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WELL-POSEDNESS FOR GENERALIZED
VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
WITH PERTURBATIONS IN REFLEXIVE BANACH SPACES

LU-CHUAN CENG, YUNG-YIH LUR AND CHING-FENG WEN

Abstract. In this paper, we consider an extension of well-posedness for a minimization
problem to a class of generalized variational-hemivariational inequalities with perturba-
tions in reflexive Banach spaces. We establish some metric characterizations for the a-
well-posed generalized variational-hemivariational inequality and give some conditions
under which the generalized variational-hemivariational inequality is strongly a-well-
posed in the generalized sense. Under some mild conditions, we also prove the equiv-
alence between the a-well-posedness of the generalized variational-hemivariational in-
equality and the a-well-posedness of the corresponding inclusion problem.

1. Introduction

In 1966, Tykhonov [24] first introduced a classical notion of well-posedness for a mini-
mization problem, which has been known as the Tykhonov well-posedness. The minimiza-
tion problem is said to be well-posed if there exists a unique minimizer and every mini-
mizing sequence converges to the unique minimizer. Meantime, the concept of generalized
Tykhonov well-posedness is introduced for the minimization problem, which means the exis-
tence of minimizers and the convergence of some subsequence of every minimizing sequence
toward a minimizer. It is clear that the concept of well-posedness is inspired by numerical
methods producing optimizing sequences for optimization problems and plays a crucial role
in optimization theory. Because of its importance in optimization problems, various kinds of
well-posedness for optimization problems have been introduced and studied by many math-
ematicians in the optimization research field. For more details, we refer to [11, 14, 29, 30] and
the references therein.
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Furthermore, it is well known that a differentiable minimization problem is closely re-
lated to a variational inequality of differential type. Naturally, the concept of well-posedness
has been captured by many researchers to study variational inequalities. An initial notion
of well-posedness for variational inequality is due to Lucchetti and Patrone [17]. They in-
troduced the concept of well-posedness for a variational inequality and proved some related
results by means of Ekeland’s variational principle. Fang et al. [5, 6] generalized two kinds
of well-posedness for a mixed variational inequality problem in Banach space, respectively.
They established some metric characterizations of the two kinds of well-posedness for the
mixed variational inequality, showed the equivalence of the two kinds of well-posedness among
the mixed variational inequality problem, its corresponding inclusion problem and its cor-
responding fixed point problem, and derived some conditions under which the two kinds
of well-posedness for the mixed variational inequality are equivalent to the existence and
uniqueness of its solution. In recent years, the concept of well-posedness has been gener-
alized to various kinds of well-posedness for different variational inequalities by many au-
thors. Also, they established the metric characterizations for well-posed variational inequal-
ities, the necessary and sufficient conditions of well-posedness for variational inequalities,
and the links of well-posedness between variational inequalities and their related problems
such as minimization problems, fixed pointed problems and inclusion problems. For further
results on the well-posedness of variational inequalities, we refer to [10, 12, 13, 23, 33] and the

references therein.

As an important and useful generalization of variational inequality, hemivariational in-
equality was first introduced in order to formulate variational principles involving nonconvex
and nonsmooth energy functions, and investigated by Panagiotopoulos [21] using the math-
ematical concepts of the Clarke’s generalized gradient for nonconvex and nondifferentiable
functions [4]. The hemivariational inequalities have been proved very efficient to describe
a variety of mechanical and engineering problems, e.g., non-monotone semipermeability
problems, unilateral contact problems in nonlinear elasticity; see e.g., [1, 2, 9, 16, 18, 19, 20,
22]. It seems to be natural and easy to generalize the concept of well-posedness to hemivari-
ational inequalities and most results on well-posedness for variational inequalities should
hold for hemivariational inequalities under some similar conditions. However, it is not the
truth. The Clarke’s generalized directional derivative of a nonconvex and nonsmooth Lips-
chitz functional in hemivariational inequalities makes it much difficult. However, there are
very few researchers extending the well-posedness to a hemivariational inequality.

In 1995, Goeleven and Mentagui [8] first introduced the well-posedness for a hemivari-
ational inequality and presented some basic results concerning the well-posed hemivaria-

tional inequality. Recently, using the concept of approximating sequence, Xiao et al. [26,
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27] defined a concept of well-posedness for a hemivariational inequality and a variational-
hemivariational inequality. They gave some metric characterizations for the well-posed hemi-
variational inequality and the well-posed variational-hemivariational inequality, and proved
the equivalence of well-posedness between the hemivariational inequality and the corre-
sponding inclusion problem. However, for the conditions of well-posedness for the hemi-
variational inequality and the variational-hemivariational inequality, Xiao et al. [26, 27] only
gave a sufficient condition in Euclidean space R™. In addition, for other recent works on the
well-posedness for variational-hemivariational inequalities; see also e.g., [3, 34].

Let X be a real reflexive Banach space with its dual X*. We denote the duality pairing
between X and X* by (-,-), and the norm of Banach space X by || - ||. In this paper, we always
suppose that F: X — 2X" is a nonempty set-valued mapping, T : X — X* is a perturbation,
G: X — Ru{+oc} is a proper, convex and lower semicontinuous functional, J°(-,-) stands for
the Clarke’s directional derivative of the locally Lipschitz functional J: X — R, and f € X* is

some given element. Denote by domG the domain of functional G, i.e.,
domG:={x€ X : G(x) < +o0}.

