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WELL-POSEDNESS FOR GENERALIZED

VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

WITH PERTURBATIONS IN REFLEXIVE BANACH SPACES

LU-CHUAN CENG, YUNG-YIH LUR AND CHING-FENG WEN

Abstract. In this paper, we consider an extension of well-posedness for a minimization

problem to a class of generalized variational-hemivariational inequalities with perturba-

tions in reflexive Banach spaces. We establish some metric characterizations for the α-

well-posed generalized variational-hemivariational inequality and give some conditions

under which the generalized variational-hemivariational inequality is strongly α-well-

posed in the generalized sense. Under some mild conditions, we also prove the equiv-

alence between the α-well-posedness of the generalized variational-hemivariational in-

equality and the α-well-posedness of the corresponding inclusion problem.

1. Introduction

In 1966, Tykhonov [24] first introduced a classical notion of well-posedness for a mini-

mization problem, which has been known as the Tykhonov well-posedness. The minimiza-

tion problem is said to be well-posed if there exists a unique minimizer and every mini-

mizing sequence converges to the unique minimizer. Meantime, the concept of generalized

Tykhonov well-posedness is introduced for the minimization problem, which means the exis-

tence of minimizers and the convergence of some subsequence of every minimizing sequence

toward a minimizer. It is clear that the concept of well-posedness is inspired by numerical

methods producing optimizing sequences for optimization problems and plays a crucial role

in optimization theory. Because of its importance in optimization problems, various kinds of

well-posedness for optimization problems have been introduced and studied by many math-

ematicians in the optimization research field. For more details, we refer to [11, 14, 29, 30] and

the references therein.
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Furthermore, it is well known that a differentiable minimization problem is closely re-

lated to a variational inequality of differential type. Naturally, the concept of well-posedness

has been captured by many researchers to study variational inequalities. An initial notion

of well-posedness for variational inequality is due to Lucchetti and Patrone [17]. They in-

troduced the concept of well-posedness for a variational inequality and proved some related

results by means of Ekeland’s variational principle. Fang et al. [5, 6] generalized two kinds

of well-posedness for a mixed variational inequality problem in Banach space, respectively.

They established some metric characterizations of the two kinds of well-posedness for the

mixed variational inequality, showed the equivalence of the two kinds of well-posedness among

the mixed variational inequality problem, its corresponding inclusion problem and its cor-

responding fixed point problem, and derived some conditions under which the two kinds

of well-posedness for the mixed variational inequality are equivalent to the existence and

uniqueness of its solution. In recent years, the concept of well-posedness has been gener-

alized to various kinds of well-posedness for different variational inequalities by many au-

thors. Also, they established the metric characterizations for well-posed variational inequal-

ities, the necessary and sufficient conditions of well-posedness for variational inequalities,

and the links of well-posedness between variational inequalities and their related problems

such as minimization problems, fixed pointed problems and inclusion problems. For further

results on the well-posedness of variational inequalities, we refer to [10, 12, 13, 23, 33] and the

references therein.

As an important and useful generalization of variational inequality, hemivariational in-

equality was first introduced in order to formulate variational principles involving nonconvex

and nonsmooth energy functions, and investigated by Panagiotopoulos [21] using the math-

ematical concepts of the Clarke’s generalized gradient for nonconvex and nondifferentiable

functions [4]. The hemivariational inequalities have been proved very efficient to describe

a variety of mechanical and engineering problems, e.g., non-monotone semipermeability

problems, unilateral contact problems in nonlinear elasticity; see e.g., [1, 2, 9, 16, 18, 19, 20,

22]. It seems to be natural and easy to generalize the concept of well-posedness to hemivari-

ational inequalities and most results on well-posedness for variational inequalities should

hold for hemivariational inequalities under some similar conditions. However, it is not the

truth. The Clarke’s generalized directional derivative of a nonconvex and nonsmooth Lips-

chitz functional in hemivariational inequalities makes it much difficult. However, there are

very few researchers extending the well-posedness to a hemivariational inequality.

In 1995, Goeleven and Mentagui [8] first introduced the well-posedness for a hemivari-

ational inequality and presented some basic results concerning the well-posed hemivaria-

tional inequality. Recently, using the concept of approximating sequence, Xiao et al. [26,
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27] defined a concept of well-posedness for a hemivariational inequality and a variational-

hemivariational inequality. They gave some metric characterizations for the well-posed hemi-

variational inequality and the well-posed variational-hemivariational inequality, and proved

the equivalence of well-posedness between the hemivariational inequality and the corre-

sponding inclusion problem. However, for the conditions of well-posedness for the hemi-

variational inequality and the variational-hemivariational inequality, Xiao et al. [26, 27] only

gave a sufficient condition in Euclidean space Rn. In addition, for other recent works on the

well-posedness for variational-hemivariational inequalities; see also e.g., [3, 34].

Let X be a real reflexive Banach space with its dual X ∗. We denote the duality pairing

between X and X ∗ by 〈·, ·〉, and the norm of Banach space X by ‖ · ‖. In this paper, we always

suppose that F : X → 2X ∗

is a nonempty set-valued mapping, T : X → X ∗ is a perturbation,

G : X → R∪ {+∞} is a proper, convex and lower semicontinuous functional, J◦(·, ·) stands for

the Clarke’s directional derivative of the locally Lipschitz functional J : X → R, and f ∈ X ∗ is

some given element. Denote by domG the domain of functional G , i.e.,

domG := {x ∈ X : G(x) <+∞}.

Consider the following generalized variational-hemivariational inequality: find x ∈ X such

that for some u ∈ F (x),

GVHVI : 〈u +T x, y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥ 〈 f , y −x〉,

∀y ∈ X .
(1.1)

In particular, if F = A a single-valued mapping from X to X ∗, then the generalized variational-

hemivariational inequality GVHVI reduces to the variational-hemivariational inequality VHVI

considered in Xiao and Huang [26]. A concrete example of a variational-hemivariational in-

equality (see [20]) is the adhesive contact problem between a linear elastic body and a rubber

support considered in [26], which is subject to a nonmonotone multivalued boundary condi-

tion.

