This paper is available online at http://journals.math.tku.edu.tw/index.php/TKJM/pages/view/onlinefirst 🗸

ON SOLUTIONS OF SOME NON-LINEAR DIFFERENTIAL EQUATIONS IN CONNECTION TO BRÜCK CONJECTURE

DILIP CHANDRA PRAMANIK AND MANAB BISWAS

Abstract. In this paper, we investigate on the non-constant entire solutions of some non-linear complex differential equations in connection to Brück conjecture and prove some results which improve and extend the results of Xu and Yang[Xu HY, Yang LZ. On a conjecture of R. Brück and some linear differential equations. Springer Plus 2015; 4:748,:1-10, DOI 10.1186/s40064-015-1530-5.]

1. Introduction

Let f(z) be a nonconstant meromorphic function in the complex plane \mathbb{C} . We assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory such as T(r, f), m(r, f), N(r, f) (e.g., see [2, 5, 12, 13]). By S(r, f) we denote any quantity satisfying S(r, f) = o(T(r, f)) as $r \to +\infty$, possibly outside a set of r with finite linear measure. A meromorphic function $\alpha(z)$ is said to be small with respect to f(z) if $T(r, \alpha) = S(r, f)$.

Let f(z) and g(z) be two nonconstant meromorphic functions. For a small function a(z) of f and g, if f(z) - a(z) and g(z) - a(z) have same zeros with same multiplicities, we say that f(z) and g(z) share the function a(z) CM (counting multiplicities) and if f(z) - a(z) and g(z) - a(z) have same zeros with ignoring multiplicities, we say that f(z) and g(z) share a(z) IM (ignoring multiplicities). Note that a(z) can be a value in $\mathbb{C} \cup \{\infty\}$.

For an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ the central index v(r, f) is the greatest exponent m such that $|a_m| r^m = \mu(r, f)$, where $\mu(r, f) = \max_{n \ge 0} |a_n| r^n$ denote the maximum term of f on |z| = r. In this paper, we also need the following definitions.

Received May 18, 2017, accepted June 28, 2017.

²⁰¹⁰ Mathematics Subject Classification. 39B32, 30D35.

Key words and phrases. Entire function, Nevanlinna Theory, differential equations in the complex domain.

Corresponding author: Dilip Chandra Pramanik.

Definition 1.1. Let f(z) be a nonconstant meromorphic function, then the order $\sigma(f)$ of f(z) is defined by

$$\sigma(f) = \limsup_{r \to +\infty} \frac{\log T(r, f)}{\log r} = \limsup_{r \to +\infty} \frac{\log \log M(r, f)}{\log r}$$

and the lower order $\mu(f)$ of f(z) is defined by

$$\mu(f) = \liminf_{r \to +\infty} \frac{\log T(r, f)}{\log r} = \liminf_{r \to +\infty} \frac{\log \log M(r, f)}{\log r}$$

where and in the sequel

$$M(r, f) = \max_{|z|=r} \left| f(z) \right|.$$

Definition 1.2. [[5]] The type $\tau(f)$ of an entire function f(z) with $0 < \sigma(f) = \sigma < +\infty$ is defined by

$$\tau(f) = \limsup_{r \to +\infty} \frac{\log M(r, f)}{r^{\sigma}}.$$

Following Yi an Yang [13] we define

Definition 1.3. Let *f* be a nonconstant meromorphic function, the hyper order $\sigma_2(f)$ of f(z) is defined as follows

