ON SOLUTIONS OF SOME NON-LINEAR DIFFERENTIAL EQUATIONS IN CONNECTION TO BRÜCK CONJECTURE

DILIP CHANDRA PRAMANIK AND MANAB BISWAS

Abstract

In this paper, we investigate on the non-constant entire solutions of some non-linear complex differential equations in connection to Brück conjecture and prove some results which improve and extend the results of Xu and Yang[Xu HY, Yang LZ. On a conjecture of R. Brück and some linear differential equations. Springer Plus 2015; 4:748,:1-10, DOI 10.1186/s40064-015-1530-5.]

1. Introduction

Let $f(z)$ be a nonconstant meromorphic function in the complex plane \mathbb{C}. We assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory such as $T(r, f), m(r, f), N(r, f)$ (e.g., see [2, 5, 12, 13]). By $S(r, f)$ we denote any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow+\infty$, possibly outside a set of r with finite linear measure. A meromorphic function $\alpha(z)$ is said to be small with respect to $f(z)$ if $T(r, \alpha)=S(r, f)$.

Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions. For a small function $a(z)$ of f and g, if $f(z)-a(z)$ and $g(z)-a(z)$ have same zeros with same multiplicities, we say that $f(z)$ and $g(z)$ share the function $a(z) \mathrm{CM}$ (counting multiplicities) and if $f(z)-a(z)$ and $g(z)-a(z)$ have same zeros with ignoring multiplicities, we say that $f(z)$ and $g(z)$ share $a(z)$ IM (ignoring multiplicities). Note that $a(z)$ can be a value in $\mathbb{C} \cup\{\infty\}$.

For an entire function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ the central index $v(r, f)$ is the greatest exponent m such that $\left|a_{m}\right| r^{m}=\mu(r, f)$, where $\mu(r, f)=\max _{n \geq 0}\left|a_{n}\right| r^{n}$ denote the maximum term of f on $|z|=r$. In this paper, we also need the following definitions.

Definition 1.1. Let $f(z)$ be a nonconstant meromorphic function, then the order $\sigma(f)$ of $f(z)$ is defined by

$$
\sigma(f)=\limsup _{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}=\limsup _{r \rightarrow+\infty} \frac{\log \log M(r, f)}{\log r}
$$

and the lower order $\mu(f)$ of $f(z)$ is defined by

$$
\mu(f)=\liminf _{r \rightarrow+\infty} \frac{\log T(r, f)}{\log r}=\liminf _{r \rightarrow+\infty} \frac{\log \log M(r, f)}{\log r}
$$

where and in the sequel

$$
M(r, f)=\max _{|z|=r}|f(z)|
$$

Definition 1.2. [[5]]The type $\tau(f)$ of an entire function $f(z)$ with $0<\sigma(f)=\sigma<+\infty$ is defined by

$$
\tau(f)=\limsup _{r \rightarrow+\infty} \frac{\log M(r, f)}{r^{\sigma}}
$$

Following Yi an Yang [13] we define
Definition 1.3. Let f be a nonconstant meromorphic function, the hyper order $\sigma_{2}(f)$ of $f(z)$ is defined as follows