In the present paper, we generalize the concept of well-posedness for the variational-

hemivariational inequality with perturbation in Xiao and Huang [26] to the generalized

variational-hemivariational inequality with perturbation, which includes, as special cases,

the classical hemivariational inequality, the variational-hemivariational inequality, and the

generalized mixed variational inequality. Under very mild conditions, we establish some met-

ric characterizations for the α-well-posed generalized variational-hemivariational inequal-

ity, and derive some conditions under which the generalized variational-hemivariational in-

equality is strongly α-well-posed in the generalized sense. We also prove that the α-well-

posedness of the generalized variational-hemivariational inequality is equivalent to the α-

well-posedness of the corresponding inclusion problem.
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2. Preliminaries

Throughout this paper, unless stated otherwise, we always suppose that X is a real reflex-

ive Banach space and the norms of X and its dual X ∗ are denoted by the same symbol ‖ · ‖.

Assume that J : X → R is a locally Lipschitz functional on X , x is a given point and y is a vector

in X . The Clarke’s generalized directional derivative of J at x in the direction y , denoted by

J◦(x, y), is defined by

J◦(x, y) = limsup
z→x λ↓0

J(z +λy)− J(z)

λ
.

Let G : X → R∪{+∞} be a proper, convex and lower semicontinuous functional. We denote by

∂G(x) : X → 2X ∗

\ {;} and ∂J(x) : X → 2X ∗

\ {;} the subgradient of convex functional G in the

sense of convex analysis (see [36]) and the Clarke’s generalized gradient of a locally Lipschitz

functional J (see [4]), respectively. That is,

∂G(x) = {̺ ∈ X ∗ : G(y)−G(x) ≥ 〈̺, y −x〉, ∀y ∈ X }

and

∂J(x) = {ξ ∈ X ∗ : J◦(x, y)≥ 〈ξ, y〉, ∀y ∈ X }.

Remark 2.1 (see [1]). The Clarke’s generalized gradient of a locally Lipschitz functional J :

X → R at a point x is given by

∂J(x) = ∂(J◦(x, ·))(0).

Concerning the subgradient in the sense of convex analysis, the Clarke’s generalized di-

rectional derivative and the Clarke’s generalized gradient, we have the following basic prop-

erties (see e.g., [1, 4, 18, 20, 36]).

Proposition 2.1. Let X be a Banach space and G : X → R∪ {+∞} be a convex and proper func-

tional. Then we have the following properties of ∂G:

(i) ∂G(x) is convex and weak∗-closed;

(ii) If G is continuous at x ∈ domG, then ∂G(x) is nonempty, convex, bounded, and weak∗-

compact;

(iii) If G is Gateaux differentiable at x ∈ domG, then ∂G(x) = {DG(x)}, where DG(x) is the

Gateaux derivative of G at x.

Proposition 2.2. Let X be a Banach space and G1,G2 : X → R∪{+∞} be two convex functionals.

If there is a point x0 ∈ domG1 ∩domG2 at which G1 is continuous, then the following equation

holds:

∂(G1 +G2)(x) = ∂G1(x)+∂G2(x), ∀x ∈ X .
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Proposition 2.3. Let X be a Banach space, x, y ∈ X and J be a locally Lipschitz functional

defined on X . Then

(i) The function y 7→ J◦(x, y) is finite, positively homogeneous, subadditive and then convex

on X ;

(ii) J◦(x, y) is upper semicontinuous as a function of (x, y), as a function of y alone, is Lips-

chitz continuous on X ;

(iii) J◦(x,−y)= (−J)◦(x, y);

(iv) ∂J(x) is a nonempty, convex, bounded and weak∗-compact subset of X ∗;

(v) For every y ∈ X , one has

J◦(x, y)= max{〈ξ, y〉 : ξ ∈ ∂J(x)};

(vi) The graph of the Clarke’s generalized gradient ∂J(x) is closed in X × (w∗-X ∗) topology,

where (w∗-X ∗) denotes the space X ∗ equipped with weak∗ topology, i.e., if {xn} ⊂ X and

{x∗
n } ⊂ X ∗ are sequences such that x∗

n ∈ ∂J(xn ), xn → x in X and x∗
n → x∗ weakly∗ in X ∗,

then x∗ ∈ ∂J(x).

In the sequel, we recall some important definitions and useful results.

Definition 2.1. Let X be a Banach space with its dual X ∗ and T a single-valued operator from

X to its dual space X ∗. T is said to be monotone, if

〈T x −T y, x − y〉 ≥ 0, ∀x, y ∈ X .

Definition 2.2. Let X be a Banach space with its dual X ∗ and F : X → 2X ∗

a nonempty multi-

valued operator from X to X ∗. F is said to be monotone, if

〈u −v, x − y〉≥ 0, ∀x, y ∈ X ,u ∈ F (x), v ∈ F (y).

Let A1, A2 be nonempty subsets of a normed vector space (X ,‖ ·‖). The Hausdorff metric

H (·, ·) between A1 and A2 is defined by

H (A1, A2) = max{e(A1, A2),e(A2, A1)},

where e(A1, A2) = supa∈A1
d (a, A2) with d (a, A2) = infb∈A2

‖a −b‖. Note that [25] if A1 and A2

are compact subsets in X , then for each a ∈ A1 there exists b ∈ A2 such that

‖a −b‖≤H (A1, A2).

Definition 2.3. [see [32]] Let H (·, ·) be the Hausdorff metric on the collection C B (X ∗) of all

nonempty, closed and bounded subsets of X ∗, which is defined by

H (A,B )= max{e(A,B ),e(B , A)}

for A and B in C B (X ∗). A nonempty set-valued mapping F : X →C B (X ∗) is said to be
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(i) H -hemicontinuous, if for any x, y ∈ X , the function t 7→ H (F (x + t (y − x)),F (x)) from

[0,1] into R+ = [0,+∞) is continuous at 0+;

(ii) H -continuous, if for any ǫ > 0 and any fixed x ∈ X , there exists δ > 0 such that for all

y ∈ X with ‖y −x‖< δ, one has H (F (y),F (x))< ǫ.