$$\sigma_2(f) = \limsup_{r \to +\infty} \frac{\log\log T(r, f)}{\log r}$$

and finally

Definition 1.4. Let $n_{0j}, n_{1j}, n_{2j}, ..., n_{kj}$ are non negative integers. The expression $M_j[f] = (f)^{n_0 j} (f^{(1)})^{n_{1j}} (f^{(2)})^{n_2 j} \cdots (f^{(k)})^{n_{kj}}$ is called a differential monomial generated by f of degree $d(M_j) = \sum_{i=0}^k n_{ij}$ and weight $\Gamma_{M_j} = \sum_{i=0}^k (i+1)n_{ij}$. The sum $P[f] = \sum_{j=1}^t a_j M_j[f]$ is called a differential polynomial generated by f of degree $\overline{d}(P) = \max\{d(M_j): 1 \le j \le t\}$ and weight $\Gamma_P = \max\{\Gamma_{M_j}: 1 \le j \le t\}$, where $a_j \ne 0(j = 1, 2, ..., t)$ and $T(r, a_j) = S(r, f)$ for j = 1, 2, ..., t. The numbers $\underline{d}_P = \min\{d(M_j): 1 \le j \le t\}$ and k (the highest order of the derivative of f in P[f]) are called respectively the lower degree and the order of P[f]. P[f] is said to be homogeneous if $\overline{d}_P = \underline{d}_P$. P[f] is called a Linear Differential Polynomial generated by f if $\overline{d}_P = 1$. Otherwise, P[f] is called Non-linear Differential Polynomial. We denote by $Q = \max\{\Gamma_{M_j} - d(M_j): 1 \le j \le t\} = \max\{\sum_{i=1}^k i.n_{ij}: 1 \le j \le t\}$

Rubel and Yang [10] proved that if a nonconstant entire function f and its derivative f' share two distinct finite complex numbers CM, then f = f'. How is the relation between f and f', if an entire function f and its derivative f' share one finite complex number a CM? Brück [1] made the conjecture that if f is a nonconstant entire function satisfying $\sigma_2(f) < \infty$, where $\sigma_2(f)$ is not a positive integer and if f and f' share one finite complex number a CM, then f' - a = c(f - a) for some nonzero finite complex number c. In 1998, Gundersen and Yang [4] proved that the conjecture is true for entire functions of finite order. Also, in 2008 Li and Cao[8] improved the Brück conjecture for entire function and its derivation sharing polynomials and proved the following theorem:

Theorem 1.1. Let $\phi(z)$ be any polynomial. If f is a nonconstant entire solution of the equation $f^{(k)} - Q_1 = e^{\phi}(f - Q_2)$, where Q_1 and Q_2 are non-zero polynomials, then $\sigma_2(f) = degree \ of \phi$.

Mao [9] improve the above theorem in which he replaced the k-th derivative $f^{(k)}$ by the linear differential polynomial $L(f) = a_k f^{(k)} + a_{k-1} f^{(k-1)} + \dots + a_0 f$ and prove that

Theorem 1.2. Let $a_k \equiv 0, a_{k-1}, ..., a_0, P(z)$ be polynomials, $k \ge 1$ and f be an entire function of order $\sigma(f) > \max_{0 \le j \le k-1} \left\{ \frac{\deg a_j - \deg a_k}{k-j}, 0 \right\}$ and hyper-order $\sigma_2(f) < \frac{1}{2}$. If f and L(f) share P CM, then $\frac{L(f) - P}{f - P} = c$ for a non zero constant c.

Later in 2009 Chang and Zhu [3] proved that Brück conjecture is true if the constant *a* is replaced by a function a(z), provided $\sigma(a) < \sigma(f)$.

Theorem 1.3. Let f be an entire function of finite order and a(z) be a function such that $\sigma(a) < \sigma(f) < +\infty$. If f and f' share a(z) CM, then $\frac{f'-a}{f-a} = c$ for some constant $c \neq 0$.

In the year 2015, Xu and Yang [11] prove the following theorems:

Theorem 1.4. Let f(z) and $\alpha(z)$ be two nonconstant entire functions and satisfy $0 < \sigma(\alpha) = \sigma(f) < +\infty, \tau(f) > \tau(\alpha)$ and let $\phi(z)$ be a polynomial such that

$$\sigma(f) > \deg(\phi) + \max_{0 \le j \le k-1} \left\{ \frac{\deg a_j - \deg a_k}{k-j}, 0 \right\}.$$

If f is a nonconstant entire solution of the following differential equation $L(f) - \alpha(z) = (f(z) - \alpha(z))e^{\phi(z)}$, where L(f) is defined as above. Then $\phi(z)$ is a constant.

