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DEGREE OF APPROXIMATION OF CONJUGATE OF LIP α CLASS

FUNCTION BY K
λ-SUMMABILITY MEANS OF CONJUGATE SERIES

OF A FOURIER SERIES

SHYAM LAL AND GOPAL KRISHNA SINGH

Abstract. In this paper the degree of approximation of conjugate of a function belonging to

Lip α class by Kλ-summability means of conjugate series of its Fourier series has been deter-

mined.

1. Introduction

The method Kλ was first introduced by Karamata [4]. Lotosky [6] reintroduced the
special case λ = 1. Only after the paper of Agnew [1], an intensive study of these
and similar methods took place. Vuĉkoviĉ [14] applied this method for summability of
Fourier series. Kathal [5] extended Vuĉkoviĉ’s result. Working in the same direction Ojha
[8], Tripathi and Lal [13] have studied Kλ-summability of Fourier series under different
conditions. For the function f ∈ Lip α, the degree of approximation by Cesàro means
and by Nörlund means of the Fourier series of f have been studied by Alexits [2], Sahney
and Goel [12], Chandra [3], Qureshi [9, 10], Qureshi and Neha [11] and many other. But
till now nothing seems to have been done for determining the degree of approximation
of conjugate of Lip α function by Kλ-summability means of conjugate series of a Fourier
series. In an attempt to make a study in this direction, in this paper, the degree of
approximation of conjugate of Lipschitz function has been determined.

2. Definitions and Notations

Let us define, for n = 0, 1, 2, 3, . . ., the numbers

[

n

m

]

, for 0 ≤ m ≤ n, by

n−1
∏

v=0

(x+ v) =

n
∑

m=0

[

n

m

]

xm =
Γ(x+ n)

Γ(x)

= x(x + 1)(x+ 2) · · · (x+ n− 1). (2.1)
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The numbers

[

n

m

]

are known as the absolute value of stirling number of first kind.

Let {Sn} be the sequence of partial sums of an infinite series
∑

an and let us write

Sλ
n =

Γλ

Γ(λ+ n)

n
∑

m=0

[

n

m

]

λmSm, (2.2)

to denote the nth Kλ-mean of order λ > 0. If Sλ
n → S as n→ ∞, where S, is a fixed finite

number then the sequence {Sn} or the series
∑

an is said to be summable by Karamata
method Kλ of order λ > 0 to the sum S and we can write

Sλ
n → s(Kλ), as n→ ∞. (2.3)

The method Kλ is regular for λ > 0.
Let f : R→ R be 2π-periodic and Lip α, 0 < α ≤ 1, so that

|f(x+ t) − f(x)| = O(|t|α), for all x, t. (2.4)

Then f has its Fourier series, with the conjugate series.

∞
∑

n=1

(an sinnx− bn cosnx), (2.5)

where an, bn are the Fourier coefficients of f over [−π, π]. Writing

ψx(t) = f(x+ t) − f(x− t) for all x, t,

f has also its conjugate function f̄ , [15], given by

f = −
1

2π

∫ π

0

ψx(t) cot

(

t

2

)

dt. (2.6)

The degree of approximation of a function g : [−π, π] → R by a trigonometric poly-
nomial Tn of order n is defined by, Zygmund [15]

‖Tn − g‖∞ = sup{|Tn(x) − g(x)| : −π ≤ x ≤ π}.

We write

ψ(t) = f(x+ t) − f(x− t)

kn(t) =

n
∑

m=0

[

n

m

]

λm cos(m+
1

2
)t

Γ(λ+ n) sin( t
2 )

f̄(x) = −
1

2π

∫ π

0

ψ(t) cot
t

2
dt.
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3. Main Theorem

In this paper, the degree of approximation of conjugate function f̄ byKλ-summability
means of conjugate series of Fourier series of f is determined in the following form:

Theorem. If f : R → R is 2π-periodic and Lip α then the degree of approximation

of its conjugate function f̄ by Kλ-means of the conjugate series of f satisfies.

‖S̄λ
n − f̄‖∞ = O

[(

log(n+ 1)e

(n+ 1)α+2

)

+
1

(n+ 1)α

(

1 +
1

Γ(λ+ n)

)]

,

for 0 < α ≤ 1, n = 0, 1, 2, 3, . . . ,

where S̄λ
n are Kλ-means of series (2.5).