Remark 2.2. Clearly, the H -continuity implies the H -hemicontinuity, but the converse is

not true in general.

Theorem 2.1 (see [7]). Let C ⊂ X be nonempty, closed and convex, C∗ ⊂ X ∗ be nonempty,

closed, convex and bounded, ϕ : X → R be proper, convex and lower semicontinuous and y ∈C

be arbitrary. Assume that, for each x ∈C , there exists x∗(x) ∈C∗ such that

〈x∗(x), x − y〉 ≥ϕ(y)−ϕ(x).

Then, there exists y∗ ∈C∗ such that

〈y∗, x − y〉 ≥ϕ(y)−ϕ(x), ∀x ∈C .

Definition 2.4 (see [35]). Let S be a nonempty subset of X . The measure of noncompactness

µ of the set S is defined by

µ(S) := inf{ǫ> 0 : S ⊂
n⋃

i=1

Si , diam(Si ) < ǫ, i = 1,2, . . . ,n},

where diam(Si ) means the diameter of set Si .

3. Well-posedness of GVHVI with metric characterizations

Based on the concepts of well-posedness in [26, 27, 31, 32, 33, 34], we introduce some

concepts of well-posedness for the generalized variational-hemivariational inequality GVHVI

with perturbation, establish its metric characterizations and derive some conditions under

which the generalized variational-hemivariational inequality GVHVI is strongly α-well-posed

in the generalized sense in Euclidean space Rn. Let α : X → R+ = [0,+∞) be a convex and

continuous functional with α(t x) = tα(x) ∀t ≥ 0 and ∀x ∈ X .

Definition 3.1. A sequence {xn} ⊂ X is said to be an α-approximating sequence for GVHVI if

there exist un ∈ F (xn),n ∈ N and a nonnegative sequence {ǫn} with ǫn → 0 as n →∞ such that

〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn )≥−ǫnα(y −xn), ∀y ∈ X , n ∈ N. (3.1)

In particular, if α(·) = ‖ · ‖ the norm of X , then {xn} is said to be an approximating sequence

for GVHVI.
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Definition 3.2. GVHVI is said to be strongly (resp., weakly) α-well-posed if GVHVI has a

unique solution in X and every α-approximating sequence converges strongly (resp., weakly)

to the unique solution. In particular, if α(·) = ‖ · ‖ the norm of X , then GVHVI is said to be

strongly (resp., weakly) well-posed.

Remark 3.1. The strong α-well-posedness implies the weak α-well-posedness, but the con-

verse is not true in general.

Definition 3.3. GVHVI is said to be strongly (resp., weakly) α-well-posed in the generalized

sense if GVHVI has a nonempty solution set S in X and every α-approximating sequence has

a subsequence which converges strongly (resp., weakly) to some point of solution set S.

Remark 3.2. The strong α-well-posedness in the generalized sense implies the weak α-well-

posedness in the generalized sense, but the converse is not true in general.

Remark 3.3. The concepts of strong and weak α-well-posedness for GVHVI introduced in

this paper include as special cases Definitions 3.2−3.3 in Xiao and Huang [26].

For any ǫ> 0, we define the following two sets:

Ωα(ǫ) = {x ∈ X : ∃u ∈ F (x) s.t.〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x)

≥ −ǫα(y −x), ∀y ∈ X }

and

∆α(ǫ) = {x ∈ X : 〈v +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x)

≥ −ǫα(y −x), ∀y ∈ X , v ∈ F (y)}.

Lemma 3.1. Suppose that F : X → 2X ∗

is a nonempty compact-valued mapping which is H -

hemicontinuous and monotone. Let G : X → R∪ {+∞} be a proper, convex and lower semicon-

tinuous functional. Then, Ωα(ǫ)=∆α(ǫ), for all ǫ> 0.

Proof. We first claim that Ωα(ǫ) ⊂∆α(ǫ). Indeed, take an arbitrary x ∈Ωα(ǫ). Then there exists

u ∈ F (x) such that

〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥−ǫα(y −x), ∀y ∈ X .

So, it follows from the monotonicity of the mapping F that

〈v +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x)

≥ 〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x)

≥−ǫα(y −x), ∀y ∈ X , v ∈ F (y).

This means that x ∈∆α(ǫ). Thus, Ωα(ǫ) ⊂∆α(ǫ).
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Now we show that ∆α(ǫ)⊂Ωα(ǫ). Indeed, for any x ∈∆α(ǫ), we have

〈v +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥−ǫα(y −x), ∀y ∈ X , v ∈ F (y).

Given any y ∈ X we define yt = t y + (1− t )x = x + t (y − x) for all t ∈ (0,1). Replacing y and

v by yt and vt in the last inequality, respectively, we deduce from the convexity of G and the

positive homogeneousness of the functions y 7→ J◦(x, y) and α that for each vt ∈ F (yt ),

−tǫα(y −x) =−ǫα(t (y −x))

≤ 〈vt +T x − f , t (y −x)〉+ J◦(x, t (y −x))+G(yt )−G(x)

≤ 〈vt +T x − f , t (y −x)〉+ J◦(x, t (y −x))+ t (G(y)−G(x))

= t [〈vt +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x)],

which hence implies that for each t ∈ (0,1) and each vt ∈ F (yt ),

〈vt +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥−ǫα(y −x). (3.2)

Since F : X → 2X ∗

is a nonempty compact-valued mapping, F (yt ) and F (x) are nonempty

compact sets. Hence, by Nadler’s result [25] we know that for each t ∈ (0,1) and each fixed

vt ∈ F (yt ) there exists an ut ∈ F (x) such that ‖vt −ut‖ ≤ H (F (yt ),F (x)). Since F (x) is com-

pact, without loss of generality we may assume that ut → u ∈ F (x) as t → 0+. Since F is

H -hemicontinuous, we obtain that

‖vt −ut‖≤H (F (yt ),F (x)) → 0 as t → 0+,

which immediately leads to

‖vt −u‖≤ ‖vt −ut‖+‖ut −u‖→ 0 as t → 0+. (3.3)

Hence, taking the limsup as t → 0+ in (3.2) we conclude from (3.3) that

〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥−ǫα(y −x).

