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NEVANLINNA'S FIVE-VALUE THEOREM FOR DERIVATIVES OF
ALGEBROID FUNCTIONS ON ANNULI

ASHOK RATHOD

Abstract. In this paper, we first obtain the famous Xiong Inequality for algebroid func-
tions on annuli and also generalise Nevanlinna’s five-value theorem for derivatives of al-
gebroid functions by considering weaker assumptions of sharing five values and small
functions to partially sharing k(= 5) values and small functions on annuli. As a particular
cases of our results, we deduce several results.

1. Introduction

The uniqueness theory of algebroid functions is an interesting problem in the value dis-
tribution theory. The uniqueness problem of algebroid functions was firstly considered by
Valiron, afterwards some scholars have got several uniqueness theorems of algebroid func-
tions in the complex plane C (see [2, 3, 5, 9, 10, 11]). In 2005, A. Ya. Khrystiyanyn and A. A.
Kondratyuk have proposed on the Nevanlinna Theory for meromorphic functions on annuli
(see [7, 8]). In 2009, Cao and Yi [1] investigated the uniqueness of meromorphic functions
sharing some values on annuli. In 2015,Yang Tan [12], Yang Tan and Yue Wang [13] proved
some interesting results on the multiple values and uniqueness of algebroid functions on an-
nuli. Thusitis interesting to consider the uniqueness problem of algebroid functions in multi-
ply connected domains. By Doubly connected mapping theorem [17] each doubly connected
domain is conformally equivalent to the annulus {z: r < |z| < R},0 < r < R < +o00. We consider
only two cases : r = 0, R = +oo simultaneously and 0 < r < R < +oco. In the latter case the
homothety z — -% reduces the given domain to the annulus A (RLO,RO) = {z: RLO <zl < Ro},

where Ry = \/g . Thus, in two cases every annulus is invariant with respect to the inversion

1

z— Z°

Received April 6, 2017, accepted November 30, 2017.

2010 Mathematics Subject Classification. 30D35.

Key words and phrases. Value distribution theory, Nevanlinna theory, algebroid functions, sharing
values and uniqueness, annuli.

129


http://dx.doi.org/10.5556/j.tkjm.49.2018.2466

130 ASHOK RATHOD

2. Basic notations and definitions

We assume that the reader is familiar with the Nevanlinna theory of meromorphic func-
tions and algebroid functions (see [4] and [15]).

Let Ay(z), Ay-1(2),..., Aog(z) be a group of analytic functions which have no common ze-
ros and define on the annulus A (Rio, RO) (1< Ry < +00),

Wiz, W)=A,(2)W" + Ay 1 (@WV 4 kAL ()W + Ag(2) = 0. 2.1

Thenirreducible equation (2.1) defines a v-valued algebroid function on the annulus A ( RO)
(1< Rp < +00).

Let W (z) be a v-valued algebroid function on the annulus A( Ro) (1 < Ry < +00), we

use the following notations

1Y 12X 1 27 N i
m(r,W):;;m(r,wj):;gg A log™ lw;(re™)|do,

Ung(t, w) ALY
Ni(r,W) = ——dt, No(r,W)= —dt,
V % t V1 t
_ 1 117 (t v _ 1 1 772 (8, e
Nl(r, ):_f mlbwa) . Nz(r, ):_f m(bwa)
W-a vJi t W-a vJi t

mo(r,W)=m@r,W)+m

1
7 W) —2m(1, W), No(r, W)= Ni(r, W)+ No(r, W),

+N2 T, ,
—a W-a

where w;(z)(j =1,2,...,v) is one valued branch of W(z), ny (#, W) is the counting function of

_ 1 _
NQ(T, )=N1 T,
—a

poles of the function W(z) in {z: t < |z| < 1} and ny(t, W) is the counting function of poles
of the function W(z) in {z:1 < |z| < t} (both counting multiplicity) ﬁl( - 77— ) is the count-

ing function of poles of the functio

(£, 77=) is the count-

W
ing function of poles of the function ﬁ inf{z:1< Izl < t} (both ignoring multiplicity).
nf) (t, Wl_ a) (ngk (¢, Wl_ a)) is the counting function of poles of the function WL with multi-

plicity < k (or > k) in {z: ¢ < |z| < 1}, each point count only once; 75 (£, 77-) (nék(t, Wl_a))

is the counting function of poles of the function ﬁ with multiplicity < k (or > k) in{z:1<
|z| < t}, each point count only once, respectively.

