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A SUMMABILITY TYPE FACTOR THEOREM

B. E. RHOADES AND EKREM SAVAS

Abstract. We obtain sufficient conditions for the series Z ané€yn to be absolutely summable of

order k by a wieghted mean method.

The concept of absolute summability of order k£ was defined by Flett [2] as follows.
Let > ay be a given infinite series with partial sums s,, and let ¢ denote the n-th
Cesédro means of order a, a > —1, of the sequence {s,}. The series > a, is said to be
summable |C,alg, k> 1, a > —1if

oo

Y AT |F < oo, (1)

n=1

where, for any sequence {b,}, Ab, = b, — by 41.
In defining absolute summability of order k for weighted mean methods Bor [1] and
others used the definition

o0 P k—1
Z(p_") |Aun—1|k < 00, (2)

n=1

where
n
Uy, = E PuSy.
v=0

In using (2) as the definition, it was apparently assumed that the n in (1) represented
the reciprocal of the nth main diagonal term of (C,1). But this interpretation cannot be
correct. For, if it were, then the Cesdro methods (C, «), for o # 1 would have to satisfy

the condition
oo

S )1 Ace, F < o

n=1

However, Flett [2] stays with n for all values of a > —1.
In a recent paper [3], Sulaiman proved the following two results.
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Theorem 1. (A) Let {p,} be a sequence of positive numbers. Let T,, be the (N,py)-
mean of the series Y an. If

o0
> ke [FIAT, 4 |F < oo,

n=1

P \k
nk—ke-1 (—") lenlF|AT, 1 < 00, (0<a<1)
Dn

-1( =) JeuFIAT 1 < o0, (0 21)

M8 i M8 ||M8

P k
n*l(p—") |Aen [F|AT,_1|F < o0

n=1

then the series Y an€n s summable |C,alk, k> 1, a > 0.
(B) Let {pn} be a sequence of positive numbers satisfying

(i) Pn=O(npy). 3)

Let {\n}, {€n} be such that {\,} is nonnegative, nondecreasing, n'=“\,le,| = O(1)
for 0 < a <1, \ylen| = O(1), €, = o(1) for a > 1, Ae,, = O(ntey,]), and

fﬁ (%)k_IIATnfll’c —0(E), m — oo,
n=1 n

Then, in order to have the series Y an€e, summable |C,aly, it is sufficient that

o0
Z n?" N\, | A%, <00, (0<a<1)
n=1
and
o0
> nAnlA%e,| < oo, (a>1).
n=1

Theorem 2. (A) Let {p,} be a sequence of positive numbers. Let t. be the nth
(C,1)-mean of the sequence {na,}. If

oo

Zp—"|en|’f|t1|’f < o0,

—

1
—k(—) Jeal¥ 51 < o,

( ) |Aen FIE |F < oo,
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then the series S ane, is summable |N, py|k, k > 1.

(B) Let {pn} be a sequence of positive numbers such that (3) holds. Let {\,},{en}
be such that {\,} is nonnegative, nondecreasing, Aplen| = O(1), €, = o(1), Ae, =
O(n™teyn), and

m

> a7ttt =00,

n=1

Then, in order to have the series Y. ane, summable |N,py|k, k > 1, it is sufficient
that

Z nin|A%e,| < oc.

n=1

In the proof of Theorem 1, Sulaiman uses the correct definition for absolute Cesaro
summability. However, in proving Theorem 2, he reverts to (2) for absolute weighted
mean summability.

In this paper we shall prove the corresponding version of Theorem 2, using the correct
definition (1).

Theorem 3. (A) Let {p,} be a positive sequence such that

o k-1 k k=1, k—1
S ) o) o
n=u+1Pn—1 Pn Py
Let t} denote the nth (C,1) mean of {na,}. If

o0
> A e [Flt]F < oo, (5)
v=1
(o)
> A Ml < o, (6)
v=1

then the series S ane, is summable |N, py|i, k > 1.
(B) Let {pn} be a positive sequence satisfying (3). Let {\,}, {en} be such that {\,}
is nonnegative, nondecreasing, n\,|e,| = O(1), €, = o(1), Ae, = O(n~Ye,|) and

n

> v P =00, (7)
v=1
Then, in order to have Y ane, summable |N,p,|k, k > 1, it is sufficient that

Zl/2>\y|A2€V| < 00. (8)

v=1
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Proof. Part (A). Let Q,, denote the (N, p,)-mean of the series 3" ane,. Then, as in
3],