By the arbitrariness of y ∈ X , we know that x ∈Ωα(ǫ), which implies that ∆α(ǫ) ⊂Ωα(ǫ). This

completes the proof. ���

Lemma 3.2. Suppose that T : X → X ∗ is continuous and let G : X → R∪ {+∞} be a proper,

convex and lower semicontinuous functional. Then, ∆α(ǫ) is closed in X for all ǫ> 0.

Proof. Let {xn} ⊂∆α(ǫ) be a sequence such that xn → x in X . Then

〈v +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn ) ≥−ǫα(y −xn), ∀y ∈ X , v ∈ F (y). (3.4)
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Since T : X → X ∗ is continuous, α : X → [0,+∞) is continuous, Clarke’s generalized direc-

tional derivative J◦(x, y) is upper semicontinuous with respect to (x, y) and G : X → R∪ {+∞}

is lower semicontinuous, we have that 〈T xn− f , y−xn〉→ 〈T x− f , y−x〉, α(y−xn) →α(y−x),

limsup
n→∞

J◦(xn , y −xn) ≤ J◦(x, y −x) and limsup
n→∞

−G(xn ) ≤−G(x).

So, taking the limsup as n →∞ at both sides of (3.4), we have

〈v +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥−ǫα(y −x), ∀y ∈ X , v ∈ F (y),

which implies that x ∈∆α(ǫ). Thus, ∆α(ǫ) is closed in X . This completes the proof. ���

Corollary 3.1. Suppose that F : X → 2X ∗

is a nonempty compact-valued mapping which is

H -hemicontinuous and monotone. Let T : X → X ∗ be a continuous mapping and G : X →

R∪{+∞} be a proper, convex and lower semicontinuous functional. Then, for all ǫ> 0, Ωα(ǫ)=

∆α(ǫ) is closed in X .

Theorem 3.1. Suppose that F : X → 2X ∗

is a nonempty compact-valued mapping which is

H -hemicontinuous and monotone. Let T : X → X ∗ be a continuous mapping and G : X →

R∪ {+∞} be a proper, convex and lower semicontinuous functional. Then, GVHVI is strongly

α-well-posed if and only if

Ωα(ǫ) 6= ; ∀ǫ> 0 and diam(Ωα(ǫ)) → 0 as ǫ→ 0. (3.5)

Proof. (Necessity) Suppose that GVHVI is strongly α-well-posed. Then, GVHVI has a unique

solution which belongs to Ωα(ǫ) and so Ωα(ǫ) 6= ; for all ǫ > 0. If diam(Ωα(ǫ)) does not con-

verge to 0 as ǫ→ 0, then there exist a constant l > 0, a nonnegative sequence {ǫn} with ǫn → 0

and xn , yn ∈Ωα(ǫn) such that

‖xn − yn‖ > l , ∀n ∈ N. (3.6)

Since xn , yn ∈ Ωα(ǫn), we know that {xn} and {yn} are both α-approximating sequences for

GVHVI. It follows from strong α-well-posedness of GVHVI that both {xn} and {yn} converge

strongly to the unique solution of GVHVI, which is a contradiction to (3.6).

(Sufficiency) Let {xn} ⊂ X be an α-approximating sequence for GVHVI. Then, there exist un ∈

F (xn),n ∈ N and a nonnegative sequence {ǫn} with ǫn → 0 such that

〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn ) ≥−ǫnα(y −xn), ∀y ∈ X , n ∈ N, (3.7)

which implies that xn ∈ Ωα(ǫn). From (3.5), It follows that {xn} is a Cauchy sequence, and

so {xn} converges strongly to some point x ∈ X . Since the mapping F is monotone, the map-

ping T is continuous, the Clarke’s generalized directional derivative J◦(x, y) is upper semicon-

tinuous with respect to (x, y) and G is lower semicontinuous, we deduce from (3.7) and the

property of the functional α that for all y ∈ X and v ∈ F (y)

〈v +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x)
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≥ limsup
n→∞

{〈v +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn )}

≥ limsup
n→∞

{〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn )}

≥ limsup
n→∞

−ǫnα(y −xn)

= limsup
n→∞

−α(ǫn(y −xn))

= −α(0) = 0. (3.8)

Given any y ∈ X we define yt = x + t (y − x) for all t ∈ (0,1). Replacing y and v by yt and vt

in (3.8), we obtain from the positive homogeneousness of J◦(x, y) with respect to y and the

convexity of G that for each vt ∈ F (yt ),

〈vt +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥ 0. (3.9)

Since F : X → 2X ∗

is a nonempty compact-valued mapping, F (yt ) and F (x) are nonempty

compact sets. Hence, by Nadler’s result [25] we know that for each t ∈ (0,1) and each fixed

vt ∈ F (yt ) there exists an ut ∈ F (x) such that ‖vt −ut‖ ≤ H (F (yt ),F (x)). Since F (x) is com-

pact, without loss of generality we may assume that ut → u ∈ F (x) as t → 0+. Since F is

H -hemicontinuous, we obtain that

‖vt −ut‖≤H (F (yt ),F (x)) → 0 as t → 0+,

which immediately leads to

‖vt −u‖≤ ‖vt −ut‖+‖ut −u‖→ 0 as t → 0+.

Now, taking the limsup as t → 0+ in (3.9), we get

〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥ 0, ∀y ∈ X ,

which implies that x solves GVHVI.

