{k}{k}\left\{\frac{1}{k} \sum_{p=1}^{k} u_{p}-\frac{1}{k-1} \sum_{p=1}^{k-1} u_{p}\right\}\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k}\left\{k-1 \sum_{p=1}^{k} u_{p}-k \sum_{p=1}^{k-1} u_{p}\right\}\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k}\left\{(k-1) u_{p}-\sum_{p=1}^{k-1} u_{p}\right\}\right|=\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1}\left(u_{k}-u_{p}\right)\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1} \sum_{j=p+1}^{k} \Delta u_{j}\right| \leq \sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1}\left|\sum_{j=p+1}^{k} \Delta u_{j}\right| \\
& \leq \sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1} \varepsilon=\varepsilon \sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1}=\varepsilon \sum_{k=n+1}^{m} \frac{1}{(k-1) k}(k-1) \\
& =\varepsilon \sum_{k=n+1}^{m} \frac{1}{k}=\varepsilon\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{m}\right) \leq \varepsilon\left(\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}\right) \\
& =\varepsilon \frac{m-n}{n}=\varepsilon\left(\frac{m}{n}-1\right) \leq \varepsilon, \quad \text { by } \quad \frac{m}{n} \rightarrow 1 .
\end{aligned}
$$

Assume that it is true for $i=t-1$, and we will prove that it is true for $i=t$. By assumption, since $\left(\sigma_{n}^{t-1}(u)\right.$) is slowly oscillating we write $\left|\sigma_{m}^{t-1}(u)-\sigma_{n}^{t-1}(u)\right| \leq \varepsilon$ whenever $m>n \rightarrow \infty$, $\frac{m}{n} \rightarrow 1$. Hence, we have

$$
\left|\sigma_{m}^{t-1}(u)-\sigma_{n}^{t-1}(u)\right|=\left|\sum_{k=n+1}^{m} \sigma_{n}^{t-1}(u)\right| \leq \varepsilon . \text { For } i=t
$$

$$
\begin{aligned}
\left|\sigma_{m}^{t}(u)-\sigma_{n}^{t}(u)\right| & =\left|\sum_{k=n+1}^{m}\left(\sigma_{k}^{t}(u)-\sigma_{k-1}^{t}(u)\right)\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{k}{k}\left\{\frac{1}{k} \sum_{p=1}^{k} \sigma_{p}^{t-1}(u)-\frac{1}{k-1} \sum_{p=1}^{k-1} \sigma_{p}^{t-1}(u)\right\}\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k}\left\{k-1 \sum_{p=1}^{k} \sigma_{p}^{t-1}(u)-k \sum_{p=1}^{k-1} \sigma_{p}^{t-1}(u)\right\}\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k}\left\{(k-1) \sigma_{p}^{t-1}(u)-\sum_{p=1}^{k-1} \sigma_{p}^{t-1}(u)\right\}\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1}\left(\sigma_{k}^{t-1}(u)-\sigma_{p}^{t-1}(u)\right)\right| \\
& =\left|\sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1} \sum_{j=p+1}^{k} \Delta \sigma_{j}^{t-1}(u)\right| \leq \sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1}\left|\sum_{j=p+1}^{k} \Delta \sigma_{j}^{t-1}(u)\right| \\
& \leq \sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1} \varepsilon=\varepsilon \sum_{k=n+1}^{m} \frac{1}{(k-1) k} \sum_{p=1}^{k-1}=\varepsilon \sum_{k=n+1}^{m} \frac{1}{(k-1) k}(k-1) \\
& =\varepsilon \sum_{k=n+1}^{m} \frac{1}{k}=\varepsilon\left(\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{m}\right) \leq \varepsilon\left(\frac{1}{n}+\frac{1}{n}+\cdots+\frac{1}{n}\right) \\
& =\varepsilon \frac{m-n}{n}=\varepsilon\left(\frac{m}{n}-1\right) \leq \varepsilon, \quad \text { by } \frac{m}{n} \rightarrow 1 .
\end{aligned}
$$

Thus proof is done.
Lemma 2.2. If $\left(u_{n}\right)$ is slowly decreasing then $\left(\sigma_{n}^{i}(u)\right)$ for all $i \geq 1$ is slowly decreasing.
Proof. Proof is similar to one of Lemma 2.1.
Lemma 2.3. If $\left(u_{n}\right)$ is slowly decreasing then $\left(\sigma_{n}^{i}(u)\right)$ for all $i \geq 1$ is statistically slowly decreasing.