Consider the following generalized variational-hemivariational inequality: find x € X such

that for some u € F(x),

GVHVI: (u+Tx,y—x)+J°(x,y—x)+G() - Gx) ={f,y—x),
VyeX.

(1.1)

In particular, if F = A a single-valued mapping from X to X*, then the generalized variational-
hemivariational inequality GVHVI reduces to the variational-hemivariational inequality VHVI
considered in Xiao and Huang [26]. A concrete example of a variational-hemivariational in-
equality (see [20]) is the adhesive contact problem between a linear elastic body and a rubber
support considered in [26], which is subject to a nonmonotone multivalued boundary condi-

tion.

In the present paper, we generalize the concept of well-posedness for the variational-
hemivariational inequality with perturbation in Xiao and Huang [26] to the generalized
variational-hemivariational inequality with perturbation, which includes, as special cases,
the classical hemivariational inequality, the variational-hemivariational inequality, and the
generalized mixed variational inequality. Under very mild conditions, we establish some met-
ric characterizations for the a-well-posed generalized variational-hemivariational inequal-
ity, and derive some conditions under which the generalized variational-hemivariational in-
equality is strongly a-well-posed in the generalized sense. We also prove that the a-well-
posedness of the generalized variational-hemivariational inequality is equivalent to the a-
well-posedness of the corresponding inclusion problem.
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2. Preliminaries

Throughout this paper, unless stated otherwise, we always suppose that X is a real reflex-
ive Banach space and the norms of X and its dual X* are denoted by the same symbol || - |.
Assume that J : X — Ris alocally Lipschitz functional on X, x is a given point and y is a vector
in X. The Clarke’s generalized directional derivative of J at x in the direction y, denoted by
J°(x,), is defined by

P, y) = limsup LA @
z2=x A0 A

Let G: X — Ru{+oo} be a proper, convex and lower semicontinuous functional. We denote by
0G(x): X — 2X" \{g} and 0] (x) : X — 25"\ {@} the subgradient of convex functional G in the
sense of convex analysis (see [36]) and the Clarke’s generalized gradient of a locally Lipschitz

functional J (see [4]), respectively. That is,

0G(x) ={pe X" :G()) - G(x) ={p,y — x), Vy € X}
and
0J(x) = (e X : J°(x, 1) = (&, 1), Vy e X).

Remark 2.1 (see [1]). The Clarke’s generalized gradient of a locally Lipschitz functional J :
X — Ratapoint x is given by
0J(x) = 0U° (x,)(0).

Concerning the subgradient in the sense of convex analysis, the Clarke’s generalized di-
rectional derivative and the Clarke’s generalized gradient, we have the following basic prop-
erties (see e.g., [1, 4, 18, 20, 36]).

Proposition 2.1. Let X be a Banach space and G : X — RU {+o0} be a convex and proper func-
tional. Then we have the following properties of 0G:

() 0G(x) is convex and weak™ -closed;
(i) If G is continuous at x € domG, then 0G(x) is nonempty, convex, bounded, and weak” -

compact;

(iii) If G is Gateaux differentiable at x € domG, then 0G(x) = {DG(x)}, where DG(x) is the
Gateaux derivative of G at x.

Proposition 2.2. Let X be a Banach space and G1, G, : X — Ru{+oo} be two convex functionals.
If there is a point xy € domG; NndomG, at which Gy is continuous, then the following equation
holds:

0(G1 + Gz)(x) = 0G1 (x) +0G2(x), VxeX.
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Proposition 2.3. Let X be a Banach space, x,y € X and ] be a locally Lipschitz functional
defined on X. Then

(i) The function y — J°(x, y) is finite, positively homogeneous, subadditive and then convex
onX;

(i) J°(x,y) is upper semicontinuous as a function of (x, y), as a function of y alone, is Lips-
chitz continuous on X;

(i) J°(x,—y)=(=D°(x,¥);
(iv) F) J(x) is a nonempty, convex, bounded and weak* -compact subset of X*;

(v) Foreveryye€ X, one has
J°(x, y) = max{(¢, y) : £ €8] ()}

(vi) The graph of the Clarke’s generalized gradient 0J(x) is closed in X x (w*-X*) topology,
where (wW*-X*) denotes the space X* equipped with weak™ topology, i.e., if{x,} € X and
{x*} c X* are sequences such that x’, € 0] (x,), X, — x in X and x’, — x* weakly* in X*,
then x* € 0] (x).

In the sequel, we recall some important definitions and useful results.

Definition 2.1. Let X be a Banach space with its dual X* and T a single-valued operator from
X to its dual space X*. T is said to be monotone, if

(Tx-Ty,x—y)=0, Vx,yeX.

Definition 2.2. Let X be a Banach space with its dual X* and F: X — 2% a nonempty multi-
valued operator from X to X*. F is said to be monotone, if

(u-—v,x—y)=0, Vx,yeX,ueF(x),veF(y).

Let A, A» be nonempty subsets of a normed vector space (X, || - ). The Hausdorff metric
J€(-,-) between A; and A; is defined by

(A1, Az) = max{e(A;, A), e(A, A1)},

where e(Ay, Ap) = sup e 4, d(a, A) with d(a, Ap) = infye 4, lla— b|. Note that [25] if A; and A
are compact subsets in X, then for each a € A; there exists b € A, such that

la—Dbll = # (A1, Az).