To complete the proof of Theorem 3.1, we need only to prove that GVHVI has a unique

solution. Assume by contradiction that GVHVI has two distinct solutions x1 and x2. Then it is

easy to see that x1, x2 ∈Ωα(ǫ) for all ǫ> 0 and

0 <‖x1 −x2‖≤ diam(Ωα(ǫ)) → 0,

which is a contradiction. Therefore, GVHVI has a unique solution.

This completes the proof. ���

Theorem 3.2. Suppose that F : X → 2X ∗

is a nonempty compact-valued mapping which is

H -hemicontinuous and monotone. Let T : X → X ∗ be a continuous mapping and G : X →

R∪ {+∞} be a proper, convex and lower semicontinuous functional. Then, GVHVI is strongly

α-well-posed in the generalized sense if and only if

Ωα(ǫ) 6= ; ∀ǫ> 0 and µ(Ωα(ǫ)) → 0 as ǫ→ 0. (3.10)
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Proof. (Necessity) Suppose that GVHVI is strongly α-well-posed in the generalized sense.

Then the solution set S of GVHVI is nonempty and S ⊂Ωα(ǫ) for any ǫ> 0. Furthermore, the

solution set S of GVHVI is also compact. As a matter of fact, for any sequence {xn} ⊂ S, it

follows from S ⊂Ωα(ǫ) for any ǫ> 0 that {xn} ⊂ S is an α-approximating sequence for GVHVI.

Since GVHVI is strongly α-well-posed in the generalized sense, {xn} has a subsequence which

converges strongly to some point of the solution set S. Thus, the solution set S of GVHVI is

compact. Now we show that µ(Ωα(ǫ)) → 0 as ǫ→ 0. From S ⊂Ωα(ǫ) for any ǫ> 0, we get

H (Ωα(ǫ),S)=max{e(Ωα(ǫ),S),e(S,Ωα(ǫ))} = e(Ωα(ǫ),S). (3.11)

Taking into account the compactness of the solution set S, we obtain from (3.11) that

µ(Ωα(ǫ)) ≤ 2H (Ωα(ǫ),S)= 2e(Ωα(ǫ),S).

Thus, to prove µ(Ωα(ǫ)) → 0 as ǫ→ 0, it suffices to show that e(Ωα(ǫ),S)→ 0 as ǫ→ 0. Assume

by contradiction that e(Ωα(ǫ),S) 6→ 0 as ǫ→ 0. Then there exist a constant l > 0, a sequence

{ǫn} ⊂ [0,∞) with ǫn → 0 and xn ∈Ωα(ǫn) such that

xn 6∈ S +B (0, l ), (3.12)

where B (0, l ) is the closed ball centered at 0 with radius l . Since {xn} is an α-approximating

sequence for GVHVI and GVHVI is strongly α-well-posed in the generalized sense, there ex-

ists a subsequence {xnk
} converging strongly to some point x ∈ S, which is a contradiction to

(3.12). Consequently, µ(Ωα(ǫ)) → 0 as ǫ→ 0.

(Sufficiency) Assume that condition (3.10) holds. By Corollary 3.1, we obtain that Ωα(ǫ) is

nonempty and closed for all ǫ> 0. Observe that

S =
⋂

ǫ>0

Ωα(ǫ). (3.13)

Since µ(Ωα(ǫ)) → 0 as ǫ→ 0, by applying the theorem in [35, p.412], one easily concludes that

S is nonempty and compact with

e(Ωα(ǫ),S)=H (Ωα(ǫ),S)→ 0 as ǫ→ 0. (3.14)

Let {xn} ⊂ X be an α-approximating sequence for GVHVI. Then there exist un ∈ F (xn),n ∈ N

and a nonnegative sequence {ǫn} with ǫn → 0 such that

〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn ) ≥−ǫnα(y −xn), ∀y ∈ X , n ∈ N,

and so xn ∈Ωα(ǫn) by the definition of Ωα(ǫn). It follows from (3.14) that

d (xn ,S)≤ e(Ωα(ǫn),S)→ 0.
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Since the solution set S is compact, there exists x̄n ∈ S such that

‖xn − x̄n‖ = d (xn ,S)→ 0. (3.15)

Again from the compactness of the solution set S, {x̄n} has a subsequence {x̄nk
} converging

strongly to some x̄ ∈ S. It follows from (3.15) that

‖xnk
− x̄‖≤ ‖xnk

− x̄nk
‖+‖x̄nk

− x̄‖→ 0,

which implies that {xnk
} converges strongly to x̄. Therefore, GVHVI is strongly α-well-posed

in the generalized sense. This completes the proof. ���

The following theorem gives some conditions under which the generalized variational-

hemivariational inequality is strongly α-well-posed in the generalized sense in Euclidean

space Rn.

Theorem 3.3. Let F : Rn →C B (Rn) be a nonempty H -hemicontinuous and monotone multi-

function. Let T : Rn → Rn be a continuous mapping and G : Rn → R∪ {+∞} be a proper, convex

and lower semicontinuous functional. If there exists some ǫ > 0 such that Ωα(ǫ) is nonempty

and bounded, then generalized variational-hemivariational inequality GVHVI is strongly α-

well-posed in the generalized sense.

Proof. Suppose that {xn} is an α-approximating sequence for GVHVI. Then, there exist un ∈

F (xn),n ∈ N and a nonnegative sequence {ǫn} with ǫn → 0 as n →∞ such that

〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn ) ≥−ǫnα(y −xn), ∀y ∈ Rn, n ∈ N. (3.16)

Let ǫ0 > 0 be such that Ωα(ǫ0) is nonempty and bounded. Then, there exists n0 such that xn ∈

Ωα(ǫ0) for all n ≥ n0. So, it follows that {xn} is bounded in Rn by the boundedness of Ωα(ǫ0).