4. Lemma

For the proof of our theorem following lemma is required:

Lemma (Vuĉkoviĉ [14]). Let λ > 0 and 0 < t < π
2 ,

Then

Im Γ(λeit + n)

Γ(λ cos t+ n) sin( t
2 )

=
| sin(λ log(n+ 1) sin t)|

sin( t
2 )

+O(1), as n→ ∞, uniformly in t.

5. Proof of the Main Theorem

Following Lal [7] the nth partial sum S̄m(x) of series (2.6) at t = x is given by

S̄m(x) −

[

−
1

2π

∫ π

0

ψ(t) cot
1

2
tdt

]

=
1

2π

∫ π

0

ψ(t)
cos(m+ 1

2 )t

sin 1
2 t

dt.

Therefore

Γ(λ)

Γ(λ+ n)

n
∑

m=0

[

n

m

]

λm

{

S̄m(x) −

(

−
1

2π

∫ π

0

ψ(t) cot
1

2
tdt

)}

=
1

2π

∫ π

0

ψ(t)
Γ(λ)

Γ(λ+ n)

n
∑

m=0

[

n

m

]

λm cos(m+ 1
2 )t

sin 1
2 t

dt

S̄λ
n(x) − (f̄(x)) =

Γ(λ)

2π

∫ π

0

ψ(t)kn(t)dt

=

[

{

∫ 1/n+1

0

+

∫ π

1/n+1

}

|ψ(t)| |kn(t)|dt

]

= O(I1) +O(I2). (5.1)
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Now by (1)

kn(t) =
Re

{

eit/2 · Γ(λeit+n)
Γ(λeit)

}

Γ(λ+ n) · sin( t
2 )

, by (2.1)

= O

∣

∣

∣

∣

∣

∣

Re
{

eit/2 · Γ(λeit+n)
Γ(λeit)

}

Γ(λ+ n) · sin( t
2 )

∣

∣

∣

∣

∣

∣

= O





Re
{

eit/2 · Γ(λeit+n)
Γ(λeit)

}

Γ(λ+ n) · sin( t
2 )



 +O

[

Im Γ(λeit + n)

Γ(λ+ n)

]

= O

[

Γ(λ cos t+ n)

Γ(λ+ n) sin( t
2 )

]

+O

[

Γ(λ cos t+ n)

Γ(λ+ n)
·
Im Γ(λeit + n)

Γ(λ cos t+ n)

]

For 0 < t < 1
n

Γ(λ cos t+ n)

Γ(λ+ n)
= O[n−λ(1−cos t)]

= O[e−λ(1−cos t) log n]

= O
[

e−
λ

2
t2 log n

]

.

Since, for 0 < t < 1
n , 0 < 1 − cos t < t2

2 ,

therefore,

|I1| =

∫ 1/n+1

0

|ψ(t)|kn(t)dt

= O

[

∫ 1/n+1

0

e−λ(1−cos t) log n Im Γ(λeit + n)

Γ(λ cos t+ n)
|ψ(t)|dt

]

+O

[

∫ 1/n+1

0

e−
λ

2
t2 log n

sin t
2

|ψ(t)|dt

]

= O(I1.1) +O(I1.2), say (5.2)

I1.1 =

∫ 1/n+1

0

e−λ(1−cos t) log(n+1) Im Γ(λeit + n)

Γ(λ cos t+ n)
|ψ(t)|dt

Applying lemma

=

∫ 1/n+1

0

e−
λ

2
(t2−log(n+1))| sin(λ log(n+ 1)t sin t)| |ψ(t)|dt

+O

[

∫ 1/n+1

0

e−
λ

2
t2 log(n+1)

∣

∣

∣

∣

sin
( t

2

)

∣

∣

∣

∣

|ψ(t)|dt

]
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=

∫ 1/n+1

0

e−
λ

2
(t2−log(n+1))| sin(λ log(n+ 1)t sin t)| |ψ(t)|dt

+O

[

∫ 1/n+1

0

e−
λ

2
t2 log(n+1)t|ψ(t)|dt

]

I1.1 = O(λ log(n+ 1))