Definition 2.3. [see [32]] Let /(-,-) be the Hausdorff metric on the collection CB(X*) of all
nonempty, closed and bounded subsets of X*, which is defined by

€ (A, B) = max{e(A, B), e(B, A)}

for A and B in CB(X™). A nonempty set-valued mapping F: X — CB(X™) is said to be
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(i) A-hemicontinuous, if for any x, y € X, the function ¢t — A(F(x + t(y — x)), F(x)) from
[0,1] into Rt = [0, +00) is continuous at 0%;
(i) A£-continuous, if for any € > 0 and any fixed x € X, there exists § > 0 such that for all

ye€ X with |y— x| <6, one has #(F(y), F(x)) <e.

Remark 2.2. Clearly, the /°-continuity implies the #’-hemicontinuity, but the converse is

not true in general.

Theorem 2.1 (see [7]). Let C < X be nonempty, closed and convex, C* < X* be nonempty,
closed, convex and bounded, ¢ : X — R be proper, convex and lower semicontinuousandy € C

be arbitrary. Assume that, for each x € C, there exists x*(x) € C* such that
(X" (0, x =) 2 () - p(x).
Then, there exists y* € C* such that
Y x=y=e(y)—pkx), VxeC.

Definition 2.4 (see [35]). Let S be a nonempty subset of X. The measure of noncompactness
w of the set S is defined by

n
u(S):=infle>0:Sc | JS;, diam(S)) <¢, i =1,2,...,n},
i=1

where diam(S;) means the diameter of set S;.

3. Well-posedness of GVHVI with metric characterizations

Based on the concepts of well-posedness in [26, 27, 31, 32, 33, 34], we introduce some
concepts of well-posedness for the generalized variational-hemivariational inequality GVHVI
with perturbation, establish its metric characterizations and derive some conditions under
which the generalized variational-hemivariational inequality GVHVI is strongly a-well-posed
in the generalized sense in Euclidean space R™. Let @ : X — R* = [0, +00) be a convex and

continuous functional with a(fx) = ta(x) Vi =0and Vx € X.

Definition 3.1. A sequence {x,} c X is said to be an a-approximating sequence for GVHVI if
there exist u,, € F(x,), n € N and a nonnegative sequence {€,} with €;, — 0 as n — oo such that

(Un+Txp—f,y—x0)+J°(Xn, ¥y — xn) + G(y) — G(xp) = —€pa(y—x,), VyeX,neN. (3.1)

In particular, if @(-) = | - || the norm of X, then {x,} is said to be an approximating sequence
for GVHVI.
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Definition 3.2. GVHVI is said to be strongly (resp., weakly) a-well-posed if GVHVI has a
unique solution in X and every a-approximating sequence converges strongly (resp., weakly)
to the unique solution. In particular, if a(-) = | - || the norm of X, then GVHVI is said to be

strongly (resp., weakly) well-posed.

Remark 3.1. The strong a-well-posedness implies the weak a-well-posedness, but the con-
verse is not true in general.

Definition 3.3. GVHVI is said to be strongly (resp., weakly) a-well-posed in the generalized
sense if GVHVI has a nonempty solution set S in X and every a-approximating sequence has

a subsequence which converges strongly (resp., weakly) to some point of solution set S.

Remark 3.2. The strong a-well-posedness in the generalized sense implies the weak a-well-

posedness in the generalized sense, but the converse is not true in general.

Remark 3.3. The concepts of strong and weak a-well-posedness for GVHVI introduced in
this paper include as special cases Definitions 3.2—-3.3 in Xiao and Huang [26].

For any € > 0, we define the following two sets:

Qqle) ={xeX:JueF(x)stl{u+Tx—f,y—x)+J°(x,y—x) + G(y) — G(x)
= —ea(y—x), Vye X}

and
Agle) ={xeX: (v+Tx—f,y—-x)+]°(x,y—x)+ G(y) — G(x)

= —ea(y—x), Vye X, ve F(y)}.

Lemma 3.1. Suppose that F : X — 2X" is a nonempty compact-valued mapping which is 7 -
hemicontinuous and monotone. Let G : X — RU {+o0} be a proper, convex and lower semicon-

tinuous functional. Then, Q4 (€) = Ay (€), for alle > 0.

Proof. We first claim that Q, () € A4 (€). Indeed, take an arbitrary x € Q4 (€). Then there exists
u € F(x) such that

(u+Tx—-f,y—x +]°(x,y—x) +G(y)-G(x) =z —-eca(y—x), VyeX.
So, it follows from the monotonicity of the mapping F that

(+Tx—f,y=-x)+]°(x,y—x)+G(y) - G(x)
2(u+Tx—f,y—-x)+]°(x,y—x)+G(y) - G(x)
= —ca(y—x), Vye X, ve F(y).

This means that x € A, (e). Thus, Qg () € Ay (€).
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Now we show that Ay (€) € Q4 (€). Indeed, for any x € A4 (€), we have
(W+Tx—f,y-x0+]°(x,y—x)+G() - G(x) = —ea(y—x), VyeX, veF(y).