Thus, there exists a subsequence {xnk
} such that xnk

→ x̄ as k →∞. Since the mapping F is

monotone, the mapping T is continuous, Clarke’s generalized directional derivative J◦(x, y)

is upper semicontinuous with respect to (x, y) and G is lower semicontinuous, it follows from

(3.16) and the property of the functional α that for any y ∈ Rn, v ∈ F (y),

〈v +T x̄ − f , y − x̄〉+ J◦(x̄, y − x̄)+G(y)−G(x̄)

≥ limsup
k→∞

{〈v +T xnk
− f , y −xnk

〉+ J◦(xnk
, y −xnk

)+G(y)−G(xnk
)}

≥ limsup
k→∞

{〈unk
+T xnk

− f , y −xnk
〉+ J◦(xnk

, y −xnk
)+G(y)−G(xnk

)}

≥ limsup
k→∞

−ǫnk
α(y −xnk

)

= limsup
k→∞

−α(ǫnk
(y −xnk

))
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= −α(0) = 0. (3.17)

Given any y ∈ Rn we define yt = t y + (1− t )x̄ = x̄ + t (y − x̄) for all t ∈ (0,1). Replacing y and

v in (3.17) by yt and vt , respectively, we deduce from the positive homogeneousness of the

function y 7→ J◦(x, y) and the convexity of G that for each vt ∈ F (yt )

〈vt +T x̄ − f , y − x̄〉+ J◦(x̄, y − x̄)+G(y)−G(x̄)≥ 0. (3.18)

Since F : Rn →C B (Rn) is a nonempty compact-valued mapping, F (yt ) and F (x̄) are nonempty

compact sets. Hence, by Nadler’s result [25] we know that for each t ∈ (0,1) and each fixed

vt ∈ F (yt ) there exists an ut ∈ F (x̄) such that ‖vt −ut‖ ≤ H (F (yt ),F (x̄)). Since F (x̄) is com-

pact, without loss of generality we may assume that ut → ū ∈ F (x̄) as t → 0+. Since F is

H -hemicontinuous, we obtain that

‖vt −ut‖≤H (F (yt ),F (x̄)) → 0 as t → 0+,

which immediately leads to

‖vt − ū‖≤ ‖vt −ut‖+‖ut − ū‖→ 0 as t → 0+.

Now, taking the limsup as t → 0+ in (3.18), we get

〈ū +T x̄ − f , y − x̄〉+ J◦(x̄, y − x̄)+G(y)−G(x̄)≥ 0, ∀y ∈ Rn,

which implies that x̄ solves GVHVI. Therefore, GVHVI is strongly α-well-posed in the gener-

alized sense. This completes the proof. ���

Remark 3.4. Whenever the mapping F is single-valued, GVHVI (1.1) reduces to VHVI (1) in

[26]. In this case, it is easy to see that the above Lemmas 3.1−3.2, Corollary 3.1 and Theorems

3.1−3.3 reduce to Lemmas 3.1−3.2, Corollary 3.1 and Theorems 3.1−3.3 in [26], respectively.

Therefore, the above Lemmas 3.1−3.2, Corollary 3.1 and Theorems 3.1−3.3 improve, extend

and develop Lemmas 3.1−3.2, Corollary 3.1 and Theorems 3.1−3.3 in [26], respectively.

4. Links with Well-Posedness for the Corresponding Inclusion Problem

In this section, we introduce the concept of α-well-posedness for the inclusion prob-

lem and investigate the relations between the α-well-posedness of generalized variational-

hemivariational inequality GVHVI and the α-well-posedness of the corresponding inclusion

problem. In what follows, we always assume that Γ is a nonempty set-valued mapping from

a real reflexive Banach space X to its dual space X ∗. The inclusion problem associated with

the mapping Γ is defined by

IP(Γ) : find x ∈ X such that 0 ∈Γ(x).
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Definition 4.1. A sequence {xn} ⊂ X is called an α-approximating sequence for the inclusion

problem IP(Γ) if there exist wn ∈ Γ(xn), n ∈ N and a nonnegative sequence {ǫn} with ‖wn‖+

ǫn → 0 as n →∞, such that

〈wn, y −xn〉 ≥−ǫnα(y −xn), ∀y ∈ X , n ∈ N.

Definition 4.2. We say that the inclusion problem IP(Γ) is strongly (resp., weakly) α-well-

posed if it has a unique solution and every α-approximating sequence converges strongly

(resp., weakly) to the unique solution of IP(Γ).

Definition 4.3. We say that the inclusion problem IP(Γ) is strongly (resp., weakly) α-

well-posed in the generalized sense if the solution set S of IP(Γ) is nonempty and every

α-approximating sequence has a subsequence which converges strongly (resp., weakly) to

some point of the solution set S for IP(Γ).

The following two theorems establish the relations between the strong (resp., weak) α-

well-posedness of generalized variational-hemivariational inequality GVHVI and the strong

(resp., weak) α-well-posedness of the corresponding inclusion problem.

Theorem 4.1. Let F : X → 2X ∗

be a nonempty set-valued mapping from a Banach space X

to its dual X ∗, and T : X → X ∗ be a mapping from X to X ∗, J : X → R be a locally Lipschitz

functional and G : X → R∪ {+∞} be a proper, convex and lower semicontinuous functional.

The generalized variational-hemivariational inequality GVHVI is strongly (resp., weakly) α-

well-posed if and only if the corresponding inclusion problem IP(F +T − f +∂J +∂G) is strongly

(resp., weakly) α-well-posed.

Theorem 4.2. Let F : X → 2X ∗

be a nonempty set-valued mapping from a Banach space X

to its dual X ∗, and T : X → X ∗ be a mapping from X to X ∗, J : X → R be a locally Lipschitz

functional and G : X → R∪ {+∞} be a proper, convex and lower semicontinuous functional.

The generalized variational-hemivariational inequality GVHVI is strongly (resp., weakly) α-

well-posed in the generalized sense if and only if the corresponding inclusion problem IP(F +

T − f +∂J +∂G) is strongly (resp., weakly) α-well-posed in the generalized sense.

In order to prove Theorems 4.1 and 4.2, we need the following lemma.

