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A GENERALIZATION OF H-CLOSED SPACES

C. K. BASU, M. K. GHOSH AND S. S. MANDAL

Abstract. Whereas a space X can be embedded in a compact space if and only if it is Tychonoff, every space X
can be embedded in an H-closed space(a generalization of compact space). In this paper, we further generalize,
the concept of H-closedness into g H-closedness and have shown that every connected space is either a gH-closed
space or can be embedded in a gH-closed space. Also, in a locally connected regular space the concept of gH-
closedness is equivalent to the concepts of /-ness and strong J-ness due to E. Michael [7] and 6J-ness due to C.K.
Basu et. al [1]. Several characterizations and properties of g H-closed spaces with respect to subspaces, products

and functional preservations (along with various examples) are given.

1. Introduction

The concept of an H-set (a generalization of an H-closed space) was initiated by N. Velicko
[15]. Since then H-sets played a major role in the development of the theory of H-closed
spaces, locally H-closed spaces [10] although the exact relationship between H-sets and H-
closed subspaces is as yet unknown. Indeed, unlike compactness, H-closure is not an abso-
lute property.

Attempts have been made to use such H-sets in place of compact sets as is in the case of
strong J-spaces due to E. Michael [7], to initiate a new class of spaces called g H-closed spaces.
In what follows, attention will be focused upon g H-closed spaces because of the fact that not
only every H-closed space is g H-closed (shown in section 2) but also every connected space
is either a gH-closed space or can be embedded in a g H-closed space (shown in section 4).
This result may make a new insight in investigating connected non H-closed (non compact
as well) spaces. Several characterizations and properties of gH-closed spaces analogous to
strong J-spaces due to E. Michael [7] have been achieved.

All the spaces considered herein are assumed to be Hausdorff. We assume that the reader
is familiar with the concepts of H-closedness, H-sets, 8-closed sets and 8-continuity; [12, 16]
might very well serve as the necessary background. The 6-closure of a subset A of a space X
istheset [Alp ={xe X: UnA# g forall open sets U containing x }. A subset A is 0-closed if
A =[A]g and the complement of a 6-closed set is a f-open set; a subset which is both 6-open
as well as -closed is called 8-clopen. The 8-boundary [1] of a subset A of X (6-bd A, for short)
is defined as [A]lg N [X — Alp.
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The other concepts needed for investigation of g H-closed spaces are: almost regularity, 0-
connectedness, 0-rigidity and 0-perfectness. A space (X, 1) is said to be almost regular [13, 8]
iff 75 = 79 (Where 75, 79 are respectively the semi-regularization topology and the 6-topology).
Every regular space is almost regular but not conversely. A pair (B, Q) of non-empty subsets
of X is called a f-separation relative to X iff (P N [Q]y) U (Q N [Plg) = @; a subset A is called
0-connected [2] iff A is not the union of P and Q where (B, Q) is a -separation relative to
X. Clearly every connected set is 8-connected but the converse is not true and in a regular
space these two concepts coincide. A subset A of X is 0-rigid [3] iff for each open cover %

n
of A, there is a finite subfamily {Uy, Uy, ..., U,} of % such that A < int(U U;); in a Hausdorff
i=1

space, every 0-rigid set is an H-set [3]. A filter &% in X almost converges [3] to a subset A
(written & — A) if for each open cover «f of A, there is a finite subfamily 8 < «f such that
ufclV: Ve B} e F. Afunction f: X — Y is O-perfect [3] iff for every filter base & on f(X),
F — yimplies f~H(F) — fL(y).