Theorem 1.5. Let f(z) and $\alpha(z)$ be two nonconstant entire functions satisfying $0 < \sigma(\alpha) = \sigma(f) < +\infty, \tau(f) > \tau(\alpha)$ and let $\phi(z)$ be a polynomial such that

$$\sigma(f) > \deg(\phi) + \max_{0 \le j \le k-1} \left\{ \frac{\deg a_j - \deg a_k}{k-j}, 0 \right\}$$

If f is a nonconstant entire solution of the following differential equation $L_1(f) - \alpha(z) = (f(z) - \alpha(z))e^{\phi(z)}$, where $L_1(f) = L(f) + \beta(z)$ and β is an entire function satisfying $0 < \sigma(\beta) = \sigma(f) < +\infty, \tau(f) > \tau(\beta)$. Then $\phi(z)$ is a constant.

Theorem 1.6. Let f(z) and $\alpha(z)$ be two nonconstant entire functions satisfying $\sigma(\alpha) < \mu(f)$, and let $\phi(z)$ be a polynomial such that

$$\sigma(f) > \deg(\phi) + \max_{0 \le j \le k-1} \left\{ \frac{\deg a_j - \deg a_k}{k-j}, 0 \right\}.$$

If *f* is a nonconstant entire solution of the following differential equation $L_1(f) - \alpha(z) = (f(z) - \alpha(z))e^{\phi(z)}$, where $L_1(f) = L(f) + \beta(z)$ and β is an entire function satisfying $\sigma(\beta) < \mu(f)$. Then $\sigma_2(f) = \deg \phi(z)$.

In this paper, we improve and extend the results of Xu and Yang [11] in which we replaced the linear differential polynomial by the differential polynomial P[f] and f by $f^{\overline{d}_p}$ and proved the following theorems:

Theorem 1.7. Let f(z) and $\alpha(z)$ be two nonconstant entire functions and satisfy $0 < \sigma(\alpha) = \sigma(f) < +\infty$ and $\tau(f) > \tau(\alpha)$. Also, let $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$P[f] - \alpha(z) = \left(f^{\overline{d}_P} - \alpha(z)\right)e^{\phi(z)},\tag{1.1}$$

then $\phi(z)$ is a constant.

Theorem 1.8. Let f(z) and $\alpha(z)$ be two nonconstant entire functions and satisfy $0 < \sigma(\alpha) = \sigma(f) < +\infty$ and $\tau(f) > \tau(\alpha)$. Also, let $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$P[f] + \beta(z) - \alpha(z) = \left(f^{\overline{d}_P} - \alpha(z)\right)e^{\phi(z)},$$
(1.2)

where $\beta(z)$ is an entire function satisfying $0 < \sigma(\beta) = \sigma(f) < +\infty$ and $\tau(f) > \tau(\beta)$. Then $\phi(z)$ is a constant.

Theorem 1.9. Let f(z) and $\alpha(z)$ be two nonconstant entire functions satisfying $\sigma(\alpha) < \mu(f)$ and $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$P[f] + \beta(z) - \alpha(z) = \left(f^{\overline{d}_P} - \alpha(z)\right)e^{\phi(z)},\tag{1.3}$$

where $\beta(z)$ is an entire function satisfying $\sigma(\beta) < \mu(f)$. Then $\sigma_2(f) = \deg \phi$.

2. Preparatory lemmas

In this section we state some lemmas needed in the sequel.

