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A SUMMABILITY TYPE FACTOR THEOREM

B. E. RHOADES AND EKREM SAVAŞ

Abstract. We obtain sufficient conditions for the series
∑

anǫn to be absolutely summable of

order k by a wieghted mean method.

The concept of absolute summability of order k was defined by Flett [2] as follows.
Let

∑

an be a given infinite series with partial sums sn, and let σα
n

denote the n-th
Cesáro means of order α, α > −1, of the sequence {sn}. The series

∑

an is said to be
summable |C, α|k, k ≥ 1, α > −1 if

∞
∑

n=1

nk−1|∆σα

n−1|
k < ∞, (1)

where, for any sequence {bn}, ∆bn = bn − bn+1.
In defining absolute summability of order k for weighted mean methods Bor [1] and

others used the definition

∞
∑

n=1

(

Pn

pn

)k−1

|∆un−1|
k < ∞, (2)

where

un :=

n
∑

ν=0

pνsν .

In using (2) as the definition, it was apparently assumed that the n in (1) represented
the reciprocal of the nth main diagonal term of (C, 1). But this interpretation cannot be
correct. For, if it were, then the Cesáro methods (C, α), for α 6= 1 would have to satisfy
the condition

∞
∑

n=1

(nα)k−1|∆σα

n−1|
k < ∞.

However, Flett [2] stays with n for all values of α > −1.
In a recent paper [3], Sulaiman proved the following two results.
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Theorem 1. (A) Let {pn} be a sequence of positive numbers. Let Tn be the (N̄ , pn)-
mean of the series

∑

an. If

∞
∑

n=1

nk−1|ǫn|
k|∆Tn−1|

k < ∞,

∞
∑

n=1

nk−kα−1
(Pn

pn

)k

|ǫn|
k|∆Tn−1|

k < ∞, (0 < α < 1)

∞
∑

n=1

n−1
(Pn

pn

)k

|ǫn|
k|∆Tn−1|

k < ∞, (α ≥ 1)

∞
∑

n=1

n−1
(Pn

pn

)k

|∆ǫn|
k|∆Tn−1|

k < ∞

then the series
∑

anǫn is summable |C, α|k, k ≥ 1, α > 0.
(B) Let {pn} be a sequence of positive numbers satisfying

(i) npn = O(Pn),

(ii) Pn = O(npn).
(3)

Let {λn}, {ǫn} be such that {λn} is nonnegative, nondecreasing, n1−αλn|ǫn| = O(1)
for 0 < α < 1, λn|ǫn| = O(1), ǫn = o(1) for α ≥ 1, ∆ǫn = O(n−1|ǫn|), and

m
∑

n=1

(Pn

pn

)k−1

|∆Tn−1|
k = O(λk

m
), m → ∞.

Then, in order to have the series
∑

anǫn summable |C, α|k, it is sufficient that

∞
∑

n=1

n2−αλn|∆
2ǫn| < ∞, (0 < α < 1)

and
∞
∑

n=1

nλn|∆
2ǫn| < ∞, (α ≥ 1).

Theorem 2. (A) Let {pn} be a sequence of positive numbers. Let t1
n

be the nth

(C, 1)-mean of the sequence {nan}. If

∞
∑

n=1

pn

Pn

|ǫn|
k|t1n|

k < ∞,

∞
∑

n=1

1

nk

(Pn

pn

)k−1

|ǫn|
k|t1

n
|k < ∞,

∞
∑

n=1

(Pn

pn

)k−1

|∆ǫn|
k|t1

n
|k < ∞,
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then the series
∑

anǫn is summable |N̄ , pn|k, k ≥ 1.

(B) Let {pn} be a sequence of positive numbers such that (3) holds. Let {λn}, {ǫn}

be such that {λn} is nonnegative, nondecreasing, λn|ǫn| = O(1), ǫn = o(1), ∆ǫn =

O(n−1|ǫn|), and
m

∑

n=1

n−1|t1n|
k = O(λk

n).

Then, in order to have the series
∑

anǫn summable |N̄ , pn|k, k ≥ 1, it is sufficient

that
∞
∑

n=1

nλn|∆
2ǫn| < ∞.

In the proof of Theorem 1, Sulaiman uses the correct definition for absolute Cesáro

summability. However, in proving Theorem 2, he reverts to (2) for absolute weighted

mean summability.

In this paper we shall prove the corresponding version of Theorem 2, using the correct

definition (1).