Given any y € X we define y; = ty+ (1 —-t)x = x+ t(y —x) for all # € (0,1). Replacing y and
v by y; and v, in the last inequality, respectively, we deduce from the convexity of G and the

positive homogeneousness of the functions y — J°(x, y) and « that for each v, € F(y,),

—tea(y—x) = —ea(t(y—x))
<+ Tx—f,t(y—x))+J°(x, t(y—x)+ Gy — Gx)
s+ Tx—f,t(y—x)+J°(x, t(y — x) + t(G(y) — G(x))
=tlve+ Tx—f,y—x)+]°(x,y—x)+ G() — G(x)],

which hence implies that for each ¢ € (0,1) and each v; € F(y;),
(Vi +Tx—f,y—x)+J°(x,y—x) + G(y) - G(x) = —ea(y — x). (3.2)

Since F: X — 2X" is a nonempty compact-valued mapping, F(y;) and F(x) are nonempty
compact sets. Hence, by Nadler’s result [25] we know that for each ¢ € (0,1) and each fixed
v € F(y;) there exists an u; € F(x) such that ||v; — u;|| = A (F(y;), F(x)). Since F(x) is com-
pact, without loss of generality we may assume that u, — u € F(x) as t — 0*. Since F is
#C-hemicontinuous, we obtain that

lvi— usll < #(F(y,),F(x)) — 0 ast—0",
which immediately leads to
lve—ul < lve—uell + lus;—ul —0 asr—0*. 3.3)
Hence, taking the limsup as t — 0" in (3.2) we conclude from (3.3) that
(u+Tx—f,y—x) +]°(x,y—x) +G(y) - G(x) =z —ea(y —x).

By the arbitrariness of y € X, we know that x € Q4 (€), which implies that A, () < Q4(€). This
completes the proof. a

Lemma 3.2. Suppose that T : X — X* is continuous and let G : X — RU {+oo} be a proper,

convex and lower semicontinuous functional. Then, Ay (€) is closed in X for alle > 0.
Proof. Let {x,} € Ay(€) be a sequence such that x,, — x in X. Then

W+ Txp—f,y—xn)+ 1 (Xn, y—x) +G(y) = G(x,) = —€a(y — x,), VyeX, veF(y). (3.4)
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Since T : X — X* is continuous, a : X — [0,+00) is continuous, Clarke’s generalized direc-
tional derivative J°(x, y) is upper semicontinuous with respect to (x, y) and G: X — RU {+oc}
is lower semicontinuous, we have that (Tx,— f, y—x,) = (Tx—f,y—x), a(y—x,) — a(y—x),
limsup J°(x,,, y— x,) < J°(x,y—x) and limsup-G(x,) <-G(x).
n—o00 n—oo

So, taking the limsup as n — co at both sides of (3.4), we have
(W+Tx—f,y-x0+]°(x,y—x)+G() - G(x) = —ea(y—x), VyeX, veF(y),
which implies that x € A, (€). Thus, A4 (€) is closed in X. This completes the proof. O

Corollary 3.1. Suppose that F : X — 2X" is a nonempty compact-valued mapping which is
J€-hemicontinuous and monotone. Let T : X — X* be a continuous mapping and G : X —
RU {+0o0} be a proper, convex and lower semicontinuous functional. Then, for alle > 0, Q4 (€) =
Ay (€) isclosedin X.

Theorem 3.1. Suppose that F : X — 2X" is a nonempty compact-valued mapping which is
A -hemicontinuous and monotone. Let T : X — X* be a continuous mapping and G : X —
R U {+o0} be a proper, convex and lower semicontinuous functional. Then, GVHVI is strongly
a-well-posed if and only if

Que)#@ Ve>0 and diam(Qq(€) —0 ase— 0. (3.5)

Proof. (Necessity) Suppose that GVHVI is strongly a-well-posed. Then, GVHVI has a unique
solution which belongs to Q(€) and so Q,(€) # @ for all € > 0. If diam(Q(¢)) does not con-
verge to 0 as € — 0, then there exist a constant [ > 0, a nonnegative sequence {¢,} with €, — 0
and x5, y» € Qq(€,) such that

lx,—ynll>1, VneN. (3.6)

Since x5, yn € Qq(€,), we know that {x,} and {y,} are both a-approximating sequences for
GVHVL. It follows from strong a-well-posedness of GVHVI that both {x,} and {y,} converge
strongly to the unique solution of GVHVI, which is a contradiction to (3.6).

(Sufficiency) Let {x,} € X be an a-approximating sequence for GVHVI. Then, there exist u, €
F(x,),n € N and a nonnegative sequence {€,} with €,, — 0 such that

(Un+Txp—f,y—xpn)+ ] (Xn, ¥y — xn) + G()) — G(xp) = —€na(y—x,), VyeX, neN, (3.7)

which implies that x, € Q4 (e,;). From (3.5), It follows that {x,} is a Cauchy sequence, and
so {x,} converges strongly to some point x € X. Since the mapping F is monotone, the map-
ping T is continuous, the Clarke’s generalized directional derivative J°(x, y) is upper semicon-
tinuous with respect to (x, y) and G is lower semicontinuous, we deduce from (3.7) and the
property of the functional « that for all ye X and v e F(y)

(v+Tx—f,y—x)+J°(x,y—x)+G() - Gx)
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> limsup{(v+Tx,— f,y—xn) +J° (Xn, ¥ — X)) + G(y) — G(xp)}

n—oo

= limsup{(u, + Tx,— f, ¥ — xp) + J° (X0, ¥ — Xp) + G(¥) — G(xp,)}
n—o00

= limsup —e,a(y — x5,)
n—o00

= limsup — a(e,(y — x,))
n—oo

= -a(0) =0. (3.8)

Given any y € X we define y; = x+ t(y — x) for all ¢ € (0,1). Replacing y and v by y; and v;
in (3.8), we obtain from the positive homogeneousness of J°(x, y) with respect to y and the
convexity of G that for each v; € F(y,),

(Ve +Tx—f,y—-x)+J°(x,y—x)+G(y) — G(x) = 0. (3.9)

Since F: X — 2X" is a nonempty compact-valued mapping, F(y;) and F(x) are nonempty
compact sets. Hence, by Nadler’s result [25] we know that for each ¢ € (0,1) and each fixed
v € F(y;) there exists an u; € F(x) such that ||v; — u;|| = A(F(y;), F(x)). Since F(x) is com-
pact, without loss of generality we may assume that u; — u € F(x) as t — 0". Since F is
JC-hemicontinuous, we obtain that

lv,—uell < #(F(y;),F(x)) -0 ast—0",
which immediately leads to
lv,—ull < lve—ugll +llug—ul —0 ast—0".
Now, taking the limsup as t — 0% in (3.9), we get
(u+Tx—f,y—-x)+J°(x,y—x)+G(y) - G(x) =0, VyeX,

which implies that x solves GVHVI.