Qn = ]3i Zpu Zarer = Pi Z(Pn - Pufl)auelw
"y=0 r=0 ™ v=0

Pn
n — Yn-1= PL/* vey
Qn — Qn—1 PP Z 1a,€

o Pn —1€y
B PnPnfl ;
n—
Pn Prv€v PI/EI/ PI/AGV n+1 1
— 1)t { - } Po_1ent
PnPnfl lz vt 14 + 1/(1/+1) + l/+]. + n—1énlp
= in + QnQ + QnS + Qn4-
Using Holder’s inequality and (5),
m+1 m+1 D n—1 1 &
k—1 k n 1
nl 1 —) et
3 Q= 3 ' iy 1;(+Vpey
k—1
m+1 g k[l n—1
n Pn kil k 1
= O ]‘ (_) pD 61/ tl/ py
( );::2 P \p) |2 leu|"[t,| o ;1
m+1 1 pn—l
n Dn k|l k
=0(1 (_) pule|"|t;,
W3 5 (F) Emloli
m m+1 k—1 k
n Pn
=0(1 pyeyktik (—)
( ); AW n;ﬂ . \p

m el kyk‘flpk‘fl
— 0 Y ple et
v=1 v
m

_1(Pv)*
=0() 3 v (&) e 1
<o) 3 v e HlF = 0q1).

v=1

By Holder’s inequality, (4), and (5),
m m+1 n—1 1
k—1 k k—1| _ Pn Pe,(v+ 1)L, ¥
n n2|® = n
DU S N A

: s Z(f ) bl e H Zpy]

v=1

-1
k—1

m+1
<> 53
_n=2 Pn—l Pn
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m—+1 m+1 _
P, k nk—1 P k
—om'S (2 el ()
()VZZ:1 o ||||n§;+1pn_1 P
m+1 k—1,k—1
P, \k vy
=0() Y () pole el ()
v=1 Pv v
m—+1

1) Z P e |FIELF < oo
v=1

Using Holder’s inequality,(4), and (6),

m+1

an il = 3wt 1213 aetl|

k n—1 P k
> (—) pol e ||t *
1 \Pv

S nf T p,
S;P,H (P_n>

k—1

1 n—1
P—,l Zpul
v=1

:0(1)521(5 ) pulBe,[FIE, |kn§ pk (2")
_ o(1)§: (%) pulAe, [FltLIF Vk;i?ﬁl

=0(1) ) V" HAe Mg [F = 0(1).

v=1
From (5),

m m—+1 k

an—1|Qn4|k Z nk 1 entl

n=2
m—+1 P

=3 ()l

m—+1

<Y el ] = O(1).
n=2

Part (B). It is sufficient to show that conditions (5) and (6) are satisfied, since any
weighted mean matrix satisfying (3) automatically satisfies (4).
Since Ae,, = O(1)(n"!len|), (6) becomes

3= to0) (1) i~ oq)

v=1 v

NE

1,
a7

* 1

<o)y v e Myl

v=1
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To prove (5),

n n v v—1

1 1
St = Sl | 3 I 3 gl
v=1 = i=1 i=1
n—1 v
= n*len|" Z jt1* + ZZ [t lel® = (v + 1)*leqa|*]
v=1 i=1
< nFlen | Z HE +ZZ [tHF (v 4+ 1)*Ale, |
v=11i=1
=1 + .[2.
From (7), I} = O(n*|e,[FAE) = O(1)
Since Ale,|* = k(ley| — |ev41])€F1 for some & between |e,| and |e, 41| by the mean

value theorem,

Ale,|F < k|Ae, |t
= O(le,|" " Ae,|) since €, = o(1).

Therefore

I =0(1) Y Mi(v+1)*Ale, [*

v=1
DY M@+ DM A
v=1
Since v\, le,| = O(1),
L =0(1)) A (v+1)Ae|
v=1
n v v—1
WY 1Ae | D E+D)A =) i+ DA
v=1 i=1 i=1
n—1 v
|Aen|z G+ DX+ > (i+DANA(Ae])] -
v=1i=1

|Ae,| Z(i + 1A = O(n" e )O((n + 1)\ n)
=0((n + Aplen]) = O(1).
Thus

n—1 v

L <O)+ > ) (i + 1)Ai|A%, |

v=1i=1
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<0(1) +§:AV|A%V|§:(¢+ 1)
=0(1)+0(1) Ti M2 A%, | = O(1),
by (8).
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