Lemma 4.3. Let F : X → 2X ∗

be a nonempty set-valued mapping from a Banach space X to

its dual X ∗, and T : X → X ∗ be a mapping from X to X ∗, J : X → R be a locally Lipschitz

functional and G : X → R∪ {+∞} be a proper, convex and lower semicontinuous functional.

Then the following two statements are equivalent:

(i) x ∈ X is a solution to the generalized variational-hemivariational inequality GVHVI;
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(ii) x is a solution to the inclusion problem

IP(F +T − f +∂J +∂G) : Find x ∈ X such that

0 ∈ (F +T − f +∂J +∂G)x.

Proof. We first claim that (ii) ⇒ (i). Indeed, let x ∈ X be a solution to the inclusion problem

IP(F +T − f +∂J +∂G). Then, there exist u ∈ F (x),ξ ∈ ∂J(x) and ̺ ∈ ∂G(x) such that

0 =u +T x − f +ξ+̺.

By multiplying y − x at both sides of the last equality, we obtain, from the definitions of the

Clarke’s generalized gradient for locally Lipschitz functional and the subgradient for convex

functional, that

0 = 〈u +T x − f +ξ+̺, y −x〉

≤ 〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x), ∀y ∈ X ,

which implies that x is a solution of GVHVI.

We show that (i) ⇒ (ii). Indeed, suppose that x is a solution of GVHVI, which means that

for some u ∈ F (x),

〈u +T x − f , y −x〉+ J◦(x, y −x)+G(y)−G(x) ≥ 0, ∀y ∈ X .

From the fact that

J◦(x, y −x)= max{〈ξ, y −x〉 : ξ ∈ ∂J(x)},

we get that there exists a ξ(x, y)∈ ∂J(x) such that

〈u +T x − f , y −x〉+〈ξ(x, y), y −x〉+G(y)−G(x)≥ 0, ∀y ∈ X .

By virtue of Proposition 2.3, ∂J(x) is a nonempty convex and bounded subset in X ∗, which

implies that {u+T x− f +ξ : ξ ∈ ∂J(x)} is nonempty, convex and bounded in X ∗. Since G : X →

R∪ {+∞} is a proper, convex and lower semicontinuous functional, it follows from Theorem

2.1 with ϕ(·) =G(·) and the last inequality that there exists ξ(x) ∈ ∂J(x) such that

〈u +T x − f , y −x〉+〈ξ(x), y −x〉+G(y)−G(x) ≥ 0, ∀y ∈ X .

For the sake of simplicity, we denote ξ= ξ(x). Then, by the last inequality we have

G(y)−G(x) ≥ 〈−(u +T x − f +ξ), y −x〉, ∀y ∈ X ,

which implies that −(u +T x − f +ξ) ∈ ∂G(x). Thus, it follows from ξ ∈ ∂J(x) that

0 ∈ u +T x − f +ξ+∂G(x) ⊂ F (x)+T x − f +∂J(x)+∂G(x) = (F +T − f +∂J +∂G)x,
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which implies that x is a solution to the inclusion problem IP(F +T − f +∂J +∂G). This com-

pletes the proof. ���

Proof of Theorem 4.1. (Necessity) Assume that GVHVI is strongly (resp., weakly) α-well-

posed. Then there is a unique solution x∗ of GVHVI. By Lemma 4.1, x∗ also is the unique

solution of inclusion problem IP(F +T − f + ∂J + ∂G). Let {xn} be an α-approximating se-

quence for IP(F +T − f +∂J +∂G). Then there exist wn ∈ (F +T − f +∂J +∂G)xn , n ∈ N and a

nonnegative sequence {ǫn} with ‖wn‖+ǫn → 0 as n →∞, such that

〈wn, y −xn〉 ≥−ǫnα(y −xn), ∀y ∈ X , n ∈ N. (4.1)

And so there exist un ∈ F (xn), ξn ∈ ∂J(xn) and ̺n ∈G(xn ) such that

wn = un +T xn − f +ξn +̺n . (4.2)

From the definitions of the Clarke’s generalized gradient for locally Lipschitz functional and

the subgradient for convex functional, we obtain, by multiplying y − xn at both sides of the

last equality (4.2), that

〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn )

≥ 〈un +T xn − f , y −xn〉+〈ξn , y −xn〉+〈̺n , y −xn〉

= 〈wn, y −xn〉

≥ −ǫnα(y −xn), ∀y ∈ X , n ∈ N (4.3)

(due to (4.1)). This immediately implies that {xn} is an α-approximating sequence for GVHVI.

Therefore, it follows from the strong (resp., weak) α-well-posedness of GVHVI, that {xn} con-

verges strongly (resp., weakly) to the unique solution x∗. Thus, the inclusion problem IP(F +

T − f +∂J +∂G) is strongly (resp., weakly) α-well-posed.

(Sufficiency) Conversely, suppose that the inclusion problem IP(F +T − f +∂J+∂G) is strongly

(resp., weakly) α-well-posed. Then IP(F +T − f +∂J +∂G) has a unique solution x∗, which

together with Lemma 4.1, implies that x∗ is the unique solution of GVHVI. Let {xn} be an

α-approximating sequence for GVHVI. Then there exist un ∈ F (xn),n ∈ N and a nonnegative

sequence {ǫn} with ǫn → 0 as n →∞, such that

〈un +T xn − f , y −xn〉+ J◦(xn , y −xn)+G(y)−G(xn ) ≥−ǫnα(y −xn), ∀y ∈ X .