Let W(z) be a v-valued algebroid function which determined by (2.1) on the annulus
A(L RO) (1 <Ry < +00), when a€C, no(r,ﬁ) = no(r, 1//(;,6!)) No (7, 7= a) = lNo(r,m).
In particular, when a = 0, Ny (7, ) 1N0( ) When a = oo, Ny (r,W) = 1 N()( ) where
no (r, 77— ) and no( A W( ) ) are the counting function of zeros of W(z) — a and ¥ (z, a) on the

annulus A( RO) (1 < Ry = +00), respectively.
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Definition 2.1 ([12]). Let W(z) be an algebroid function on the annulus A (RLO,RO) (I1<Ry<
+00), the function
To(r, W) = mo(r, W) + Ny (r, W), 1<r<Rgy

is called Nevanlinna characteristic of W (z).

3. Some lemmas

Lemma 3.1 ([7] (Jensen theorem for meromorphic function on annuli)). Let f be a meromor-
phic function on the annulus A (RLO,RO) (1< Ry < +00), then

21

N, (r l)—N(r f)—ifznlo |f(rei9)|d9+if lo
o 0n Con 0 & 21 Jo &

0
7 d

L o
! ( )
—ifznlo |f(e%)do

271 Jo & ’

wherel < r < Ry.

Lemma 3.2 ([13] (The first fundamental theorem on annuli)). Let W (z) be v-valued algebroid
function which is determined by (2.1) on the annulus A (RLO,RO) (1<Ry<+oc0),aeC

mo(r,a) + No(r,a) = To (r, W) + O(1).

Lemma 3.3 ([13] (The second fundamental theorem on annuli)). Let W(z) be v-valued alge-
broid function which is determined by (2.1) on the annulus A (R%)’RO) (1< Ry <+00), ay (k=
1,2,..., p) are p distinct complex numbers (finite or infinite), then we have

P 1
(p-20)To(r,W)< ) No(r, )—Nl(r, W) + So(r, W) 3.1)
Ny (r, W) is the density index of all multiple values including finite or infinite, every T multiple
value countst -1, and

!

)+O(1).

w' P
S » W) = | —— »
o(r, W) mo(r W)+j;m0(r —
The remainder of the second fundamental theorem is the following formula
So(r, W) = O(log To(r, W)) + Olog 1),

outside a set of finite linear measure, if r — Ry = +oo, while

So(r, W) = O (log To(r, W)) + O(logR r),
o—

outside a set E of r such thath % < 400, when r — Ry < +oo.
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Remark 3.1 ([13]). The second fundamental theorem on annuli has other forms, as the fol-
lowing:

p
(P-DTo(r,W)<No(r, W)+ ) No(r, v

1
)—Nl(r)+Q1(F, w), (3.2)
k=1 —ak

; )
rn—:1_1,
W/

W)=Y ( w ) 0(1), ay =0
Ql T, _k:()m() r’W—ak + » g = V.

Ni(r, W) = 2Ny (r, W) = No(r, W) + Ny

We notice that the following formula is true,

P 1 p _
ZNO(r,m)—Nl(r,W)s ZNO(r, ) 3.3)
k=1

k=1 W —ay

Ny (r, W%ak) is the reduced counting function of zeros(ignoring multiplicity). Then the sec-
ond fundamental theorem can be rewritten as the following

pPo__
(p—20)To (r,W) < ZNo(r,

) + So(r, W). (3.4)
k=1 k

Lemma 3.4 ([13]). Let W(z) be v-valued algebroid function which is determined by (2.1) on
the annulus A (Rio, RO) (1 < Ry < +00), if the following conditions are satisfied

To (r, W
lim M <00, Ry=+o0o,
—oo logr
. TO (r) W)
lim ——— <09, Ry < 00,

r—Fy 108 7,7

then W (z) is an algebraic function.