Some results from literature are cited below:
f1.1. If f: X — Y is O-continuous surjective and X is H-closed then Y is H-closed [16].
#1.2. If f: X — Y is O-continuous, when A c X is an H-set, then f(A) isan H-setin Y [16].
#1.3. An almost regular 7> space is Urysohn [13].
#1.4. An H-set in a Urysohn space is -closed [14].
#1.5. Let f: X — Y be a function, where X and Y are almost regular spaces. Then f is 0-
continuous iff inverse image of every 8-open (resp. 6-closed) set of Y is 8-open (resp. 6-
closed) in X [5].
#1.6. A 6-closed subset of an H-closed space is an H-set [3].
#1.7. A space X is H-closed iff for every space Y, the projection map from X x Y onto Y takes
a 6-closed subset onto a 6-closed subset [6].
#1.8.If Ac Xisan H-setof X and X c Y, then Ais an H-setin Y [16].
#1.9. Let B be a regular closed subset of a 7> space X. If A< X is an H-set and B < A then B is
H-closed [16].
#1.10. For any subset A c X, [A]y is O-closed if X is almost regular [5].
#1.11. In an almost regular space X, every regular closed (resp. every regular open) subset is
0-closed (resp. 6-open) [5].
#1.12. If f : X — Y is O-continuous, the mapping f : X — f(X) need not be 8-continuous
(even if f(X) is a regular subspace of Y)[15].
#1.13. If f : X — Y is O-continuous and f(X)c Zc Y and Z isdensein Y, then f: X — Z is
0-continuous [16].
#1.14. If f: X — Y is 6-continuous and A c X, then f/A: A— Y is 6-continuous [16].
#1.15. If Y is an H-set in X and A is a 8-closed subset of X then A is an H-setif Ac Y [14].
#1.16. f AcY c X, AisO-openin Y and Y is §-open in X, then Ais §-open in X [14].
f1.17. f Ac Y c X and Y is O-open in X; Ais O-closed in Y, then A= FnY, where F is 6-
closed in X [14].
#1.18. Let Y be an open subset of X and X be almost regular; then Y is almost regular [5].
#1.19. In an H-closed Urysohn space, every H-set is 0-closed and every 0-closed set is an H-
set [3].
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#1.20. Let f: X — Y be a 8-continuous 6-bd perfect map from an almost regular space X onto
a Urysohn space Y. If X is a 6]-space then sois Y [1].

2. g H-closed spaces.

Definition 2.1. A space X is called a generalized H-closed space (gH-closed, for short) if
for every H-set H of X, there is an H-set K in X such that H c K and X — K is 8-connected
relative to X.

Remark 2.2. Every H-closed space is a gH-closed space. But the converse is not true.
Examples of g H-closed spaces that are not H-closed.

Example 2.3. On R* = [0,00), let us consider 7, the countable complement extension
topology of the usual topology % on R™ = [0,00). Then as 75 = 79 = %, the space (R*,1) is
almost regular and Hausdorff. It can be checked that this space is non-regular, non H-closed
and non locally connected. In this space (R*, 1), let H be an H-set and hence H is compact in
(R*,%). Therefore, h = sup H exists. Obviously, H c [0, h] and R* —[0, h] = (h, 00) is connected
in (R*,%). As (h,00) is 6-open in (R*,7) and is connected in (R*,7y), by proposition 3 [8],
(h,00) is B-connected relative to (R*, 7). Clearly [0, k] is an H-set in (R*, ). Hence (R*,7) is a
gH-closed space.

Example 2.4. Let 7 be the countable complement extension topology of the real line
(R,%). Then as 7, = Tg = %, the space (R, 1) is almost regular. Easy verification shows that
this space is connected but not H-closed; also (R, 7) is not g H-closed because of the Theorem
2.16 (given latter) and it is not 8] [Example 2.4, 1]. Therefore, by Theorem 4.1(given latter),
(R™, ™), n > 1 is a gH-closed space. Obviously (R",7") is not H-closed; otherwise, (R,T)
would be H-closed — a contradiction.

Lemma 2.5 [1]. If Y < X and B is 6-closed (0-open) in (X,7) then BN Y is O-closed (0-
open) in (Y, 7y), where 7y is the subspace topology on Y.

Lemma 2.6 [14]. f Ac Y c X, and A is 8-open in Y and Y is a f-open in X then A is
0-open in X.

But for 0-closed sets, the lemma 2.6 does not hold.