∫ 1/n+1

0

t|ψ(t)|dt+

∫ 1/n+1

0

t|ψ(t)|dt

= O(I1.11) +O(I1.12), say (5.3)

we have
ψ(t) = f(x+ t) − f(x) + f(x) − f(x− t)

or
|ψ(t)| ≤ |f(x+ t) − f(x)| + |f(x− t) − f(x)|

≤ O(|t|α) +O(|t|α) (∵ f ∈ Lip α)

|ψ(t)| ≤ O(|t|α)

Now,

I1.11 = (λ log(n+ 1))

∫ 1/(n+1)

0

t|ψ(t)|dt

= λ log(n+ 1)

∫ 1/(n+1)

0

O(|t|α+1)dt

= (λ log(n+ 1))

[∣

∣

∣

∣

tα+2

α+ 2

∣

∣

∣

∣

]
1

n+1

0

= O

(

λ log(n+ 1)

(n+ 1)α+2

)

(5.4)

I1.12 =

∫ 1/(n+1)

0

t|ψ(t)|dt

=

∫ 1/(n+1)

0

O(|t|α+1)dt

= O

(

tα+2

α+ 2

)
1

n+1

0

= O

(

1

(n+ 1)α+2

)

I1.1 = O

(

log(n+ 1)

(n+ 1)α+2

)

+O

(

1

(n+ 1)α+2

)

= O

(

log(n+ 1) + 1

(n+ 1)α+2

)

= O

(

log(n+ 1)e

(n+ 1)α+2

)

I1.2 =

∫ 1
n+1

0

e−
λ

2
t2 log n

sin( t
2 )

|ψ(t)|dt
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=

∫ 1
n+1

0

e−
λ

2
t2 log n

sin( t
2 )

|ψ(t)|dt = O
[

e
−

λ

2

log n

n2

]

∫ 1
n+1

0

ψ(t)

t
dt

By second mean value theorem

= O
[

e
−

λ

2

log n

n2

]

∫ 1
n+1

ǫ

|ψ(t)|

t
dt

= O
[

e
−

λ

2

log n

n2

]

∫ 1
n+1

ǫ

O(|t|α)

t
= O(1)

∫ 1
n+1

ǫ

(tα−1)dt

= O(1)

(

tα

α

)
1

n+1

ǫ

I1.2 = O

(

1

(n+ 1)α

)

. (5.5)

For 1
n < t < π,

kn(t) = O

(

1

Γ(λ+ n) · sin( t
2 )

)

= O

(

1

Γ(λ+ n) · sin( t
2 )

)

= O

(

1

Γ(λ+ n)t

)

= O

(

1

Γ(λ+ n)t

)

.

At last I2 =

∫ π

1
n+1

O(tα)
1

Γ(λ+ n)t
dt

= O

∫ π

1
n+1

tα−1

Γ(λ+ n)
dt

= O

(

1

Γ(λ+ n)

) (

tα

α

)π

1
n+1

= O

(

1

Γ(λ+ n)(n+ 1)α

)

. (5.6)

Collecting the equations (5.1) to (5.6) we have

S̄λ
n − f̄(x) = O

(

log(n+ 1)e

(n+ 1)α+2

)

+O

(

1

(n+ 1)α

)

+O

(

1

Γ(λ+ n)(n+ 1)α

)

= O

(

log(n+ 1)e

(n+ 1)α+2

)

+O

[

1

(n+ 1)α

(

1 +
1

Γ(λ+ n)

)]

.

Then

‖S̄λ
n − f̄(x)‖∞ = sup{|S̄λ

n − f̄(x)| : −π ≤ x ≤ π}
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= Sup

[(

log(n+ 1)e

(n+ 1)α+2

)

+
1

(n+ 1)α

(

1 +
1

Γ(λ+ n)

)]

,

−π ≤ x ≤ π.

Thus we obtain that

‖S̄λ
n − f̄(x)‖∞ = O

[(

log(n+ 1)e

(n+ 1)α+2

)

+
1

(n+ 1)α

(

1 +
1

Γ(λ+ n)

)]

,

for 0 < α ≤ 1, n = 0, 1, 2, . . . .

This completes the proof of the theorem.
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