Remark 3.2 ([13]). Let W(z) be a v-valued algebroid function which is determined by (2.1) on
the annulus A (R%)’ RO), where 1 < Ry < +oo and W(z) be a p-valued algebroid functions which

is determined by the following equation on the annulus A (Rio, RO), where 1 < Ry < +o0,
@(z,W) = By(2)WH + By_1(2) WF + -+ Bi(2)W + By (2) = 0.

Without loss of generality, let ¢ < v,na(r, a) denotes the counting function of the common
values of W(z) = a and W (z) = a on the annulus A (RLO,RO) (1 < Ry < +00), ignoring multiplic-
ity. And let

Na(r,a) =

,u+vf1ﬁAI(t,a)dH,u+vf’ﬁA2(t,a)dt
2uv 1 t 2uv t

— — 1 — 1 —
Nio(r,a) = No(r, )+No( ) == )—ZNA(r, a).
W-a W-a
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4. Main results

Let W(z) be an algebroid function on the annulus A (RLO,RO), where 1 < Ry < +o0, and a
be a complex number in the extended complex plane. Write E(a, W) ={ze A: W(z)—a =
0}, where each zero with multiplicity m is counted m times. If we ignore the multiplicity,
then the set is denoted by E(a,W). We use Ek) (a, W) to denote the set of zeros of W — a with
multiplicities not greater than k, in which each zero is counted only once.

In this paper, we say that two algebroid functions on the annulus A (RLO,RO) (1<Ry<
+00), share a function a(z) if we have W(z) — a(z) = 0 if and only if w-— a(z) = 0. Now we

consider the case that two algebroid function partially share small functions.

Definition 4.1. Let W (z) be an algebroid function on the annulus A (RLO,RO) (1 < Ry < +00)

and a(z) be a small function of W(z). We define
W(a, W) = {z|W(z) — a(z) = 0}
in which each zero is counted only once.

We say that an algebroid function W (z) partially shares a value a with an algebroid func-
tion W (z) on the annulus A (RLO,RO) (1 <Ry <+o0) if

E(a,W) < E(a, W)

To prove our main theorem, we need to get the following Xiong inequality for algebroid func-

tions on annuli.

Theorem 4.1. Let W(z) be a v-valued algebroid function determined by (2.1) on the annulus
A (RLO,RO) (1 < Ry < +00), respectivelyand b; (j = 1,2,...,q) be distinct finite non zero complex

numbers. Then for any positive integer n, we have

_ 1 q 1
qTo(r, W) < No(r, W) + qNy (r,W) +j;N0 (r’W(T—bj)
1 1
— (q—l)N() T,W + Ny T,W + So(r, W). (4.1)
Proof. We have
w' w'
To(r, W) = To(r,WW) <To(r, W)+ Ty r,W) +0O(1)
w' w'
< To(r, W)+ my r,W)+N0 r,W)+O(1)

= To(r, W) + No(r, W) + So(r, W)
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=2vTo(r, W) + So(r, W). 4.2)

Hence, by Lemma 3.3 and (4.2), we have

So(r, W®) = 0(log r To(r, W) = OUog r Ty (r, W)) = So(r, W). (4.3)
W(k)
mo|r, W_a = So(r,W). (4.4)

From Lemma 3.3, (4.3) and (4.4), we have

w W lk+D)

mo | 1,—————| =S, W), mo | r,—— = So(r, W)
[T(W-aj) Wk T Wk —b))
i=1 j=1
and
8 7 (k) b
[TW™ —b;
1 ~ w wk+D =1 Y
p - p q kyn—=17(k+1)
DwW-a)y | TW-ay| W [1W®-b) WwHmw
i=1 i=1 j=1
Then
( ] ) l'lq ,w® —p) ©
nmy|lr,——| < + So(r, W), (4.5)
H?zl(w_ai) (Wk)n Ly k+1)
From (4.3), Lemma 3.1 and 3.3, we have
[T w® b)) [ w® b))
=1 J (W=l k+1) j=1 J ®
S Tl i L P I T T M
—Yj

j=1

K :
= No(r,W) = (g~ No(R, W) +;N° (r’ w® _ b,-)