To complete the proof of Theorem 3.1, we need only to prove that GVHVI has a unique
solution. Assume by contradiction that GVHVI has two distinct solutions x; and x,. Then it is
easy to see that x, x» € Q4 (€) for all e > 0 and

0 < |lx1 — x2|l < diam(Qq(€)) — 0,
which is a contradiction. Therefore, GVHVI has a unique solution.
This completes the proof. O

Theorem 3.2. Suppose that F : X — 2X is a nonempty compact-valued mapping which is
S -hemicontinuous and monotone. Let T : X — X* be a continuous mapping and G : X —
RU {+o0} be a proper, convex and lower semicontinuous functional. Then, GVHVI is strongly
a-well-posed in the generalized sense if and only if

Que)#® Ye>0 and pu(Qq(€)) —0 ase—0. (3.10)
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Proof. (Necessity) Suppose that GVHVI is strongly a-well-posed in the generalized sense.
Then the solution set S of GVHVI is nonempty and S < Qg (¢) for any € > 0. Furthermore, the
solution set S of GVHVI is also compact. As a matter of fact, for any sequence {x,} c S, it
follows from S c Q4 (€) for any € > 0 that {x,} c S is an a-approximating sequence for GVHVI.
Since GVHVTI is strongly a-well-posed in the generalized sense, {x,} has a subsequence which
converges strongly to some point of the solution set S. Thus, the solution set S of GVHVI is

compact. Now we show that u(Qg(€)) — 0 as e — 0. From S < Qg (¢) for any € > 0, we get
HE(Qq (€),8) = max{e(Qq(€),5), e(S,Qa ()} = e(Qq (€), S). (3.11)
Taking into account the compactness of the solution set S, we obtain from (3.11) that
1(Qq(€) =24(Q4(€),S) =2e(Qq(€),S).

Thus, to prove u(Qq(€)) — 0 as € — 0, it suffices to show that e(Q4(€), S) — 0 as € — 0. Assume
by contradiction that e(Q,(€),S) 7~ 0 as € — 0. Then there exist a constant / > 0, a sequence
{e,} € [0,00) with €;,, — 0 and x;, € Q,(€;) such that

where B(0, 1) is the closed ball centered at 0 with radius /. Since {x,} is an a-approximating
sequence for GVHVI and GVHVI is strongly a-well-posed in the generalized sense, there ex-
ists a subsequence {x,,} converging strongly to some point x € S, which is a contradiction to
(3.12). Consequently, u(Qq(€)) — 0ase — 0.

(Sufficiency) Assume that condition (3.10) holds. By Corollary 3.1, we obtain that Qg (¢€) is
nonempty and closed for all € > 0. Observe that

S={)Qqle. (3.13)

e>0

Since p(Qq(€)) — 0 as € — 0, by applying the theorem in [35, p.412], one easily concludes that
S is nonempty and compact with

e(Qq(€),S) = A (Qyu€),S) — 0 ase—0. (3.14)

Let {x,} c X be an a-approximating sequence for GVHVI. Then there exist u, € F(x,),n €N
and a nonnegative sequence {e,} with €;, — 0 such that

(Un+Txp—=f,y=x) +J° (X0, Yy = x0) + G(y) = G(xp) = —€a(y —x,), VyeX, neN,
and so x, € Qq(€,) by the definition of Qg (€¢;,). It follows from (3.14) that

d(xp,S) =e(Qq(en),S) — 0.
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Since the solution set S is compact, there exists X, € S such that
| Xn — Xnll = d(xy, S) — 0. (3.15)

Again from the compactness of the solution set S, {X,} has a subsequence {X,,} converging
strongly to some x € S. It follows from (3.15) that

1 %n;, = Xl < 1 X, = X | + 1 X — Xl = O,

which implies that {x,,} converges strongly to x. Therefore, GVHVI is strongly a-well-posed

in the generalized sense. This completes the proof. a

The following theorem gives some conditions under which the generalized variational-
hemivariational inequality is strongly a-well-posed in the generalized sense in Euclidean

space R™.

Theorem 3.3. Let F: R™ — CB(R™) be a nonempty /€ -hemicontinuous and monotone multi-
function. Let T : R™ — R™ be a continuous mapping and G : R™ — RU {+o0} be a proper, convex
and lower semicontinuous functional. If there exists some € > 0 such that Qg (€) is nonempty
and bounded, then generalized variational-hemivariational inequality GVHVI is strongly a-

well-posed in the generalized sense.