Proof. By Lemma 2.2, as $\left(u_{n}\right)$ is slowly decreasing ($\sigma_{n}^{i}(u)$) for all $i \geq 1$ is slowly decreasing. Since $\left(\sigma_{n}^{i}(u)\right.$) is slowly decreasing we write for large enough $\mathrm{n}, n>N_{1}$, and

$$
\sigma_{m}^{i}(u)-\sigma_{n}^{i}(u)=\sum_{k=n+1}^{m} \Delta \sigma_{k}^{i}(u) \geq-\varepsilon, \text { whenever } m>n \rightarrow \infty, \frac{m}{n} \rightarrow 1
$$

Since for $N_{1}<n<m \leq \lambda_{n}$, for $N>N_{1}$ the set

$$
\left\{N_{1}<n \leq N: \min _{n<m \leq \lambda_{n}}\left(\sigma_{m}^{i}(u)-\sigma_{n}^{i}(u)\right) \leq-\varepsilon\right\}
$$

is empty. It follows that $\left(\sigma_{n}^{i}(u)\right)$ is statistically slowly decreasing.
Lemma 2.4. If $\left(u_{n}\right)$ is slowly oscillating then $\left(\sigma_{n}^{i}(u)\right)$ for all $i \geq 1$ is statistically slowly oscillating.

Proof. Proof is similar to one of Lemma 2.3.
The following theorem generalizes (1) above which is given by Fridy and Khan in [2].
Theorem 2.5. If st $-\lim \sigma_{n}^{i}(u)=\ell$ and $n \Delta u_{n}=O(1)$ then $\lim u_{n}=\ell$.
Proof. If $n \Delta u_{n}=O(1)$ for a positive number c then $n \Delta \sigma_{n}^{i}(u)=O(1)$; we will this by using mathematical induction. For $i=1$ and $n>1$,

$$
\begin{aligned}
n \Delta \sigma_{n}^{1}(u) & =n\left\{\frac{1}{n} \sum_{k=1}^{n} u_{k}-\frac{1}{n-1} \sum_{k=1}^{n-1} u_{k}\right\}=\frac{1}{n-1}\left\{n-1 \sum_{k=1}^{n} u_{k}-n \sum_{k=1}^{n-1} u_{k}\right\} \\
& =\frac{1}{n-1}\left\{(n-1) u_{k}-\sum_{k=1}^{n-1} u_{k}\right\}=\frac{1}{n-1} \sum_{k=1}^{n-1}\left(u_{n}-u_{k}\right)=\frac{1}{n-1} \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \Delta u_{j} \\
& =\frac{1}{n-1} \sum_{j=2}^{n}(j-1) \Delta u_{j}=\frac{1}{n-1} \sum_{j=2}^{n} O(1)=O(1)
\end{aligned}
$$

Assume that it is true for $i=t-1$, and we prove that it is true for $i=t$. By assumption, we write $n \Delta \sigma_{n}^{t-1}(u)=O(1)$. For $i=t$ and $n>1$,

$$
\begin{aligned}
n \Delta \sigma_{n}^{t}(u) & =n\left\{\frac{1}{n} \sum_{k=1}^{n} \sigma_{k}^{t-1}(u)-\frac{1}{n-1} \sum_{k=1}^{n-1} \sigma_{k}^{t-1}(u)\right\} \\
& =\frac{1}{n-1}\left\{n-1 \sum_{k=1}^{n} \sigma_{k}^{t-1}(u)-n \sum_{k=1}^{n-1} \sigma_{k}^{t-1}(u)\right\}=\frac{1}{n-1}\left\{(n-1) \sigma_{k}^{t-1}(u)-\sum_{k=1}^{n-1} \sigma_{k}^{t-1}(u)\right\} \\
& =\frac{1}{n-1} \sum_{k=1}^{n-1}\left(\sigma_{n}^{t-1}(u)-\sigma_{k}^{t-1}(u)\right)=\frac{1}{n-1} \sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \Delta \sigma_{j}^{t-1}(u) \\
& =\frac{1}{n-1} \sum_{j=2}^{n}(j-1) \Delta \sigma_{j}^{t-1}(u)=\frac{1}{n-1} \sum_{j=2}^{n} O(1)=O(1) .
\end{aligned}
$$