$$
\sigma_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}
$$

and finally
Definition 1.4. Let $n_{0 j}, n_{1 j}, n_{2 j}, \ldots, n_{k j}$ are non negative integers. The expression $M_{j}[f]=$ $(f)^{n_{0} j}\left(f^{(1)}\right)^{n_{1 j}}\left(f^{(2)}\right)^{n_{2} j} \cdots\left(f^{(k)}\right)^{n_{k j}}$ is called a differential monomial generated by f of degree $d\left(M_{j}\right)=\sum_{i=0}^{k} n_{i j}$ and weight $\Gamma_{M_{j}}=\sum_{i=0}^{k}(i+1) n_{i j}$. The sum $P[f]=\sum_{j=1}^{t} a_{j} M_{j}[f]$ is called a differential polynomial generated by f of degree $\bar{d}(P)=\max \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$ and weight $\Gamma_{P}=\max \left\{\Gamma_{M_{j}}: 1 \leq j \leq t\right\}$, where $a_{j} \neq 0(j=1,2, \ldots, t)$ and $T\left(r, a_{j}\right)=S(r, f)$ for $j=1,2, \ldots, t$. The numbers $\underline{d}_{P}=\min \left\{d\left(M_{j}\right): 1 \leq j \leq t\right\}$ and k (the highest order of the derivative of f in $P[f]$) are called respectively the lower degree and the order of $P[f] . P[f]$ is said to be homogeneous if $\bar{d}_{P}=\underline{d}_{P} . P[f]$ is called a Linear Differential Polynomial generated by f if $\bar{d}_{P}=1$. Otherwise, $P[f]$ is called Non-linear Differential Polynomial. We denote by $Q=\max \left\{\Gamma_{M_{j}}-d\left(M_{j}\right): 1 \leq j \leq t\right\}=\max \left\{\sum_{i=1}^{k} i . n_{i j}: 1 \leq j \leq t\right\}$

Rubel and Yang [10] proved that if a nonconstant entire function f and its derivative f^{\prime} share two distinct finite complex numbers CM , then $f=f^{\prime}$. How is the relation between f and f^{\prime}, if an entire function f and its derivative f^{\prime} share one finite complex number $a \mathrm{CM}$? Brück [1] made the conjecture that if f is a nonconstant entire function satisfying $\sigma_{2}(f)<\infty$,
where $\sigma_{2}(f)$ is not a positive integer and if f and f^{\prime} share one finite complex number $a \mathrm{CM}$, then $f^{\prime}-a=c(f-a)$ for some nonzero finite complex number c. In 1998, Gundersen and Yang [4] proved that the conjecture is true for entire functions of finite order. Also, in 2008 Li and Cao[8] improved the Brück conjecture for entire function and its derivation sharing polynomials and proved the following theorem:

Theorem 1.1. Let $\phi(z)$ be any polynomial. If f is a nonconstant entire solution of the equation $f^{(k)}-Q_{1}=e^{\phi}\left(f-Q_{2}\right)$, where Q_{1} and Q_{2} are non-zero polynomials, then $\sigma_{2}(f)=$ degree of ϕ.

Mao [9] improve the above theorem in which he replaced the k-th derivative $f^{(k)}$ by the linear differential polynomial $L(f)=a_{k} f^{(k)}+a_{k-1} f^{(k-1)}+\cdots+a_{0} f$ and prove that

Theorem 1.2. Let $a_{k} \equiv 0, a_{k-1}, \ldots, a_{0}, P(z)$ be polynomials, $k \geq 1$ and f be an entire function of order $\sigma(f)>\max _{0 \leq j \leq k-1}\left\{\frac{\operatorname{deg} a_{j}-\operatorname{deg} a_{k}}{k-j}, 0\right\}$ and hyper-order $\sigma_{2}(f)<\frac{1}{2}$. If f and $L(f)$ share $P C M$, then $\frac{L(f)-P}{f-P}=c$ for a non zero constant c.

Later in 2009 Chang and Zhu [3] proved that Brück conjecture is true if the constant a is replaced by a function $a(z)$, provided $\sigma(a)<\sigma(f)$.

Theorem 1.3. Let f be an entire function offinite order and $a(z)$ be a function such that $\sigma(a)<$ $\sigma(f)<+\infty$. Iff and f^{\prime} share $a(z) C M$, then $\frac{f^{\prime}-a}{f-a}=c$ for some constant $c \neq 0$.

In the year 2015, Xu and Yang [11] prove the following theorems:
Theorem 1.4. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions and satisfy $0<\sigma(\alpha)=$ $\sigma(f)<+\infty, \tau(f)>\tau(\alpha)$ and let $\phi(z)$ be a polynomial such that

$$
\sigma(f)>\operatorname{deg}(\phi)+\max _{0 \leq j \leq k-1}\left\{\frac{\operatorname{deg} a_{j}-\operatorname{deg} a_{k}}{k-j}, 0\right\} .
$$

If f is a nonconstant entire solution of the following differential equation $L(f)-\alpha(z)=(f(z)-$ $\alpha(z)) e^{\phi(z)}$, where $L(f)$ is defined as above. Then $\phi(z)$ is a constant.