Theorem 3. (A) Let {pn} be a positive sequence such that

∞
∑

n=ν+1

nk−1

Pn−1

( pn

Pn

)k

= O
(νk−1pk−1

ν

P k
ν

)

. (4)

Let t1
n

denote the nth (C, 1) mean of {nan}. If

∞
∑

ν=1

νk−1|ǫν |
k|t1

ν
|k < ∞, (5)

∞
∑

ν=1

νk−1|∆ǫν |
k|t1ν |

k < ∞, (6)

then the series
∑

anǫn is summable |N̄ , pn|k, k ≥ 1.

(B) Let {pn} be a positive sequence satisfying (3). Let {λn}, {ǫn} be such that {λn}

is nonnegative, nondecreasing, nλn|ǫn| = O(1), ǫn = o(1), ∆ǫn = O(n−1|ǫn|) and

n
∑

ν=1

ν−1|t1n|
k = O(λk

n). (7)

Then, in order to have
∑

anǫn summable |N̄ , pn|k, k ≥ 1, it is sufficient that

∞
∑

ν=1

ν2λν |∆
2ǫν | < ∞. (8)
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Proof. Part (A). Let Qn denote the (N̄ , pn)-mean of the series
∑

anǫn. Then, as in
[3],

Qn =
1

Pn

n
∑

ν=0

pν

ν
∑

r=0

arǫr =
1

Pn

n
∑

ν=0

(Pn − Pν−1)aνǫν .

Qn − Qn−1 =
pn

PnPn−1

n
∑

ν=1

Pν−1aνǫν

=
pn

PnPn−1

n
∑

ν=1

νaν

Pν−1ǫν

ν

=
pn

PnPn−1

[

n−1
∑

ν=1

(ν+1)t1
ν

{

−
pνǫν

ν
+

Pνǫν

ν(ν+1)
+

Pν∆ǫν

ν+1

}

+
n+1

n
Pn−1ǫnt1

n

]

= Qn1 + Qn2 + Qn3 + Qn4.

Using Hölder’s inequality and (5),

m+1
∑

n=2

nk−1|Qn1|
k =

m+1
∑

n=2

nk−1
∣

∣

∣

pn

PnPn−1

n−1
∑

ν=1

(

1 +
1

ν

)

pνǫνt1
ν

∣

∣

∣

k

= O(1)
m+1
∑

n=2

nk−1

Pn−1

( pn

Pn

)k

[

n−1
∑

ν=1

pν |ǫν |
k|t1

ν
|k

][

1

Pn−1

n−1
∑

ν=1

pν

]k−1

= O(1)
m+1
∑

n=2

nk−1

Pn−1

( pn

Pn

)k
n−1
∑

ν=1

pν |ǫν |
k|t1

ν
|k

= O(1)

m
∑

ν=1

pν |ǫν |
k|t1

ν
|k

m+1
∑

n=ν+1

nk−1

Pn−1

( pn

Pn

)k

= O(1)

m
∑

ν=1

pν |ǫν |
k|t1ν |

k
νk−1pk−1

ν

P k
ν

= O(1)
m

∑

ν=1

νk−1
( pν

Pν

)k

|ǫν |
k|t1

ν
|k

≤ O(1)

m
∑

ν=1

νk−1|ǫν |
k|t1n|

k = O(1).

By Hölder’s inequality, (4), and (5),

m
∑

n=2

nk−1|Qn2|
k =

m+1
∑

n=2

nk−1
∣

∣

∣

pn

PnPn−1

n−1
∑

ν=1

Pνǫν(ν + 1)t1
ν

ν(ν + 1)

∣

∣

∣

k

≤

m+1
∑

n=2

nk−1

Pn−1

( pn

Pn

)k

[

n−1
∑

ν=1

( Pν

νpν

)k

pν |ǫν |
k|t1

ν
|k

] [

1

Pn−1

n−1
∑

ν=1

pν

]k−1
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= O(1)

m+1
∑

ν=1

( Pν

νpν

)k

pν |ǫν |
k|t1ν |

k

m+1
∑

n=ν+1

nk−1

Pn−1

( pn

Pn

)k

= O(1)

m+1
∑

ν=1

( Pν

νpν

)k

pν |ǫν |
k|t1ν |

k

(νk−1pk−1
ν

P k
ν

)

= O(1)

m+1
∑

ν=1

νk−1|ǫν |
k|t1ν |

k < ∞.