Proof. Suppose that {x,} is an a-approximating sequence for GVHVI. Then, there exist u, €

F(x,),n € N and a nonnegative sequence {¢,} with €, — 0 as n — oo such that
(Un+Txn—f,y—xn)+ ] (Xn, ¥y —x0) + G(y) = G(x,) = —€,a(y—x,), VyeR", neN. (3.16)

Let g > 0 be such that Qg (€p) is nonempty and bounded. Then, there exists ng such that x,, €
Qg (€g) for all n = ny. So, it follows that {x,} is bounded in R™ by the boundedness of Q (€g).
Thus, there exists a subsequence {x;,} such that x,, — % as k — oco. Since the mapping F is
monotone, the mapping T is continuous, Clarke’s generalized directional derivative J°(x, y)
is upper semicontinuous with respect to (x, y) and G is lower semicontinuous, it follows from

(3.16) and the property of the functional a that for any y e R*, v € F(y),

(v+Tx-f,y-+J°(X,y-%+G(y) - GX)
> limsup{(v+ Txp, — f, ¥ — Xn) + I (X, ¥ — Xn,) + G(y) — G(xp,)}

k—o0

> limsup{(up, + Txn, — f, ¥ — Xn.) + I (X, ¥ — Xn,) + G(¥) — G(x, )}
k—o0

> limsup —e,, a(y — xp,)
k—o0

= limsup — aley,, (¥ — xn,))

k—o0
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= —a(0) =0. (3.17)

Given any y € R™ we define y; = ty+ (1 - )X = X+ t(y — x) for all ¢ € (0,1). Replacing y and
v in (3.17) by y; and vy, respectively, we deduce from the positive homogeneousness of the
function y — J°(x, y) and the convexity of G that for each v; € F(y;)

Wi+ Tx—f,y—-%+J° (% y-%)+G(y) -G = 0. (3.18)

Since F : R™ — CB(R") is a nonempty compact-valued mapping, F(y;) and F(X) are nonempty
compact sets. Hence, by Nadler’s result [25] we know that for each ¢ € (0,1) and each fixed
v; € F(y;) there exists an u; € F(X) such that ||v; — u;|| = A (F(y;), F(X)). Since F(X) is com-
pact, without loss of generality we may assume that u; — @ € F(X) as t — 0. Since F is
#-hemicontinuous, we obtain that

lve—usll < A(F(y,),F(X) -0 ast—0",
which immediately leads to
lv,—all < lve—uell+ llug—al —0 ast—0".
Now, taking the limsup as t — 0" in (3.18), we get
(a+Tx—f,y—-+J°(X,y-0+G(y)-G(X) =0, VyeR",

which implies that X solves GVHVI. Therefore, GVHVI is strongly a-well-posed in the gener-
alized sense. This completes the proof. O

Remark 3.4. Whenever the mapping F is single-valued, GVHVI (1.1) reduces to VHVI (1) in
[26]. In this case, it is easy to see that the above Lemmas 3.1-3.2, Corollary 3.1 and Theorems
3.1-3.3 reduce to Lemmas 3.1-3.2, Corollary 3.1 and Theorems 3.1-3.3 in [26], respectively.
Therefore, the above Lemmas 3.1-3.2, Corollary 3.1 and Theorems 3.1-3.3 improve, extend
and develop Lemmas 3.1-3.2, Corollary 3.1 and Theorems 3.1-3.3 in [26], respectively.

4. Links with Well-Posedness for the Corresponding Inclusion Problem

In this section, we introduce the concept of a-well-posedness for the inclusion prob-
lem and investigate the relations between the a-well-posedness of generalized variational-
hemivariational inequality GVHVI and the a-well-posedness of the corresponding inclusion
problem. In what follows, we always assume that I" is a nonempty set-valued mapping from
a real reflexive Banach space X to its dual space X*. The inclusion problem associated with
the mapping I' is defined by

IPT): find x€ X such that 0 € I'(x).
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Definition 4.1. A sequence {x,} < X is called an a-approximating sequence for the inclusion
problem IP(T) if there exist w, € I'(x;,), n € N and a nonnegative sequence {e€,} with |[w,| +

€, — 0 as n — oo, such that
(Wi, Yy —Xp) = —€pa(y—x,), VyeX, neNlN.

Definition 4.2. We say that the inclusion problem IP(T') is strongly (resp., weakly) a-well-
posed if it has a unique solution and every a-approximating sequence converges strongly
(resp., weakly) to the unique solution of IP(I').

Definition 4.3. We say that the inclusion problem IP(I') is strongly (resp., weakly) a-
well-posed in the generalized sense if the solution set S of IP(I') is nonempty and every
a-approximating sequence has a subsequence which converges strongly (resp., weakly) to
some point of the solution set S for IP(I').

The following two theorems establish the relations between the strong (resp., weak) a-
well-posedness of generalized variational-hemivariational inequality GVHVI and the strong

(resp., weak) a-well-posedness of the corresponding inclusion problem.

Theorem 4.1. Let F : X — 2% be a nonempty set-valued mapping from a Banach space X
toits dual X*, and T : X — X* be a mapping from X to X*, ] : X — R be a locally Lipschitz
functional and G : X — RU {+oc} be a proper, convex and lower semicontinuous functional.
The generalized variational-hemivariational inequality GVHVI is strongly (resp., weakly) a-
well-posed if and only if the corresponding inclusion problem IP(F + T — f + 8] +0G) is strongly
(resp., weakly) a-well-posed.

Theorem 4.2. Let F : X — 2% be a nonempty set-valued mapping from a Banach space X
to its dual X*, and T : X — X* be a mapping from X to X*, ] : X — R be a locally Lipschitz
functional and G : X — RU {+oo} be a proper, convex and lower semicontinuous functional.
The generalized variational-hemivariational inequality GVHVI is strongly (resp., weakly) a-
well-posed in the generalized sense if and only if the corresponding inclusion problem IP(F +
T-f+ 0] +0G) is strongly (resp., weakly) a-well-posed in the generalized sense.