Theorem 1.5. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions satisfying $0<\sigma(\alpha)=$ $\sigma(f)<+\infty, \tau(f)>\tau(\alpha)$ and let $\phi(z)$ be a polynomial such that

$$
\sigma(f)>\operatorname{deg}(\phi)+\max _{0 \leq j \leq k-1}\left\{\frac{\operatorname{deg} a_{j}-\operatorname{deg} a_{k}}{k-j}, 0\right\} .
$$

Iff is a nonconstant entire solution of the following differential equation $L_{1}(f)-\alpha(z)=(f(z)-$ $\alpha(z)) e^{\phi(z)}$, where $L_{1}(f)=L(f)+\beta(z)$ and β is an entire function satisfying $0<\sigma(\beta)=\sigma(f)<$ $+\infty, \tau(f)>\tau(\beta)$. Then $\phi(z)$ is a constant.

Theorem 1.6. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions satisfying $\sigma(\alpha)<\mu(f)$, and let $\phi(z)$ be a polynomial such that

$$
\sigma(f)>\operatorname{deg}(\phi)+\max _{0 \leq j \leq k-1}\left\{\frac{\operatorname{deg} a_{j}-\operatorname{deg} a_{k}}{k-j}, 0\right\} .
$$

Iff is a nonconstant entire solution of the following differential equation $L_{1}(f)-\alpha(z)=(f(z)-$ $\alpha(z)) e^{\phi(z)}$, where $L_{1}(f)=L(f)+\beta(z)$ and β is an entire function satisfying $\sigma(\beta)<\mu(f)$. Then $\sigma_{2}(f)=\operatorname{deg} \phi(z)$.

In this paper, we improve and extend the results of Xu and Yang [11] in which we replaced the linear differential polynomial by the differential polynomial $P[f]$ and f by $f^{\bar{d}_{P}}$ and proved the following theorems:

Theorem 1.7. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions and satisfy $0<\sigma(\alpha)=$ $\sigma(f)<+\infty$ and $\tau(f)>\tau(\alpha)$. Also, let $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$
\begin{equation*}
P[f]-\alpha(z)=\left(f^{\bar{d}_{P}}-\alpha(z)\right) e^{\phi(z)} \tag{1.1}
\end{equation*}
$$

then $\phi(z)$ is a constant.
Theorem 1.8. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions and satisfy $0<\sigma(\alpha)=$ $\sigma(f)<+\infty$ and $\tau(f)>\tau(\alpha)$. Also, let $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$
\begin{equation*}
P[f]+\beta(z)-\alpha(z)=\left(f^{\bar{d}_{P}}-\alpha(z)\right) e^{\phi(z)} \tag{1.2}
\end{equation*}
$$

where $\beta(z)$ is an entire function satisfying $0<\sigma(\beta)=\sigma(f)<+\infty$ and $\tau(f)>\tau(\beta)$. Then $\phi(z)$ is a constant.

Theorem 1.9. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions satisfying $\sigma(\alpha)<\mu(f)$ and $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$
\begin{equation*}
P[f]+\beta(z)-\alpha(z)=\left(f^{\bar{d}_{P}}-\alpha(z)\right) e^{\phi(z)} \tag{1.3}
\end{equation*}
$$

where $\beta(z)$ is an entire function satisfying $\sigma(\beta)<\mu(f)$. Then $\sigma_{2}(f)=\operatorname{deg} \phi$.

2. Preparatory lemmas

In this section we state some lemmas needed in the sequel.