1 1
—(n—l)NO(r,W)—Ng(r,m)+80(r,w(m). (4.6)

From Lemma 3.1 and (4.2), (4.3), the left of (4.6) can be replaced by

1 P 1
nmo|r,———— | =nTo|r ]_[(W a;)| = nNo [ r,————|+0(1)
[T (W-a;) = l_ll(W—ai)

i=1 i=

=npTy(r,W)—n Z pNo|T,

( 1 )+So(r w®), .7
i=1 (W- l) '
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Put (4.6) and (4.7) into (4.5), then we have

— P 1 I 1
npTo(r,W) < No(r, W) + ni:ZiNo (r(W——a,)) +];NO v

1
~(g=mNo(r, W)~ (n=1)N (r, W) —No (r, ) +So(r, W).

W(k+1)
Let n =g, p =1, we can get the inequality (4.1). The proof of Theorem 4.1 is completed. [

It is natural question to ask if W™ (z) and w (z) be two v-valued and p-valued alge-
broid functions on annulus A ( RO) (1 < Ry < +00), partially share more than five values for
a positive integer n, what the corresponding inequality becomes? Below we answer for this

equations by proving the following theorem.

Theorem 4.2. Let W(z) and W(z) be two v-valued and p-valued algebroid functions deter-
mined by (2.1) on the annulus A(RLO,RO) (1 < Ry < +00), respectively and u < v, let a;j(j =
1,2,..., k) be k distinct small functions, where k = 4v + 1 and for a non negative integers n, if

E(a;,W")< E(a;,W™), foralll<j<k, (4.8)
E©,W;) < EO,W"™) and E©,W)< E©,W™), (4.9)
and
lim fNO (r L )
F—o0 j=1 W= n+1
> , (4.10)
i §N (r ) ) k—(n+2v+1)
r—o0 j=1 O Wo—g
then W (z) = W (2).

Proof. Given €> 0 and from Theorem 4.1, we have

k—=2v 1
(k—2v=€)To(r,W) < No(r, W) + (k- ZV)No(r —) Z NO( "W _a])
—(k—@2v+1)Ny (r, Wl ) + So(r, W) (4.11)
and
k—=2v 1
(k—2v—€)To(r, W) < No(r, W) + (k — ZV)N()( ) Z No|r
w "W —q; —a;

—(k-@2v+1)Ny (r, ,\1 ) + So(r, W) (4.12)
wn)
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Using (4.9), (4.11) and (4.12) reduces to

(k—2v—€)To(r,W) < No(r, W)+N0( W(n))
k—=2v
- ]zl No(r, T ])+So(i‘, w) .13
and )

(k—2v—€)Ty(r,W) < No(r, W) +N0(

k-2v 1 e

+ Y No|r=——]+So(r,W). (4.14)
j=1 W —a;

Without loss of generality, we may assume aj = oo and a;_; = 0.

First we may assume thatall a;(1 < j < k) in (4.8) are finite. Then by (4.13) and (4.14), we have

k-1

(k—=@2v+D-e)To(r, W) < ) Ny|r

( ,VV(T)‘FS()(T W) (415)
j=1

and
k-1

(k—@2v+1)-e)Ty(r,W) < Y No(r,,\;
o W —a;

From (4.15), (4.16) and by Remark 3.2, we have

)+So(r, w). (4.16)

(@-@v+D=)[To(r, W)+ To(r, W) < j;No (rm) +) No|h=—"
+8o(r, W) + So(r, W), 4.17)
k=1__ k-1__
< ) Nui(r,aj)+2 ) Na(raj))
j=1 j=1

+So(r, W) + So(r, W). (4.18)
If W™ (z) 2 W (z), then we have

Y na(r,a) < ng (r,

il
R(p,y))’
R(p,y) denotes the resultant of ¢(z, W) and w(z, W), it can be written as the following

Rip,y) = [Ay@1FBu(2]" [] w2 ~a" ().