Hence, we have $n \Delta \sigma_{n}^{i-1}(u)=O(1)$ is a Tauberian condition for statistical convergence. Therefore, $\operatorname{st-} \lim \sigma_{n}^{i}(u)=\ell$ implies that $\lim \sigma_{n}^{i-1}(u)=\ell$. By the fact that every sequence (C,i-1) limitable is (C,i-1) statistical limitable, we have st- $\lim \sigma_{n}^{i-1}(u)=\ell$. From this it follows that $s t-\lim \sigma_{n}^{1}(u)=\ell$. By (1) above, one obtains $\lim u_{n}=\ell$.

The following theorem extends (2) above.
Theorem 2.6. If $s t-\lim \sigma_{n}^{i}(u)=\ell$ and $n \Delta u_{n} \geq-c$ for a positive number c and for every n, then $\lim u_{n}=\ell$.

Proof. If $n \Delta u_{n} \geq-c$ for a positive number c satifies then satisfies $n \Delta \sigma_{n}^{i}(u) \geq-c$; for, by the proof of Theorem 2.5,

$$
n \Delta \sigma_{n}^{i}(u)=\frac{1}{n-1} \sum_{j=2}^{n}(j-1) \Delta \sigma_{j}^{i-1}(u) \geq \frac{-(n-1) c}{n-1}=-c .
$$

So by (ii) above, $\lim \sigma_{n}^{i-1}(u)=\ell$. By the fact that every sequence (C,i-1) limitable is (C,i-1) statistical limitable, we have st- $\lim \sigma_{n}^{i-1}(u)=\ell$. Continuing in this way, we obtain $s t-\lim \sigma_{n}^{1}(u)=$ ℓ. By (ii) above, $\lim u_{n}=\ell$.

Theorem 2.7 extends the (6) above which is given by Móricz [10].
Theorem 2.7. Let (u_{n}) be a sequence for real numbers be slowly decreasing. Then

$$
s t-\lim \sigma_{n}^{i}(u)=\ell \quad \Rightarrow \quad s t-\lim u_{n}=\ell \quad \Rightarrow \quad \lim u_{n}=\ell .
$$

Proof. By Lemma 2.3, as $\left(u_{n}\right)$ is slowly decreasing ($\sigma_{n}^{i-1}(u)$) for all $i \geq 1$ is statistically slowly decreasing. Since $\sigma_{n}^{i}(u)$ is statistically convergence to ℓ, $s t-\lim \sigma_{n}^{i-1}(u)=\ell$, by (i) above. It follows that $\left(\sigma_{n}^{i-2}(u)\right)$ is statistically slowly decreasing $s t-\lim \sigma_{n}^{i-2}(u)=\ell$. Continuing in this way, we obtain $s t-\lim \sigma_{n}^{1}(u)=\ell$. By (i) above, $s t-\lim u_{n}=\ell$. Furthermore, since $\left(u_{n}\right)$ is slowly decreasing, $\lim u_{n}=\ell$ by (iv) above.

Corollary 2.8. If $s t-\lim \sigma_{n}^{i}(u)=\ell$ and $n \Delta u_{n} \geq-c$ for a positive number c then $\lim u_{n}=\ell$.

Proof. The condition $n \Delta u_{n} \geq-c$ for some $c>0$ implies that $\left(u_{n}\right)$ is slowly decreasing (See [8]). Thus the proof follows immediately from Theorem 2.7.

Note that, if the sequence $\left(u_{n}\right)$ is bounded and statistically slowly decreasing, we obtain an analogue to (i).

Corollary 2.9. Let $\left(u_{n}\right)$ be a sequence of real numbers which is statistically slowly decreasing and bounded. Then

$$
s t-\lim \sigma_{n}^{i}(u)=\ell \quad \text { implies } \quad s t-\lim u_{n}=\ell .
$$

Proof. The proof is similar to one of Theorem 2.7.
Remark 2.10. Theorem 2.7 remains true if the term "decreasing" is replaced by "increasing." Furthermore, condition where $\left(u_{n}\right)$ is slowly increasing [8] can be replaced if there exists a positive constant c such that $n \Delta u_{n} \leq c$ for all n large enough. Thus, we give a Tauberian condition for the sequences of complex numbers in connection (2) above and the following theorem extends the result of Móricz in [10].