Lemma 2.1 ([7]). Let $f(z)$ be a transcendental entire function, $v(r, f)$ be the central index of $f(z)$. Then there exists a set $E \subset(1,+\infty)$ with finite logarithmic measure, we choose z satisfying $|z|=r \notin[0,1] \cup E$ and $|f(z)|=M(r, f)$, we get

$$
\frac{f^{j}(z)}{f(z)}=\left\{\frac{v(r, f)}{z}\right\}^{j}(1+o(1)), \text { for } j \in N .
$$

Lemma 2.2 ([6]). Let $f(z)$ be an entire function of finite $\operatorname{order} \sigma(f)=\sigma<+\infty$ and let $v(r, f)$ be the central index of f. Then

$$
\limsup _{r \rightarrow+\infty} \frac{\log v(r, f)}{\log r}=\sigma(f)
$$

and iff is a transcendental entire function of hyper order $\sigma_{2}(f)$, then

$$
\limsup _{r \rightarrow+\infty} \frac{\log \log v(r, f)}{\log r}=\sigma_{2}(f)
$$

Lemma 2.3 ([9]). Let $f(z)$ be a transcendental entire function and let $E \subset[1,+\infty)$ be a set having finite logarithmic measure. Then there exists $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ such that $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right)$, $\theta_{n} \in[0,2 \pi), \lim _{n \rightarrow+\infty} \theta_{n}=\theta_{0} \in[0,2 \pi), r_{n} \notin E$ and if $0<\sigma(f)<+\infty$, then for any given $\varepsilon>0$ and sufficiently large r_{n},

$$
r_{n}^{\sigma(f)-\varepsilon}<v\left(r_{n}, f\right)<r_{n}^{\sigma(f)+\varepsilon}
$$

If $\sigma(f)=+\infty$, then for any given large $K>0$ and sufficiently large r_{n},

$$
v\left(r_{n}, f\right)>r_{n}^{K}
$$

Lemma 2.4 ([7]). Let $\phi(z)=b_{n} z^{n}+b_{n-1} z^{n-1}+\cdots+b_{0}$ with $b_{n} \neq 0$ be a polynomial. Then for every $\varepsilon>0$, there exists $r_{0}>0$ such that for all $r=|z|>r_{0}$ the inequalities

$$
(1-\varepsilon)\left|b_{n}\right| r^{n} \leq|\phi(z)| \leq(1+\varepsilon)\left|b_{n}\right| r^{n}
$$

hold.
Lemma 2.5 ([11]). Let $f(z)$ and $A(z)$ be two entire functions with $0<\sigma(f)=\sigma(A)=\sigma<+\infty$, $0<\tau(A)=\tau(f)<+\infty$, then there exists a set $E \subset[1,+\infty)$ that has infinite logarithmic measure such that for all $r \in E$ and a positive number κ, we have

$$
\frac{M(r, A)}{M(r, f)}<\exp \left\{-\kappa r^{\sigma}\right\}
$$

3. Proofs of the main results

Proof of Theorem 1.7. Suppose that $\operatorname{deg} \phi=m \geq 1$. Let

$$
\phi(z)=b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+b_{0},
$$

where $b_{m}, b_{m-1}, \ldots, b_{0}$ are constants and $b_{m} \neq 0$. Thus, it follows from (1.1) and Lemma 2.4 that

$$
\begin{align*}
\left|b_{m}\right| r^{m}(1+o(1)) & =|\phi(z)|=\left|\log \frac{\frac{P[f]}{f^{\overline{a_{P}}}}-\frac{\alpha}{f^{\overline{\bar{a}_{P}}}}}{1-\frac{\alpha}{f^{\overline{a_{P}}}}}\right| \\
& =\left|\log \frac{\frac{P[f]}{f^{\overline{\bar{p}_{P}}}}-\frac{\alpha}{f} \cdot \frac{1}{f^{\overline{\bar{a}_{P}-1}}}}{1-\frac{\alpha}{f} \cdot \frac{1}{f^{\overline{a_{p}}-1}}}\right| \tag{3.1}
\end{align*}
$$