Lemma 2.1 ([7]). Let f(z) be a transcendental entire function, v(r, f) be the central index of f(z). Then there exists a set $E \subset (1, +\infty)$ with finite logarithmic measure, we choose z satisfying $|z| = r \notin [0,1] \cup E$ and |f(z)| = M(r, f), we get

$$\frac{f^{j}(z)}{f(z)} = \left\{\frac{v(r,f)}{z}\right\}^{j} (1+o(1)), \text{ for } j \in N.$$

Lemma 2.2 ([6]). Let f(z) be an entire function of finite order $\sigma(f) = \sigma < +\infty$ and let v(r, f) be the central index of f. Then

$$\limsup_{r \to +\infty} \frac{\log v(r, f)}{\log r} = \sigma(f)$$

and if f is a transcendental entire function of hyper order $\sigma_2(f)$, then

$$\limsup_{r \to +\infty} \frac{\log \log v(r, f)}{\log r} = \sigma_2(f).$$

Lemma 2.3 ([9]). Let f(z) be a transcendental entire function and let $E \subset [1, +\infty)$ be a set having finite logarithmic measure. Then there exists $\{z_n = r_n e^{i\theta_n}\}$ such that $|f(z_n)| = M(r_n, f)$, $\theta_n \in [0, 2\pi)$, $\lim_{n \to +\infty} \theta_n = \theta_0 \in [0, 2\pi)$, $r_n \notin E$ and if $0 < \sigma(f) < +\infty$, then for any given $\varepsilon > 0$ and sufficiently large r_n ,

$$r_n^{\sigma(f)-\varepsilon} < v(r_n, f) < r_n^{\sigma(f)+\varepsilon}$$

If $\sigma(f) = +\infty$, then for any given large K > 0 and sufficiently large r_n ,

$$v(r_n, f) > r_n^K$$
.

Lemma 2.4 ([7]). Let $\phi(z) = b_n z^n + b_{n-1} z^{n-1} + \dots + b_0$ with $b_n \neq 0$ be a polynomial. Then for every $\varepsilon > 0$, there exists $r_0 > 0$ such that for all $r = |z| > r_0$ the inequalities

$$(1-\varepsilon) |b_n| r^n \le |\phi(z)| \le (1+\varepsilon) |b_n| r^n$$

hold.

Lemma 2.5 ([11]). Let f(z) and A(z) be two entire functions with $0 < \sigma(f) = \sigma(A) = \sigma < +\infty$, $0 < \tau(A) = \tau(f) < +\infty$, then there exists a set $E \subset [1, +\infty)$ that has infinite logarithmic measure such that for all $r \in E$ and a positive number κ , we have

$$\frac{M(r,A)}{M(r,f)} < \exp\{-\kappa r^{\sigma}\}$$

3. Proofs of the main results

Proof of Theorem 1.7. Suppose that $\deg \phi = m \ge 1$. Let

$$\phi(z) = b_m z^m + b_{m-1} z^{m-1} + \dots + b_0,$$

where $b_m, b_{m-1}, ..., b_0$ are constants and $b_m \neq 0$. Thus, it follows from (1.1) and Lemma 2.4 that

$$|b_{m}|r^{m}(1+o(1)) = |\phi(z)| = \left|\log\frac{\frac{P[f]}{f^{\overline{d}_{p}}} - \frac{\alpha}{f^{\overline{d}_{p}}}}{1 - \frac{\alpha}{f^{\overline{d}_{p}}}}\right|$$
$$= \left|\log\frac{\frac{P[f]}{f^{\overline{d}_{p}}} - \frac{\alpha}{f} \cdot \frac{1}{f^{\overline{d}_{p-1}}}}{1 - \frac{\alpha}{f} \cdot \frac{1}{f^{\overline{d}_{p-1}}}}\right|$$
(3.1)