l=sj=v
1<k=p
It can be written in the another form

Av(@) Ayr(d) e e Ad@ 0 .0
0 A@ A(@ .. A A2 .. 0
0 0 0 Av@ Avr(@) o .. A2
R@,¥) =|Bu2 Bis(® .. .. B& 0 0
0 By By1(d .. B2 By .. 0
0 0 0 Bu@ By1(2) .. ..By(2@
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So we know that R(¢p, ) is a holomorphic function and using Jensen Theorem for meromor-

phic function on annuli, we have

1
M
R(p,v)
1 27 . L
= E[ log| Ry (re®®, W), p(re®®, W™)]1do
0

+Lf2nlog R [w(leie W(”)) (p(leie W("))”dé?
27 Jo r A\

1 2r . . —
+22—f log Ry (e, w™), (e, W™)]|do
T Jo

B[ i0 v o[ i0
:Efo loglAy(re )|d0+§f0 log|By(re™”)|d0

1 (1) (1 iy _ (1) (0
o ) log 15]1_‘[sv[wj (re™)—w;"(re™)]|do
1<sksp
p 1 iB) fzn (1 iB)
— log|A, |- ao+— log|B, |- dao
+27r 0 °8 V(re " T Jo 08| Pu re

— znlog I1 w(")(le“’)—w(")(l )] do - 2—]2nlog|A (e'%)|a0
21 Jo 1<j=v I \r I \r v
l<sksp

_21f2n10g|B (ei9)|d6—zif2nlog H [w(n)(eze) A(n)(elg)]
21 Jo K 21 Jo

lsj<v
1<k=p
27 . 27 1 . 2m i
- %fo logIAV(re’9)|d0+%f0 log AV(;ele) d@—z%fo log| A, (e')|d0
4V fznl B, (re'®)|do + — fznl B (1 “’) dog—-2- fznl B, (e®)d6
— ) re — ) —e -2— ) e
271 Jo 81Pu 271 Jo 8|Pu r 21 Jo 815
! 2ﬂlo I1 [w' (re®)y — 2" (re'®)]| d6
27 Jo 6 I<jsv i i

1<sk=p

+i anog H (n) ( ) _ lT/(.") (leie)
27 Jo Y

l<sj=sv
1<sk=p

21
2. f log| [T (w”® - |d

1sjsv
1<k=p
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1 1
r,— mo(r,B,)—mg|1r,—
0 Av) o(r,By) 0( Bu)]

+uvimo(r, W) + mo(r, W)] + 0(1)
= wv[To(r, W) + To(r, W] + O(1).

+v

Then we get
Y Na(r,a)) < —[Tg(r W) + To(r, W) + 0(1)
< (n + D[ Ty(r, W) + To(r, W)] + O(1). (4.19)

By the condition of Theorem 4.2, we know that the set of zeros of W (z) — a; and W(z) —ajin

which each point counts only once, at the same time we get le(r, aj) =0.

Therefore

k-1 k-1

— 1 — 1 Iy
> No(r,i(n) )s§ No(r,i,\ )s(n+1)v[T0(r,W)+T0(r,W)]+O(1).(4.20)
im W —a;) 5 wm —wn

From (4.15), (4.16) and (4.20), we have

kX—:lN( 1 )<( n+1 +O(1)) ZN( ) ZN 1
=\ "W —g; ) = \k—ev+n 0 W(")— " T —q

for r ¢ E, which implies

k—(n+4v)—¢ k-1__ 1 n+1 k-1 1
((k—2v+1)—€+0(1))]~;N0(r' W(”)—aj)s(k—(2v+1)— (1))ZNO r'W(n)_ a;j
forr¢ E.

Therefore, we obtain

n+1
<
) k—(n+4v)—¢€

which is true for all €> 0 and replace k —1 by k. Hence

- 7 1

Z Ny ( ’W(T—aj) il
hm < . (4.21)
- 1 k—(n+4v)
g "W,

Where ay is finite (since all a;(1 < j < k) are finite).

r—00
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From (4.21) contradicts to (4.10) and hence W (z) = wm (z). Now assume that one of
the a;j(1<j<k)in (4.8) is infinity say ay = co. Taking any finite value a such that a # a 1=
j<k-1).Set

1
P e— G(n)(Z) ==
wm — g wm — g

Putbj= L (1<j<k-1) and by =0.