Since for each $j=1,2, \ldots, t$,

$$
\begin{aligned}
M_{j}[f] & =(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}}\left(f^{(2)}\right)^{n_{2} j} \cdots\left(f^{(k)}\right)^{n_{k j}} \\
& =f^{\left(\sum_{i=0}^{k} n_{i j}\right.} \prod_{i=1}^{k}\left(\frac{f^{(i)}}{f}\right)^{n_{i j}} \\
& =f^{d_{M_{j}}} \prod_{i=1}^{k}\left(\frac{f^{(i)}}{f}\right)^{n_{i j}}
\end{aligned}
$$

and from Lemma 2.1, there exists a subset $E_{1} \subset(1,+\infty)$ with finite logarithmic measure, such that for some point $|z|=r e^{i \theta}(\theta \in[0,2 \pi]), r \notin E_{1}$ and $M(r, f)=|f(z)|$, we have

$$
\frac{f^{i}(z)}{f(z)}=\left\{\frac{v(r, f)}{z}\right\}^{i}(1+o(1)), 1 \leq i \leq k
$$

Thus, it follows that

$$
\frac{M_{j}[f]}{f^{d_{M_{j}}}}=\prod_{i=1}^{k}\left\{\frac{v(r, f)}{z}\right\}^{i . n_{i j}}(1+o(1))=\left\{\frac{v(r, f)}{z}\right\}^{\left(\sum_{i=1}^{k} i . n_{i j}\right)}(1+o(1))
$$

and

$$
\begin{aligned}
\frac{P[f]}{f^{\bar{d}_{P}}} & \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{M_{j}[f]}{f^{\bar{d}_{P}}}\right| \\
& \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{M_{j}[f]}{f^{d_{M_{j}}}}\right|^{\left(\sum_{i=1}^{k} i . n_{i j}\right)}(1+o(1)) \\
& \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{v(r, f)}{z}\right|^{(1+o(1))} \\
& \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{v(r, f)}{z}\right|^{Q}(1+o
\end{aligned}
$$

$$
\begin{equation*}
\leq\left|\frac{v(r, f)}{z}\right|^{Q} \cdot\left(\sum_{j=1}^{t}\left|a_{j}\right|\right) \cdot(1+o(1)) . \tag{3.2}
\end{equation*}
$$

From Lemma 2.3 there exists $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ such that $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right), \theta_{n} \in[0,2 \pi]$, $\lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi], r_{n} \notin E_{1}$, then for any given $\varepsilon>0$ and sufficiently large r_{n},

$$
\begin{equation*}
r_{n}^{\sigma(f)-\varepsilon}<v\left(r_{n}, f\right)<r_{n}^{\sigma(f)+\varepsilon} \tag{3.3}
\end{equation*}
$$

Then, from (3.2) and (3.3) we have

$$
\begin{align*}
\frac{P[f]}{f^{\bar{d}_{P}}} & \leq\left\{\frac{v\left(r_{n}, f\right)}{r_{n}}\right\}^{Q} \cdot\left(\sum_{j=1}^{t}\left|a_{j}\right|\right) \cdot(1+o(1)) \\
& <r_{n}^{(\sigma(f)+\varepsilon-1) Q} \cdot\left(\sum_{j=1}^{t}\left|a_{j}\right|\right) \cdot(1+o(1)) . \tag{3.4}
\end{align*}
$$

Since $0<\sigma(\alpha)=\sigma(f)<+\infty$ and $\tau(f)>\tau(\alpha)$, using Lemma 2.5, there exists a set $E \subset$ $[1,+\infty)$ that has infinite logarithmic measure such that for a sequence $\left\{r_{n}\right\}_{n=1}^{\infty} \in E_{2}=E-E_{1}$, we have

$$
\begin{equation*}
\frac{M\left(r_{n}, \alpha\right)}{M\left(r_{n}, f\right)}<\exp \left\{-\kappa r_{n}^{\sigma(f)}\right\} \rightarrow 0 \text { as } n \rightarrow+\infty \tag{3.5}
\end{equation*}
$$

From (3.1), (3.4) and (3.5) and Lemma 2.2, we get that

$$
\left|b_{m}\right| r^{m}(1+o(1))=|\phi(z)|=O\left(\log r_{n}\right)
$$

which is impossible. Thus, $\phi(z)$ is not a polynomial, that is, $\phi(z)$ is a constant.