Theorem 2.11. Let $\left(u_{n}\right)$ be a sequence for complex numbers which is slowly oscillating. Then

$$
s t-\lim \sigma_{n}^{i}(u)=\ell \quad \Rightarrow \quad s t-\lim u_{n}=\ell \quad \Rightarrow \quad \lim u_{n}=\ell
$$

Proof. By Lemma 2.1, as $\left(u_{n}\right)$ is slowly oscillating, $\left(\sigma_{n}^{i-1}(u)\right.$) for all $i \geq 1$ is slowly oscillating. This by Lemma 2.4 implies that $\left(\sigma_{n}^{i-1}(u)\right)$ is statistically slowly oscillating. Since $\sigma_{n}^{i}(u)$ is statistically convergent to ℓ, we have $s t-\lim \sigma_{n}^{i-1}(u)=\ell$, by (ii) above. If we continue in that way, we obtain $s t-\lim \sigma_{n}^{1}(u)=\ell$. By (ii) above, $s t-\lim u_{n}=\ell$. Furthermore, since $\left(u_{n}\right)$ is slowly oscillating, we have $\lim u_{n}=\ell$ by (ν) above.

Remark 2.12. The condition $n \Delta u_{n}=n\left(u_{n}-u_{n-1}\right)=O(1)$ implies that $\left(u_{n}\right)$ is slowly oscillating [8]. Thus, Theorem 2.11 generalizes (1) above which is given by Fridy and Khan [2].

Corollary 2.13. If $s t-\lim \sigma_{n}^{i}(u)=\ell$ and $n \Delta u_{n}=O(1)$ then $\lim u_{n}=\ell$.
Proof. The proof is obvious from Theorem 2.11.
Note that, if the sequence $\left(u_{n}\right)$ is bounded and statistically slowly decreasing, we obtain an analogue to (ii).

Corollary 2.14. Let $\left(u_{n}\right)$ be a sequence of complex numbers which is statistically slowly oscillating and bounded. Then

$$
s t-\lim \sigma_{n}^{i}(u)=\ell \quad \text { implies } \quad s t-\lim u_{n}=\ell
$$

Proof. The proof is clear after Theorem 2.11.
Our next theorem generalizes (3) above.
Theorem 2.15. Let λ_{n} be a strictly increasing sequence of real numbers tends to infinity such that

$$
\lim _{\delta \backslash 0} \lim _{n} \frac{\lambda_{n+\delta n}}{\lambda_{n}}=1
$$

If the sequence $\left(\sigma_{n}^{i}(u)\right)$ satisfies st $-\lim A_{\lambda} \sigma_{n}^{i}(u)=\ell$ and $\left(u_{n}\right)$ satisfies the slowly decreasing condition, then $\lim u_{n}=\ell$.

Proof. By Lemma 2.2 slowly decreasing of $u=\left(u_{n}\right)$ implies slowly decreasing of ($\sigma_{n}^{i}(u)$) for all $i \geq 1$. By Lemma 2.2 in [2], we see that ($A_{\lambda} \sigma_{n}^{i}(u)$) obeys slowly decreasing Tauberian condition. By (2) above, we have $\lim A_{\lambda} \sigma_{n}^{i}(u)=\ell$. Theorem 5 in [1] implies that $\sigma_{n}^{i}(u)$ is Abel summable to ℓ. Since $\mathrm{Abel}-\lim \sigma_{n}^{i}(u)=\ell, \lim \sigma_{n}^{i}(u)=\ell$, by (iii) above. By the fact that every sequence (C, i) limitable is (C, i) statistical limitable, we have st- $\lim \sigma_{n}^{i}(u)=\ell$. Since $\left(u_{n}\right)$ is slowly decreasing, $\lim u_{n}=\ell$, by Theorem 2.7.

We now give Tauberian theorem for Borel summability.
Theorem 2.16. If the sequence $\left(u_{n}\right)$ satisfies $\left(B^{*}\right)$ st $-\lim B^{*} \sigma_{n}^{i}(u)=\ell$ and $\Delta u_{n}=O\left(\frac{1}{n}\right)$, then $\lim u_{n}=\ell$.