Since for each $j = 1, 2, \ldots, t$,

$$M_{j}[f] = (f)^{n_{0j}} (f^{(1)})^{n_{1j}} (f^{(2)})^{n_{2}j} \cdots (f^{(k)})^{n_{kj}}$$
$$= f^{\binom{k}{1-0}n_{ij}} \prod_{i=1}^{k} \left(\frac{f^{(i)}}{f}\right)^{n_{ij}}$$
$$= f^{d_{M_{j}}} \prod_{i=1}^{k} \left(\frac{f^{(i)}}{f}\right)^{n_{ij}}$$

and from Lemma 2.1, there exists a subset $E_1 \subset (1, +\infty)$ with finite logarithmic measure, such that for some point $|z| = re^{i\theta}$ ($\theta \in [0, 2\pi]$), $r \notin E_1$ and M(r, f) = |f(z)|, we have

$$\frac{f^{i}(z)}{f(z)} = \left\{\frac{v(r,f)}{z}\right\}^{i} (1+o(1)), 1 \le i \le k.$$

Thus, it follows that

$$\frac{M_j[f]}{f^{d_{M_j}}} = \prod_{i=1}^k \left\{ \frac{\nu(r,f)}{z} \right\}^{i.n_{ij}} (1+o(1)) = \left\{ \frac{\nu(r,f)}{z} \right\}^{\binom{k}{\sum\limits_{i=1}^j i.n_{ij}}} (1+o(1))$$

and

$$\begin{split} \frac{P\left[f\right]}{f^{\overline{d}_{p}}} &\leq \sum_{j=1}^{t} \left|a_{j}\right| \left|\frac{M_{j}\left[f\right]}{f^{\overline{d}_{p}}}\right| \\ &\leq \sum_{j=1}^{t} \left|a_{j}\right| \left|\frac{M_{j}\left[f\right]}{f^{d_{M_{j}}}}\right| \\ &\leq \sum_{j=1}^{t} \left|a_{j}\right| \left|\frac{\nu(r,f)}{z}\right|^{\left(\frac{k}{\sum_{i=1}^{t} i.n_{ij}}\right)} (1+o(1)) \\ &\leq \sum_{j=1}^{t} \left|a_{j}\right| \left|\frac{\nu(r,f)}{z}\right|^{Q} (1+o(1)) \end{split}$$

$$\leq \left| \frac{\nu(r,f)}{z} \right|^{Q} \cdot \left(\sum_{j=1}^{t} |a_{j}| \right) \cdot (1+o(1)) \,. \tag{3.2}$$

From Lemma 2.3 there exists $\{z_n = r_n e^{i\theta_n}\}$ such that $|f(z_n)| = M(r_n, f), \theta_n \in [0, 2\pi]$, $\lim_{n \to \infty} \theta_n = \theta_0 \in [0, 2\pi], r_n \notin E_1$, then for any given $\varepsilon > 0$ and sufficiently large r_n ,

$$r_n^{\sigma(f)-\varepsilon} < v(r_n, f) < r_n^{\sigma(f)+\varepsilon}.$$
(3.3)

Then, from (3.2) and (3.3) we have

$$\frac{P\left[f\right]}{f^{\overline{d}_{p}}} \leq \left\{\frac{\nu(r_{n},f)}{r_{n}}\right\}^{Q} \cdot \left(\sum_{j=1}^{t} \left|a_{j}\right|\right) \cdot (1+o(1))$$

$$< r_{n}^{(\sigma(f)+\varepsilon-1)Q} \cdot \left(\sum_{j=1}^{t} \left|a_{j}\right|\right) \cdot (1+o(1)) .$$
(3.4)

Since $0 < \sigma(\alpha) = \sigma(f) < +\infty$ and $\tau(f) > \tau(\alpha)$, using Lemma 2.5, there exists a set $E \subset [1, +\infty)$ that has infinite logarithmic measure such that for a sequence $\{r_n\}_{n=1}^{\infty} \in E_2 = E - E_1$, we have

$$\frac{M(r_n,\alpha)}{M(r_n,f)} < \exp\left\{-\kappa r_n^{\sigma(f)}\right\} \to 0 \text{ as } n \to +\infty.$$
(3.5)

From (3.1), (3.4) and (3.5) and Lemma 2.2, we get that

$$|b_m| r^m (1 + o(1)) = |\phi(z)| = O(\log r_n),$$

which is impossible. Thus, $\phi(z)$ is not a polynomial, that is, $\phi(z)$ is a constant.