Proof of Theorem 1.8. Rewritting (1.2) as

$$
\frac{\frac{P[f]}{f^{\overline{a_{P}}}}+\frac{\beta}{f} \cdot \frac{1}{f^{\bar{d}_{P}-1}}-\frac{\alpha}{f} \cdot \frac{1}{f^{\bar{d}_{P}-1}}}{1-\frac{\alpha}{f} \cdot \frac{1}{f^{\overline{\bar{T}_{P}}-1}}}=e^{\phi(z)}
$$

Our assumptions on τ and σ values give, using Lemma 2.5, that there exists a set $E \subset[1,+\infty)$ that has infinite logarithmic measure such that for a sequence $\left\{r_{n}\right\}_{n=1}^{\infty} \in E_{3}=E-E_{1}$, we have

$$
\frac{M\left(r_{n}, \alpha\right)}{M\left(r_{n}, f\right)}<\exp \left\{-\kappa r_{n}^{\sigma(f)}\right\} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

and

$$
\frac{M\left(r_{n}, \beta\right)}{M\left(r_{n}, f\right)}<\exp \left\{-\kappa r_{n}^{\sigma(f)}\right\} \rightarrow 0 \text { as } n \rightarrow+\infty
$$

Proceeding as in the proof of Theorem 1.7 we can show that $\phi(z)$ is a constant.

Proof of Theorem 1.9. We will consider two cases (i) $\sigma(f)<+\infty$ and (ii) $\sigma(f)=+\infty$.
Case (i). Suppose that $\sigma(f)<+\infty$. Then $\sigma_{2}(f)=0$. Since $\sigma(\alpha)<\mu(f)$ and $\sigma(\beta)<\mu(f)$, from definitions of the order and the lower order, there exists infinite sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$, we have

$$
\frac{\left|\alpha\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0 \text { and } \frac{\left|\beta\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Thus, by using the same argument as in Theorem 1.7, we get that $\phi(z)$ is a constant, that is, $\operatorname{deg} \phi=0$. Therefore, $\sigma_{2}(f)=\operatorname{deg} \phi$.

Case (ii). Suppose that $\sigma(f)=+\infty$.
Rewritting (1.3), we have

$$
\frac{\frac{P[f]}{f^{\overline{a_{P}}}}+\frac{\beta}{f} \cdot \frac{1}{\bar{f}^{\overline{a_{P}}-1}}-\frac{\alpha}{f} \cdot \frac{1}{\bar{f}^{\overline{\bar{p}_{P}}-1}}}{1-\frac{\alpha}{f} \cdot \frac{1}{f^{\overline{\bar{q}_{P}}-1}}}=e^{\phi(z)} .
$$

Since for each $j=1,2, \ldots, t$,

$$
\begin{aligned}
M_{j}[f] & =(f)^{n_{0 j}}\left(f^{(1)}\right)^{n_{1 j}}\left(f^{(2)}\right)^{n_{2} j} \cdots\left(f^{(k)}\right)^{n_{k j}} \\
& =f^{\left(\sum_{i=0}^{k} n_{i j}\right.} \prod_{i=1}^{k}\left(\frac{f^{(i)}}{f}\right)^{n_{i j}} \\
& =f^{d_{M_{j}}} \prod_{i=1}^{k}\left(\frac{f^{(i)}}{f}\right)^{n_{i j}}
\end{aligned}
$$

and from Lemma 2.1, there exists a subset $E_{4} \subset[1,+\infty)$ with finite logarithmic measure, we choose z satisfying $|z|=r \notin[0,1] \cup E_{4}$ and $|f(z)|=M(r, f)$, we have

$$
\frac{f^{i}(z)}{f(z)}=\left\{\frac{v(r, f)}{z}\right\}^{i}(1+o(1)), 1 \leq i \leq k .
$$