Proof. $\Delta u_{n}=O\left(\frac{1}{n}\right)$ implies both $\Delta u_{n}=O\left(\frac{1}{\sqrt{n}}\right)$ and $\Delta \sigma_{n}^{i}(u)=O\left(\frac{1}{\sqrt{n}}\right)$. By Lemma 3.1 in [2], we obtain $\Delta B^{*} \sigma_{n}^{i}(u)=O\left(\frac{1}{\sqrt{n}}\right)$, which allows us to apply (4) above that $\lim \sigma_{n}^{i}(u)=\ell$. By the fact that every sequence ($\mathrm{C}, 1$) limitable is Abel limitable, we have Abel $-\lim \sigma_{n}^{i-1}(u)=\ell$. By the proof of Theorem 2.5, $\Delta u_{n}=O\left(\frac{1}{n}\right)$ implies $\Delta \sigma_{n}^{i-1}(u)=O\left(\frac{1}{n}\right)$. Since $\left(\sigma_{n}^{i-1}(u)\right)$ is Abel summability to $\ell, \lim \sigma_{n}^{i-1}(u)=\ell$ by Hardy's theorem in [4]. Continuing in this way, we have Abel $-\lim u_{n}=\ell$. By Hardy's theorem in [4], $\lim u_{n}=\ell$.

Our last result generalizes (5) above which is given by Móricz [10].
Theorem 2.17. If $\left(\sigma_{n}^{i}\left(u_{n}\right)\right)$ is statistical summable $(L, 1)$ to ℓ and $\left(u_{n}\right)$ is slowly decreasig then $\lim u_{n}=\ell$.

Proof. By Lemma 2.2, as $\left(u_{n}\right)$ is slowly decreasing ($\sigma_{n}^{i}(u)$) for all $i \geq 1$ is slowly decreasing. Since $\left(\sigma_{n}^{i}(u)\right)$ is statistical summable $(L, 1), \lim \sigma_{n}^{i}(u)=\ell$, by theorem (5) above. By the fact that every sequence (C, i) limitable is (C, i) statistical limitable, we have st- $\lim \sigma_{n}^{i}(u)=\ell$. Since $\left(u_{n}\right)$ is slowly decreasing, $\lim u_{n}=\ell$, by Theorem 2.7.

Corollary 2.18. Let $\left(u_{n}\right)$ be a sequence of complex numbers. If $\left(\sigma_{n}^{i}\left(u_{n}\right)\right)$ is statistical summable $(L, 1)$ and $\left(u_{n}\right)$ is slowly oscillating, then $\lim u_{n}=\ell$.

Proof. It's proof is similar to one of Theorem 2.17.

References

[1] H. D. Armitage and J. I. Maddox, Discrete Abel mean, Analysis, 10(1990), 177-186.
[2] A. J. Fridy and M. K. Khan, Statistical extension of some classical Tauberian theorems, Proc. Amer. Math. Soc. 18(2000), 2347-2355.
[3] E. Gül and M. Albayrak, On Abel convergent series of functions, Journal of Advances in Mathematics. 11(9)(2016), 5639-5644.
[4] H. G. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math Soc., 8(2)(1910), 310-320.
[5] H. G. Hardy and J. E. Littlewood, Tauberian theorems concerning power series and Dirichlet's series whose coecients are positive, Proc. London Math. Soc., 13(2)(1914), 174-191.
[6] E. Landau, Über die Bedeutung einiger neuen Grenzwertsätze der Herren Hardy und Axer, Prace Mat. -Fiz. 21 (1910), 97-177.
[7] B. Kwee, A Tauberian theorem for the logaritmic method of summation, Math. Proc. Comb. Phil. Soc., 63(1967), 97-177.
[8] F. Móricz, Tauberian conditions, under which statistical convergence follows from statistical summability (C,1), J. Math. Anal. Appl., 275(2002), 277-287.
[9] F. Móricz and Z. Nemeth, Statistical extension of classical Tauberian theorems in the case of logarithmic summability, Analysis Math., 40(2014).
[10] F. Móricz, Ordinary convergence follows from statistical summability ($C, 1$) in the case of slowly decreasing or oscillating sequences, Analysis, 24(2004), 127-145.
[11] R. Schmidt, Über divergente Folgen und lineare Mittelbildungen, Math. Z., 22(1925), 89-152.

Yildiz Technical University, Department of Mathematics, 34210 Esenler, Istanbul.
E-mail: egul34@gmail.com
Yildiz Technical University, Department of Mathematics, 34210 Esenler, Istanbul.
E-mail: mehmetalbayrak12@gmail.com