In order to prove Theorems 4.1 and 4.2, we need the following lemma.

Lemma 4.3. Let F : X — 2X" be a nonempty set-valued mapping from a Banach space X to
its dual X*, and T : X — X* be a mapping from X to X*, ] : X — R be a locally Lipschitz
functional and G : X — RU {+oo} be a proper, convex and lower semicontinuous functional.
Then the following two statements are equivalent:

(i) x€ X isasolution to the generalized variational-hemivariational inequality GVHVI;
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(ii) x isasolution to the inclusion problem

IP(F+T—f+0]+0G): Find x € X such that
0€(F+T—-f+0]+0G)x.

Proof. We first claim that (ii) = (i). Indeed, let x € X be a solution to the inclusion problem
IP(F+T-f +0J +0G). Then, there exist u € F(x),¢é€ 0J(x) and o € 0G(x) such that

O=u+Tx-f+&+p.

By multiplying y — x at both sides of the last equality, we obtain, from the definitions of the
Clarke’s generalized gradient for locally Lipschitz functional and the subgradient for convex
functional, that

0=(u+Tx—f+¢+p,y—X)
<u+Tx-f,y—-x+7]°x,y—-x)+G())-Gx), VyelX,

which implies that x is a solution of GVHVI.

We show that (i) = (ii). Indeed, suppose that x is a solution of GVHVI, which means that

for some u € F(x),
(u+Tx—f,y—-x)+J°(x,y—-x)+G(y) - G(x) =0, VyeX.

From the fact that
J°(x,y — %) = max{(¢,y — x): £ € 0] ()},

we get that there exists a &(x, y) € 0/ (x) such that
U+Tx—f,y-x0+¢xy),y—-x+G()-Gx)=0, VyeX.

By virtue of Proposition 2.3, dJ(x) is a nonempty convex and bounded subset in X*, which
implies that {u+ Tx— f+¢&: & € 3J(x)} is nonempty, convex and bounded in X*. Since G: X —
R U {+o0} is a proper, convex and lower semicontinuous functional, it follows from Theorem
2.1 with ¢(-) = G(-) and the last inequality that there exists &(x) € dJ(x) such that

(Uu+Tx—f,y—x+¢x),y—x)+G()-Gx) =0, VyeX.
For the sake of simplicity, we denote ¢ = {(x). Then, by the last inequality we have
G)-Gx)=z(—(u+Tx—-f+<),y—x), VyeX,
which implies that —(u + Tx — f +¢) € 0G(x). Thus, it follows from ¢ € 0J(x) that

Ocu+Tx—f+E+0G(x) CF(x)+ Tx—f+0J(x)+0G(x) = (F+T— f+0]+0G)x,
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which implies that x is a solution to the inclusion problem IP(F + T — f + F) ] +0G). This com-
pletes the proof. O

Proof of Theorem 4.1. (Necessity) Assume that GVHVI is strongly (resp., weakly) a-well-
posed. Then there is a unique solution x* of GVHVI. By Lemma 4.1, x* also is the unique
solution of inclusion problem IP(F + T — f + 3] + 0G). Let {x,} be an a-approximating se-
quence for IP(F+ T - f +0J +0G). Then there exist wy,eF+T- f+5]+aG)xn, neNanda
nonnegative sequence {¢,} with ||w,| +¢€, — 0 as n — oo, such that

(Wp, y—Xp) 2 —€pa(y—x,), VyeX, neN. (4.1)
And so there exist u, € F(x,), {, € 5](xn) and g, € G(x,) such that
Wp=upn+Txp—f+én+0n. 4.2)

From the definitions of the Clarke’s generalized gradient for locally Lipschitz functional and
the subgradient for convex functional, we obtain, by multiplying y — x,, at both sides of the
last equality (4.2), that

(Un+Txp—f,y—xn)+ ] (Xn, ¥ — x0) + G(y) — G(xp,)
>(Up+Txn—f,y—Xn)+&n Yy —Xn) +{0n ¥ — Xn)
={Wn, ¥y — Xn)

= —epa(y—xy,), VyeX, neN 4.3)

(due to (4.1)). This immediately implies that {x,} is an a-approximating sequence for GVHVI.
Therefore, it follows from the strong (resp., weak) a-well-posedness of GVHVI, that {x,} con-
verges strongly (resp., weakly) to the unique solution x*. Thus, the inclusion problem IP(F +
T — f +0J +0G) is strongly (resp., weakly) a-well-posed.

(Sufficiency) Conversely, suppose that the inclusion problem IP(F+ T — f +0]+0G) is strongly
(resp., weakly) a-well-posed. Then IP(F + T — f + 3] + 0G) has a unique solution x*, which
together with Lemma 4.1, implies that x* is the unique solution of GVHVI. Let {x,} be an
a-approximating sequence for GVHVI. Then there exist u, € F(x,),n € N and a nonnegative

sequence {€;} with €,, — 0 as n — oo, such that
(Un+Txp—f,y—xp) +J°(Xp, ¥y — Xp) + G(y) = G(x,) = —€a(y — xp), VyeX.