Thus, it follows that

$$
\frac{M_{j}[f]}{f^{d_{M_{j}}}}=\prod_{i=1}^{k}\left\{\frac{v(r, f)}{z}\right\}^{i . n_{i j}}(1+o(1))=\left\{\frac{v(r, f)}{z}\right\}^{\left(\sum_{i=1}^{k} i . n_{i j}\right)}(1+o(1))
$$

and

$$
\begin{aligned}
\frac{P[f]}{f^{\bar{d}_{P}}} & \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{M_{j}[f]}{f^{\bar{d}_{P}}}\right| \\
& \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{M_{j}[f]}{f^{d_{M_{j}}}}\right|
\end{aligned}
$$

$$
\begin{align*}
& \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{v(r, f)}{z}\right|^{\left(\sum_{i=1}^{k} i n_{i j}\right)}(1+o(1)) \\
& \leq \sum_{j=1}^{t}\left|a_{j}\right|\left|\frac{v(r, f)}{z}\right|^{Q}(1+o(1)) \\
& \leq\left|\frac{v(r, f)}{z}\right|^{Q} \cdot\left(\sum_{j=1}^{t}\left|a_{j}\right|\right) \cdot(1+o(1)) \tag{3.6}
\end{align*}
$$

Since $\sigma(f)=+\infty$, then it follows from Lemma 2.3 that there exists $\left\{z_{n}=r_{n} e^{i \theta_{n}}\right\}$ with $\left|f\left(z_{n}\right)\right|=M\left(r_{n}, f\right), \theta_{n} \in[0,2 \pi], \lim _{n \rightarrow \infty} \theta_{n}=\theta_{0} \in[0,2 \pi], r_{n} \notin E_{5} \subset[1,+\infty)$, such that for any large constant K and for sufficiently large r_{n}, we have

$$
\begin{equation*}
v\left(r_{n}, f\right) \geq r_{n}^{K} \tag{3.7}
\end{equation*}
$$

Since $\sigma(\alpha)<\mu(f)$ and $\sigma(\beta)<\mu(f)$, from definitions of order and lower order, there exists infinite sequence $\left\{z_{n}\right\}_{n=1}^{\infty}$, we have

$$
\begin{equation*}
\frac{\left|\alpha\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0 \text { and } \frac{\left|\beta\left(z_{n}\right)\right|}{\left|f\left(z_{n}\right)\right|} \rightarrow 0 \text { as } n \rightarrow \infty . \tag{3.8}
\end{equation*}
$$

Thus, it follows from (1.3), (3.6), (3.7) and (3.8) that

$$
\begin{equation*}
e^{\phi\left(z_{n}\right)} \leq\left\{\frac{v\left(r_{n}, f\right)}{r_{n}}\right\}^{Q} \cdot\left(\sum_{j=1}^{t}\left|a_{j}\right|\right) \cdot(1+o(1)) . \tag{3.9}
\end{equation*}
$$

Let

$$
\phi(z)=b_{m} z^{m}+b_{m-1} z^{m-1}+\cdots+b_{0},
$$

where $b_{m}, b_{m-1}, \ldots, b_{0}$ are constants and $b_{m} \neq 0, m \geq 1$. From Lemma 2.4, there exists sufficiently large positive number r_{0} and $n_{0} \in N_{+}$, such that for sufficiently large positive integer $n>n_{0}$ satisfying $\left|z_{n}\right|=r_{n}>r_{0}$, we have for every $\varepsilon^{\prime}>0$

$$
\begin{equation*}
\log \left|b_{m}\right|+m \log \left|z_{n}\right|+\log \left|1-\varepsilon^{\prime}\right| \leq \log \left|\phi\left(z_{n}\right)\right| \leq\left|\log \log e^{\phi\left(z_{n}\right)}\right| . \tag{3.10}
\end{equation*}
$$

It follows from (3.9) that

$$
\begin{align*}
\left|\log \log e^{\phi\left(z_{n}\right)}\right| & \leq \log \log \left(\sum_{j=1}^{t}\left|a_{j}\right|\right)+\log \log v\left(r_{n}, f\right)+\log \log r_{n}+O(1) \\
& \leq \log \log v\left(r_{n}, f\right)+O\left(\log \log r_{n}\right) \tag{3.11}
\end{align*}
$$

Thus, we have from (3.10) and (3.11) and Lemma 2.2 that

$$
\begin{equation*}
m=\operatorname{deg} \phi \leq \sigma_{2}(f) \tag{3.12}
\end{equation*}
$$