F"(z) =

Since F(z) and G (z) partially share finite values b j(1 = j < k-1) IM. Thus by the
above case F"” (z) = G (z). Which completes the proof of theorem. O

If n = 0 in Theorem 4.2, then the conditions E(0, W) < E(0, W) and E(0, W) < E(0, W)
are obvious and hence in this case, Theorem 4.2 reduces as follows

Theorem 4.3. Let W(z) and W(z) be two v-valued and p-valued algebroid functions on the
annulus A(RLO,RO) (1 < Ry < +00), respectively and pu < v, let aj(j = 1,2,...,k) be k distinct
small functions, wherek = 4v + 1. IfE(aj, w) gf(aj, W) foralll<j<k.If

lim § No(r, Wlaj)

r—oo j=1 S 1
. 1 k-@v+1)’
h_m Z NO Iy=—"o7

r—ooj=1 W-a;

then W (z) = W(z).

Ifn=0and k=4v+1 in Theorem 4.2, then Theorem 4.2 reduces as follows

Corollary 4.1. Let W(z) and W(z) be two v-valued and p-valued algebroid functions on the
annulus A(RLO,RO) (1 < Ry = +00), respectivelyand u < v, leta;(j =1,2,...,4v+1) be 4v +1
distinct small functions. Iff(aj, w)c F(aj, W) foralll<j<4v+1,and

j=1 1
oo AVl 2v’
e > No(l‘, Wl )

j=1 —4j

then W (z) = W(z).

Definition 4.2. Let W (z) be an algebroid function on the annulus A (RLO,RO) (1 < Ry < +00)
and a(z) be a values of W(z). We define

W(a, W) = {z|W(z) — a(z) = 0}

in which each zero is counted only once.
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We consider, two algebroid functions partially share five or more values on the annulus
A (RLO,RO) (1 < Ry < +00). Precisely speaking, if two algebroid functions W(z) and W(z) on
the annulus A (RLO,RO) (1 < Ry < +o00) and k be distinct values ay, ay,...,ar, k= 4v+1 such
that E(a;j, W) € E(aj, W), forall1 < j<k.

Now we can state and prove our theorem as follows

Theorem 4.4. Let W(z) and W(z) be two v-valued and p-valued algebroid functions on the
annulus A(RLO,RO) (1 < Ry < +00), respectively and pu < v, let aj(j = 1,2,...,k) be k distinct

values, where k = 4v + 1 and for a non negative integers n, if
E(a;, W")c E(a;,W"™), foralll<j<k,

EO,W;) < EQO, W) and E(0, W) < E@0,W™),

and

1 f ]

im ) Ny (r, o )
F=o0j=1 w=a; n+l
> )

; fN( 1 ) k-(n+2v+1)

E 0 rr TA7(n

r—oo j=1 W -a;
then W™ (z) = W (2).
Proof. Using a similar argument as Theorem 4.2, we can prove it. g

If 7 = 0 in Theorem 4.4, then the conditions E(0, W) < E(0, W™) and E(0, W) < E(0, W)

are obvious and hence in this case, Theorem 4.4 reduces as follows

Theorem 4.5. Let W (z) and W (z) be two v-valued and (1-valued algebroid functions on the
annulus A(R%)’RO) (1 < Ry < +00), respectively and p < v, let a;j(j = 1,2,...,k) be k distinct
values, wherek =4v +1. IfE(aj, w) gf(aj,ﬂ/\) foralll<j<k.If

lim f No(r, Wlaj)

r—ooj=1 1

> )
] k 1 k—@2v+1)
lim Y No(r,=—
r—oo j=1 W-a;

then W(z) = W (z).

If n=0and k=4v+1 in Theorem 4.4, then Theorem 4.4 reduces as follows
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Corollary 4.2. Let W(z) and W(z) be two v-valued and u-valued algebroid functions on the
annulus A(RLO,RO) (1 < R < +00), respectivelyand u<v, let aj(j = 1,2,...,4v+1) be 4v +1
distinct values. IfE(aj, W) c E(aj, W) foralll<j<4v+1, and

4v+1__ 1

.Z No (I‘, W—a-)
.=l ! 1
lim 4v+l > 2’
r—o0 -~ 1 v
jgl No (r, W‘“/’)

then W (z) = W(z).
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