From the fact that
J° (X, ¥ — Xp) = maxi(&, y — xp) : £ €] (x)},
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we obtain that there exists a {(x,, y) € 0 J(x,) such that
(Un+Txp=f,y=Xn) +&(xn, ), Yy = Xp) + G()) = G(xp) = —€pa(y—x,), VyeX. (4.4)

By virtue of Proposition 2.3, F) J(xy) is a nonempty, convex and bounded subset in X* which
implies that {u, + Tx, - f+¢&: € aJ (x,)} is nonempty, convex and bounded in X*. So, it
follows from (4.4) and Theorem 2.1, with ¢(x) = G(x) + €, a(x — x;,) which is proper, convex

and lower semicontinuous, that there exists ¢(x,) € 0 J(x,) such that
(Un+Txn=f,y=%n) +{5(xn), y = Xn) + G()) = G(xp) =2 —€na(y—x,), VyeX.  (4.5)
For the sake of simplicity, we denote ¢,, = {(x5). So, it follows from (4.5) that
Gxp) =G+ up+Txp—f+¢n,y—xp) +epaly—x,), VyeX.
Define the functional G,, : X — RU {+o0} as follows:
Gn(y) =G+ Pu(y) +€nQn(y),
where P, (y), Q,(y) are two functionals on X defined by
Pr(y)=(un+Txp—f+Sn,y—xp) and Qn(y) = aly—xy,).

Clearly, G, is proper, convex and lower semicontinuous and x,, is a global minimizer of Gy,
on X. Thus, 0 € 3G, (x,). Since the functionals P,, and Q) are continuous on X, G is proper,
convex and lower semicontinuous, it follows from Proposition 2.2 that

0G, (1) =0G(Y) + Uy + Txp— f + & +€,0Q,().

This together with 0 € 0G, (%), implies that there exist p,, € 0G(x,,) and 1, € 0Q,(x,) such
that
0=ppn+tupn+Txp—f+Sn+entn. (4.6)

We write w, := —€,n, for all n € N. Then we obtain that
Wp=Un+Txp—f+&n+0n€(F+T—f+0]+0G)x,, VneN,

and —w, = €,n, € €,0Q,(x,). So, it follows from the definition of the subgradient for convex
functional that

€nQn(Y) —€,Qn(xy) =2{(~wy, y—xn), VyeX.
That s,
(Wp, Yy = Xp) 2 —€,Qn(y) =—€pa(y—x,), VyeX. 4.7
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Next we claim that ||w,| — 0 as n — oo, that is, for any € > 0 there exists an integer N = 1
such that |w,]|| < € for all n = N. As a matter of fact, note that X is reflexive, i.e., X = X**. We
denote by ¢ the normalized duality mapping from X* to its dual X** (= X) defined by

SFW) ={xeX:(vxy=|vI*=xI"}, VYveX*.
Hence, for each n € N there exists j(w,) € #(w,) such that
(W, jwp) = lwnl? = 1 jwn)|%.
Putting y = x;, — j(w,) in (4.7), we get
lwnl® <€na(-j(wn)), VneN. (4.8)
If |wyll # 0 as n — oo, then there exists £y > 0 and for each k = 1 there exists w;,, such that
lwn, |l = €o.

This together with (4.8) and the property of the functional «, leads to

J(Wn,)
|

€nye

)—a(0)=0 ask— oo,
lwn,l

0<eg < llwpll = a(—jwy)) = al—€y,

which reaches a contradiction. This means that {x,} is an a-approximating sequence for
IP(F+ T — f +0J +0G). Since the inclusion problem IP(F + T — f + 8] + dG) is strongly (resp.,
weakly) a-well-posed, we deduce that {x;} converges strongly (resp., weakly) to the unique
solution x*. Therefore, GVHVI is strongly (resp., weakly) a-well-posed. This completes the
proof. a

Proof of Theorem 4.2. The proof is similar to that of Theorem 4.1 and so we omit it here. [

Remark 4.1. Compared with Theorems 4.1 and 4.2 in [26], our Theorems 4.1 and 4.2 use
the generalized variational-hemivariational inequality GVHVI in place of the variational-
hemivariational inequality VHVI, the inclusion problem IP(F + T — f + 8] + G) in place of
the inclusion problem IP(A+ T — f + 8] + 0G) and the a-well-posedness (resp., the a-well-
posedness in the generalized sense) in place of the well-posedness (resp., the well-posedness
in the generalized sense). All in all, our Theorems 4.1 and 4.2 improve, extend and develop
[26, Theorems 4.1 and 4.2] to a great extent.

5. Concluding remarks

In this paper, we introduce some concepts of well-posedness for a class of generalized

variational-hemivariational inequalities with perturbations, which include, as special cases,
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the classical hemivariational inequalities, variational-hemivariational inequalities and gen-
eralized mixed variational inequalities. We establish some metric characterizations for the a-
well-posed generalized variational-hemivariational inequality, and give some conditions un-
der which the generalized variational-hemivariational inequality is strongly a-well-posed in
the generalized sense in R™. We also introduce the concept of a-well-posedness for the inclu-
sion problem and investigate the relations between the strong (resp., weak) a-well-posedness
of the generalized variational-hemivariational inequality and the strong (resp., weak) a-well-
posedness of the corresponding inclusion problem.

It is well known that there are many other concepts of well-posedness for optimization
problems, variational inequalities and Nash equilibrium problems, such as Hadamard well-
posedness [29], well-posedness by perturbations [3, 6] and Levitin-Polyak well-posedness [12,
31], etc. It would be interesting to consider the problem of whether the concepts mentioned

above can be extended to the generalized variational-hemivariational inequality.
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