Also, it follows from (3.9) and Lemma 2.4 that

$$
M\left(r_{n}, e^{\phi\left(z_{n}\right)}\right) \geq\left\{\frac{v\left(r_{n}, f\right)}{r_{n}}\right\}^{Q} \cdot\left(\sum_{j=1}^{t}\left|a_{j}\right|\right) .
$$

Then, we have

$$
\begin{equation*}
\left\{v\left(r_{n}, f\right)\right\}^{Q} \leq\left(\sum_{j=1}^{t}\left|a_{j}\right|\right)^{-1} \cdot\left(r_{n}\right)^{Q} \cdot M\left(r_{n}, e^{\phi\left(z_{n}\right)}\right) . \tag{3.13}
\end{equation*}
$$

Thus, it follows from (3.13) and Lemma 2.2 that

$$
\begin{align*}
\sigma_{2}(f) & =\limsup _{r_{n} \rightarrow+\infty} \frac{\log \log v\left(r_{n}, f\right)}{\log r_{n}} \\
& =\limsup _{r_{n} \rightarrow+\infty} \frac{\log \log \left(v\left(r_{n}, f\right)\right)^{Q}}{\log r_{n}} \\
& \leq \limsup _{r_{n} \rightarrow+\infty} \frac{\log \log \left(\left(\sum_{j=1}^{t}\left|a_{j}\right|\right)^{-1} \cdot\left(r_{n}\right)^{Q} \cdot M\left(r_{n}, e^{\phi\left(z_{n}\right)}\right)\right)}{\log r_{n}} \\
& =\sigma\left(e^{\phi}\right) . \tag{3.14}
\end{align*}
$$

Since $\phi(z)$ is a polynomial, then $\sigma\left(e^{\phi}\right)=\operatorname{deg} \phi=m$. By combining (3.12) and (3.14), we have $\sigma_{2}(f)=\operatorname{deg} \phi$.

Corollary 3.1. Let $f(z)$ and $\alpha(z)$ be two nonconstant entire functions and satisfy $\sigma(\alpha)<\mu(f)$. Also, let $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$
P[f]-\alpha(z)=\left(f^{\bar{d}_{P}}-\alpha(z)\right) e^{\phi(z)}
$$

then $\sigma_{2}(f)=\operatorname{deg} \phi$.

Acknowledgement

The authors would like to thank Prof. Indrajit Lahiri for his suggestions.

References

[1] R. Brück, On entire functions which share one value CM with their first derivative, Results Math., 30 (1996), 21-24.
[2] W. Cherry and Z. Ye, Nevanlinnas Theory of Value Distribution. Springer-Verlag, 2001.
[3] J. M. Chang and Y. Z. Zhu, Entire functions that share a small function with their derivatives, J. Math. Anal. Appl., 351 (2009), 491-496.
[4] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J Math Anal Appl, 223 (1998), 85-95.
[5] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[6] Y. Z. He and X. Z. Xiao, Algebroid functions and ordinary differential equations, Science Press, Beijing, 1988.
[7] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
[8] X. M. Li and C. C. Cao, Entire functions sharing one polynomial with their derivatives, Proc. Indian Acad. Sci. Math. Sci., 118 (2008), 13-26.
[9] Z. Q. Mao, Uniqueness theorems on entire functions and their linear differential polynomials, Results Math., 55 (2009), 447-456.
[10] L. Rubel and C. C. Yang, Values shared by an entire function and its derivative. Complex Analysis, Lecture Notes in Math., 599 (1977) Springer-Verlag, Berlin, 101-103.
[11] H. Y. Xu, L. Z. Yang, On a conjecture of R. Brück and some linear differential equations. Springer Plus, 4:748 (2015), 1-10.
[12] L. Yang, Value Distribution Theory. Springer-Verlag, Berlin, 1993.
[13] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.

Department of Mathematics, University of North Bengal, Raja Rammohanpur, Dist-Darjeeling, PIN-734013, West Bengal, India.

E-mail: dcpramanik.nbu2012@gmail.com
Barabilla High School, P.O. Haptiagach, Dist-Uttar Dinajpur, PIN- 733202, West Bengal, India.
E-mail: manab_biswas83@yahoo.com