From the fact that

J◦(xn , y −xn) = max{〈ξ, y −xn〉 : ξ ∈ ∂J(xn)},
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we obtain that there exists a ξ(xn , y)∈ ∂J(xn ) such that

〈un +T xn − f , y −xn〉+〈ξ(xn , y), y −xn〉+G(y)−G(xn ) ≥−ǫnα(y −xn), ∀y ∈ X . (4.4)

By virtue of Proposition 2.3, ∂J(xn) is a nonempty, convex and bounded subset in X ∗ which

implies that {un +T xn − f + ξ : ξ ∈ ∂J(xn)} is nonempty, convex and bounded in X ∗. So, it

follows from (4.4) and Theorem 2.1, with ϕ(x) = G(x)+ ǫnα(x − xn) which is proper, convex

and lower semicontinuous, that there exists ξ(xn) ∈ ∂J(xn) such that

〈un +T xn − f , y −xn〉+〈ξ(xn), y −xn〉+G(y)−G(xn ) ≥−ǫnα(y −xn), ∀y ∈ X . (4.5)

For the sake of simplicity, we denote ξn = ξ(xn). So, it follows from (4.5) that

G(xn) ≤G(y)+〈un +T xn − f +ξn , y −xn〉+ǫnα(y −xn), ∀y ∈ X .

Define the functional Gn : X → R∪ {+∞} as follows:

Gn(y)=G(y)+Pn(y)+ǫnQn(y),

where Pn(y),Qn(y) are two functionals on X defined by

Pn(y)= 〈un +T xn − f +ξn , y −xn〉 and Qn(y)=α(y −xn).

Clearly, Gn is proper, convex and lower semicontinuous and xn is a global minimizer of Gn

on X . Thus, 0 ∈ ∂Gn(xn). Since the functionals Pn and Qn are continuous on X , G is proper,

convex and lower semicontinuous, it follows from Proposition 2.2 that

∂Gn(y) = ∂G(y)+un +T xn − f +ξn +ǫn∂Qn(y).

This together with 0 ∈ ∂Gn(xn), implies that there exist ̺n ∈ ∂G(xn) and ηn ∈ ∂Qn(xn) such

that

0 =̺n +un +T xn − f +ξn +ǫnηn . (4.6)

We write wn :=−ǫnηn for all n ∈ N. Then we obtain that

wn = un +T xn − f +ξn +̺n ∈ (F +T − f +∂J +∂G)xn , ∀n ∈ N,

and −wn = ǫnηn ∈ ǫn∂Qn(xn). So, it follows from the definition of the subgradient for convex

functional that

ǫnQn(y)−ǫnQn(xn) ≥ 〈−wn , y −xn〉, ∀y ∈ X .

That is,

〈wn, y −xn〉 ≥−ǫnQn(y)=−ǫnα(y −xn), ∀y ∈ X . (4.7)



362 LU-CHUAN CENG, YUNG-YIH LUR AND CHING-FENG WEN

Next we claim that ‖wn‖ → 0 as n → ∞, that is, for any ε > 0 there exists an integer N ≥ 1

such that ‖wn‖ < ε for all n ≥ N . As a matter of fact, note that X is reflexive, i.e., X = X ∗∗. We

denote by J the normalized duality mapping from X ∗ to its dual X ∗∗(= X ) defined by

J (ν)= {x ∈ X : 〈ν, x〉 = ‖ν‖2
=‖x‖2}, ∀ν ∈ X ∗.

Hence, for each n ∈ N there exists j (wn) ∈J (wn) such that

〈wn, j (wn)〉 = ‖wn‖
2
= ‖ j (wn)‖2.

Putting y = xn − j (wn) in (4.7), we get

‖wn‖
2
≤ ǫnα(− j (wn)), ∀n ∈ N. (4.8)

If ‖wn‖ 6→ 0 as n →∞, then there exists ε0 > 0 and for each k ≥ 1 there exists wnk
such that

‖wnk
‖≥ ε0.

This together with (4.8) and the property of the functional α, leads to

0 < ε0 ≤ ‖wnk
‖ ≤

ǫnk

‖wnk
‖
α(− j (wnk

)) =α(−ǫnk

j (wnk
)

‖wnk
‖

)→α(0) = 0 as k →∞,

which reaches a contradiction. This means that {xn} is an α-approximating sequence for

IP(F +T − f +∂J +∂G). Since the inclusion problem IP(F +T − f +∂J +∂G) is strongly (resp.,

weakly) α-well-posed, we deduce that {xn} converges strongly (resp., weakly) to the unique

solution x∗. Therefore, GVHVI is strongly (resp., weakly) α-well-posed. This completes the

proof. ���

Proof of Theorem 4.2. The proof is similar to that of Theorem 4.1 and so we omit it here. ���

Remark 4.1. Compared with Theorems 4.1 and 4.2 in [26], our Theorems 4.1 and 4.2 use

the generalized variational-hemivariational inequality GVHVI in place of the variational-

hemivariational inequality VHVI, the inclusion problem IP(F +T − f + ∂J + ∂G) in place of

the inclusion problem IP(A +T − f +∂J +∂G) and the α-well-posedness (resp., the α-well-

posedness in the generalized sense) in place of the well-posedness (resp., the well-posedness

in the generalized sense). All in all, our Theorems 4.1 and 4.2 improve, extend and develop

[26, Theorems 4.1 and 4.2] to a great extent.

5. Concluding remarks

In this paper, we introduce some concepts of well-posedness for a class of generalized

variational-hemivariational inequalities with perturbations, which include, as special cases,
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the classical hemivariational inequalities, variational-hemivariational inequalities and gen-

eralized mixed variational inequalities. We establish some metric characterizations for the α-

well-posed generalized variational-hemivariational inequality, and give some conditions un-

der which the generalized variational-hemivariational inequality is strongly α-well-posed in

the generalized sense in Rn. We also introduce the concept of α-well-posedness for the inclu-

sion problem and investigate the relations between the strong (resp., weak) α-well-posedness

of the generalized variational-hemivariational inequality and the strong (resp., weak) α-well-

posedness of the corresponding inclusion problem.

It is well known that there are many other concepts of well-posedness for optimization

problems, variational inequalities and Nash equilibrium problems, such as Hadamard well-

posedness [29], well-posedness by perturbations [3, 6] and Levitin-Polyak well-posedness [12,

31], etc. It would be interesting to consider the problem of whether the concepts mentioned

above can be extended to the generalized variational-hemivariational inequality.
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