Using Hölder’s inequality,(4), and (6),

m
∑

n=2

nk−1|Qn3|
k =

m+1
∑

n=2

nk−1
∣

∣

∣

pn

PnPn−1

n−1
∑

ν=1

Pν∆ǫνt1
ν

∣

∣

∣

k

≤

m
∑

n=2

nk−1

Pn−1

( pn

Pn

)

[

n−1
∑

ν=1

(Pν

pν

)k

pν |∆ǫν |
k|t1

ν
|k

] [

1

Pn−1

n−1
∑

ν=1

pν

]k−1

= O(1)

m
∑

ν=1

(Pν

pν

)k

pν |∆ǫν |
k|t1

ν
|k

m+1
∑

n=ν+1

nk−1

Pn−1

( pn

Pn

)k

= O(1)

m
∑

ν=1

(Pν

pν

)k

pν |∆ǫν |
k|t1ν |

k
νk−1pk−1

ν

P k
ν

= O(1)

m
∑

ν=1

νk−1|∆ǫν |
k|t1

ν
|k = O(1).

From (5),

m
∑

n=2

nk−1|Qn4|
k =

m+1
∑

n=2

nk−1
∣

∣

∣

pn

Pn

ǫnt1n

∣

∣

∣

k

=

m+1
∑

n=2

nk−1
( pn

Pn

)k

|ǫn|
k|t1n|

k

≤

m+1
∑

n=2

nk−1|ǫn|
k|t1n|

k = O(1).

Part (B). It is sufficient to show that conditions (5) and (6) are satisfied, since any
weighted mean matrix satisfying (3) automatically satisfies (4).

Since ∆ǫn = O(1)(n−1|ǫn|), (6) becomes

m
∑

ν=1

νk−1O(1)
( |ǫν |

ν

)k

|t1
ν
|k = O(1)

m
∑

ν=1

1

νk
νk−1|ǫν |

k|t1
ν
|k

≤ O(1)

m
∑

ν=1

νk−1|ǫν |
k|t1

ν
|k.
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To prove (5),

n
∑

ν=1

νk−1|ǫν |
k|t1

ν
|k =

n
∑

ν=1

νk|ǫν |
k

[

ν
∑

i=1

1

i
|t1

i
|k −

ν−1
∑

i=1

1

i
|t1

i
|k

]

= nk|ǫn|
k

n
∑

i=1

1

i
|t1

i
|k +

n−1
∑

ν=1

ν
∑

i=1

1

i
|t1

i
|k[νk|ǫν |

k − (ν + 1)k|ǫν+1|
k]

≤ nk|ǫn|
k

n
∑

i=1

1

i
|t1i |

k +

n
∑

ν=1

ν
∑

i=1

1

i
|t1i |

k(ν + 1)k∆|ǫν |
k

= I1 + I2.

From (7), I1 = O(nk|ǫn|
kλk

n
) = O(1)

Since ∆|ǫν |
k = k(|ǫν | − |ǫν+1|)ξ

k−1 for some ξ between |ǫν | and |ǫν+1| by the mean
value theorem,

∆|ǫν |
k ≤ k|∆ǫν |ξ

k−1

= O(|ǫν |
k−1|∆ǫν |) since ǫn = o(1).

Therefore

I2 = O(1)

n
∑

ν=1

λk

ν
(ν + 1)k∆|ǫν |

k

= O(1)

n
∑

ν=1

λk

ν(ν + 1)k|ǫν |
k−1|∆ǫν |.

Since νλν |ǫν | = O(1),

I2 = O(1)

n
∑

ν=1

λν(ν + 1)|∆ǫν |

= O(1)

n
∑

ν=1

|∆ǫν |

[

ν
∑

i=1

(i + 1)λi −

ν−1
∑

i=1

(i + 1)λi

]

= O(1)

[

|∆ǫn|

n
∑

i=1

(i + 1)λi +

n−1
∑

ν=1

ν
∑

i=1

(i + 1)λi∆(|∆ǫν |)

]

.

|∆ǫn|

n
∑

i=1

(i + 1)λi = O(n−1|ǫn|)O((n + 1)λn n)

= O((n + 1)λn|ǫn|) = O(1).

Thus

I2 ≤ O(1) +

n−1
∑

ν=1

ν
∑

i=1

(i + 1)λi|∆
2ǫν |
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≤ O(1) +

n−1
∑

ν=1

λν |∆
2ǫν |

ν
∑

i=1

(i + 1)

= O(1) + O(1)

n−1
∑

ν=1

λνν2|∆2ǫν | = O(1),

by (8).
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