Proof of Theorem 1.8. Rewritting (1.2) as

$$\frac{\frac{P[f]}{f^{\overline{d}_P}} + \frac{\beta}{f} \cdot \frac{1}{f^{\overline{d}_{P-1}}} - \frac{\alpha}{f} \cdot \frac{1}{f^{\overline{d}_{P-1}}}}{1 - \frac{\alpha}{f} \cdot \frac{1}{f^{\overline{d}_{P-1}}}} = e^{\phi(z)}.$$

Our assumptions on τ and σ values give, using Lemma 2.5, that there exists a set $E \subset [1, +\infty)$ that has infinite logarithmic measure such that for a sequence $\{r_n\}_{n=1}^{\infty} \in E_3 = E - E_1$, we have

$$\frac{M(r_n, \alpha)}{M(r_n, f)} < \exp\left\{-\kappa r_n^{\sigma(f)}\right\} \to 0 \text{ as } n \to +\infty$$

and

$$\frac{M(r_n,\beta)}{M(r_n,f)} < \exp\left\{-\kappa r_n^{\sigma(f)}\right\} \to 0 \text{ as } n \to +\infty.$$

Proceeding as in the proof of Theorem 1.7 we can show that $\phi(z)$ is a constant.

Proof of Theorem 1.9. We will consider two cases (i) $\sigma(f) < +\infty$ and (ii) $\sigma(f) = +\infty$.

Case (i). Suppose that $\sigma(f) < +\infty$. Then $\sigma_2(f) = 0$. Since $\sigma(\alpha) < \mu(f)$ and $\sigma(\beta) < \mu(f)$, from definitions of the order and the lower order, there exists infinite sequence $\{z_n\}_{n=1}^{\infty}$, we have

$$\frac{|\alpha(z_n)|}{|f(z_n)|} \to 0 \text{ and } \frac{|\beta(z_n)|}{|f(z_n)|} \to 0 \text{ as } n \to \infty.$$

Thus, by using the same argument as in Theorem 1.7, we get that $\phi(z)$ is a constant, that is, deg $\phi = 0$. Therefore, $\sigma_2(f) = \text{deg }\phi$.

Case (ii). Suppose that $\sigma(f) = +\infty$.

Rewritting (1.3), we have

$$\frac{\frac{P[f]}{f^{\overline{d}_p}} + \frac{\beta}{f} \cdot \frac{1}{f^{\overline{d}_{p-1}}} - \frac{\alpha}{f} \cdot \frac{1}{f^{\overline{d}_{p-1}}}}{1 - \frac{\alpha}{f} \cdot \frac{1}{f^{\overline{d}_{p-1}}}} = e^{\phi(z)}.$$

Since for each $j = 1, 2, \ldots, t$,

$$M_{j}[f] = (f)^{n_{0j}} (f^{(1)})^{n_{1j}} (f^{(2)})^{n_{2}j} \cdots (f^{(k)})^{n_{kj}}$$
$$= f^{\left(\sum_{i=0}^{k} n_{ij}\right)} \prod_{i=1}^{k} \left(\frac{f^{(i)}}{f}\right)^{n_{ij}}$$
$$= f^{d_{M_{j}}} \prod_{i=1}^{k} \left(\frac{f^{(i)}}{f}\right)^{n_{ij}}$$

and from Lemma 2.1, there exists a subset $E_4 \subset [1, +\infty)$ with finite logarithmic measure, we choose *z* satisfying $|z| = r \notin [0, 1] \cup E_4$ and |f(z)| = M(r, f), we have

$$\frac{f^{i}(z)}{f(z)} = \left\{\frac{\nu(r,f)}{z}\right\}^{i} (1+o(1)), \ 1 \le i \le k.$$

Thus, it follows that

$$\frac{M_j[f]}{f^{d_{M_j}}} = \prod_{i=1}^k \left\{ \frac{\nu(r,f)}{z} \right\}^{i.n_{ij}} (1+o(1)) = \left\{ \frac{\nu(r,f)}{z} \right\}^{\binom{k}{\sum\limits_{i=1}^j i.n_{ij}}} (1+o(1))$$

and

$$\frac{P\left[f\right]}{f^{\overline{d}_{P}}} \leq \sum_{j=1}^{t} \left|a_{j}\right| \left|\frac{M_{j}\left[f\right]}{f^{\overline{d}_{P}}}\right|$$
$$\leq \sum_{j=1}^{t} \left|a_{j}\right| \left|\frac{M_{j}\left[f\right]}{f^{d_{M_{j}}}}\right|$$

$$\leq \sum_{j=1}^{t} |a_{j}| \left| \frac{\nu(r,f)}{z} \right|^{\left(\sum_{j=1}^{k} i.n_{j}\right)} (1+o(1))$$

$$\leq \sum_{j=1}^{t} |a_{j}| \left| \frac{\nu(r,f)}{z} \right|^{Q} (1+o(1))$$

$$\leq \left| \frac{\nu(r,f)}{z} \right|^{Q} \cdot \left(\sum_{j=1}^{t} |a_{j}| \right) \cdot (1+o(1)) .$$

$$(3.6)$$

Since $\sigma(f) = +\infty$, then it follows from Lemma 2.3 that there exists $\{z_n = r_n e^{i\theta_n}\}$ with $|f(z_n)| = M(r_n, f), \theta_n \in [0, 2\pi], \lim_{n \to \infty} \theta_n = \theta_0 \in [0, 2\pi], r_n \notin E_5 \subset [1, +\infty)$, such that for any large constant *K* and for sufficiently large r_n , we have

$$v(r_n, f) \ge r_n^K. \tag{3.7}$$

Since $\sigma(\alpha) < \mu(f)$ and $\sigma(\beta) < \mu(f)$, from definitions of order and lower order, there exists infinite sequence $\{z_n\}_{n=1}^{\infty}$, we have

$$\frac{|\alpha(z_n)|}{|f(z_n)|} \to 0 \text{ and } \frac{|\beta(z_n)|}{|f(z_n)|} \to 0 \text{ as } n \to \infty.$$
(3.8)

Thus, it follows from (1.3), (3.6), (3.7) and (3.8) that

$$e^{\phi(z_n)} \le \left\{\frac{\nu(r_n, f)}{r_n}\right\}^{Q} \cdot \left(\sum_{j=1}^{t} |a_j|\right) \cdot (1 + o(1)).$$
(3.9)

Let

$$\phi(z) = b_m z^m + b_{m-1} z^{m-1} + \dots + b_0,$$

where $b_m, b_{m-1}, ..., b_0$ are constants and $b_m \neq 0, m \ge 1$. From Lemma 2.4, there exists sufficiently large positive number r_0 and $n_0 \in N_+$, such that for sufficiently large positive integer $n > n_0$ satisfying $|z_n| = r_n > r_0$, we have for every $\varepsilon' > 0$

$$\log|b_m| + m\log|z_n| + \log\left|1 - \varepsilon'\right| \le \log\left|\phi(z_n)\right| \le \left|\log\log e^{\phi(z_n)}\right|.$$
(3.10)

It follows from (3.9) that

$$\begin{aligned} \left|\log\log e^{\phi(z_n)}\right| &\leq \log\log\left(\sum_{j=1}^t \left|a_j\right|\right) + \log\log v(r_n, f) + \log\log r_n + O(1) \\ &\leq \log\log v(r_n, f) + O(\log\log r_n). \end{aligned}$$
(3.11)

Thus, we have from (3.10) and (3.11) and Lemma 2.2 that

$$m = \deg \phi \le \sigma_2(f). \tag{3.12}$$

Also, it follows from (3.9) and Lemma 2.4 that

$$M(r_n, e^{\phi(z_n)}) \ge \left\{\frac{\nu(r_n, f)}{r_n}\right\}^Q \cdot \left(\sum_{j=1}^t |a_j|\right).$$

Then, we have

$$\left\{\nu(r_n, f)\right\}^Q \le \left(\sum_{j=1}^t |a_j|\right)^{-1} . (r_n)^Q . M(r_n, e^{\phi(z_n)}).$$
(3.13)

Thus, it follows from (3.13) and Lemma 2.2 that

$$\sigma_{2}(f) = \limsup_{r_{n} \to +\infty} \frac{\log \log v(r_{n}, f)}{\log r_{n}}$$

$$= \limsup_{r_{n} \to +\infty} \frac{\log \log \left(v(r_{n}, f)\right)^{Q}}{\log r_{n}}$$

$$\leq \limsup_{r_{n} \to +\infty} \frac{\log \log \left(\left(\sum_{j=1}^{t} |a_{j}|\right)^{-1} . (r_{n})^{Q} . M(r_{n}, e^{\phi(z_{n})})\right)}{\log r_{n}}$$

$$= \sigma \left(e^{\phi}\right). \qquad (3.14)$$

Since $\phi(z)$ is a polynomial, then $\sigma(e^{\phi}) = \deg \phi = m$. By combining (3.12) and (3.14), we have $\sigma_2(f) = \deg \phi$.

Corollary 3.1. Let f(z) and $\alpha(z)$ be two nonconstant entire functions and satisfy $\sigma(\alpha) < \mu(f)$. Also, let $\phi(z)$ be a polynomial. If f is a nonconstant entire solution of the following differential equation

$$P[f] - \alpha(z) = (f^{\overline{d}_P} - \alpha(z))e^{\phi(z)},$$

then $\sigma_2(f) = \deg \phi$.

Acknowledgement

The authors would like to thank Prof. Indrajit Lahiri for his suggestions.

References

- [1] R. Brück, On entire functions which share one value CM with their first derivative, Results Math., **30** (1996), 21–24.
- [2] W. Cherry and Z. Ye, Nevanlinnas Theory of Value Distribution. Springer-Verlag, 2001.
- [3] J. M. Chang and Y. Z. Zhu, *Entire functions that share a small function with their derivatives*, J. Math. Anal. Appl., **351** (2009), 491–496.

- [4] G. G. Gundersen and L. Z. Yang, Entire functions that share one value with one or two of their derivatives, J Math Anal Appl, 223 (1998), 85–95.
- [5] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
- [6] Y. Z. He and X. Z. Xiao, Algebroid functions and ordinary differential equations, Science Press, Beijing, 1988.
- [7] I. Laine, Nevanlinna Theory and Complex Differential Equations, de Gruyter, Berlin, 1993.
- [8] X. M. Li and C. C. Cao, *Entire functions sharing one polynomial with their derivatives*, Proc. Indian Acad. Sci. Math. Sci., 118 (2008), 13–26.
- [9] Z. Q. Mao, Uniqueness theorems on entire functions and their linear differential polynomials, Results Math., 55 (2009), 447–456.
- [10] L. Rubel and C. C. Yang, *Values shared by an entire function and its derivative*. Complex Analysis, Lecture Notes in Math., 599 (1977) Springer-Verlag, Berlin, 101–103.
- [11] H. Y. Xu, L. Z. Yang, On a conjecture of R. Brück and some linear differential equations. Springer Plus, **4:748** (2015), 1–10.
- [12] L. Yang, Value Distribution Theory. Springer-Verlag, Berlin, 1993.
- [13] H. X. Yi and C. C. Yang, Uniqueness Theory of Meromorphic Functions, Science Press, Beijing, 1995.

Department of Mathematics, University of North Bengal, Raja Rammohanpur, Dist-Darjeeling, PIN- 734013, West Bengal, India.

E-mail: dcpramanik.nbu2012@gmail.com

Barabilla High School, P.O. Haptiagach, Dist-Uttar Dinajpur, PIN- 733202, West Bengal, India.

E-mail: manab_biswas83@yahoo.com