Example 2.7.([1]) Let 7 be the countable complement extension topology of the real line
(R,%). Now, let Y ={0,1, %, %, --+}, obviously {0} is open and closed in (Y, 7y) and Y is 8-closed
in (R,7) as Y is closed in (R,%). Hence {0} N {1,%,3,---} = @, implying that A= {1,4,1,---} is
0-closed in (Y, 7y) (where the closure is taken in the subspace topology) but A is not 8-closed
in (R, 1), since Ais not closed in (R,%).

Lemma 2.8.([1]) A subset H of an almost regular space X is an H-set, iff every 8-open cover
of A has a finite subcover.
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Itis well known that every H-closed subspace is an H-set but example exists in [15], which
shows that the converse is not true in general. Now we give the following characterization
theorem for g H-closed spaces.

Theorem 2.9. Let {H;, H2} be a 0-clopen cover of an almost regular space X, with Hy N H
an H-set. Then the following are equivalent:

(i) X is gH-closed.
(i) H; and H, are gH-closed, and Hy or Hy is an H-set.

Proof. (i)=(ii) Let H; be an H-set. Then obviously H is regular closed and hence Hj is an
H-closed subspace of X (by result 1.9). Therefore, by Remark 2.2, H; is a g H-closed subspace
of X. To show H; is a g H-closed subspace of X, let K, c H, be an H-set in the subspace H>.
Then, by result 1.8, K» is an H-set in X. So, H = K» U Hj is an H-set in X. Since X is g H-closed,
there exists some H-set L in X with H ¢ L and X — L is 8-connected. Let L, = LN H,. Then
K, c Ly and Ly is not only a f-closed set in H, but also in X (by result 1.3 and 1.4). In addition,
L, c H, is an H-set in X (by result 1.15). Since H» is 6-open and hence is almost regular (by
result 1.18), then by lemma 2.8, it can be easily shown that L, is an H-set in subspace Hj.
Since H, — Ly = X — L then H» — L, is 6-connected in X. Again as H» is 0-open, H» — L is
0-connected in the subspace H,. Therefore, H; is a g H-closed space.

(ii)= (i) Suppose (ii) holds and also suppose Hj be an H-set. Let H c X be an H-set. Then
K = (HU H;)n Hy is an H-set in X such that K c H». Since H> is §-open, by lemma 2.8 and
results 1.16, 1.18, we can easily prove that K is an H-set in H,. The gH-closedness of the
subspace H, implies that there exists some H-set L in the subspace H, such that K c L and
H — Lis 6-connected in H». The set L* = LU Hj is an H-set containing H and one can check
that X — L* = H, — L is 6-connected in X. Therefore X is a g H-closed space.

Corollary 2.10. If A is a 0-clopen subset of an almost regular g H-closed space X then A is
a g H-closed space.

Remark 2.11. (a) In [1] we considered a kind of spaces termed -] spaces (see Definition
2.15) which satisfy a condition weaker than that given in (ii) of Theorem 2.9. Indeed, we shall
show shortly (see Theorem 2.16) that every g H-closed space is a 8-] space for which we need
not assume the condition of almost regularity on the underlying space.

(b) The condition in the above corollary is not necessary. In the space (R*, 1) in Example
2.3, Y =10,1] with the subspace topology 7y is H-closed and hence is a g H-closed subspace.
Although Y is 0-closed in (R*, 7) but because of the fact that Y is not open in (R*,%), it is not
0-open in (R*, 7).

On the otherhand, union of even two 0-closed gH-closed subspaces may not be gH-
closed. In Example 2.4, R* ={x€ R: x>0} and R~ = {x € X : x < 0} are both 0-closed gH-
closed subspaces but their union (R, 7) is not so. But we have the following corollary.

Corollary 2.12. If an almost regular space X be such that X = H; u H, with H; an open
gH-closed subspace, H, a 0-clopen H-set, then X is a gH-closed space.
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Proof. Let A = X — Hy. Then A is 0-clopen subset in the subspace H;. By result 1.18 H;
is almost regular (being an open subspace of an almost regular space X) and as H; isa gH-
closed space, the Corollary 2.10 implies Ais a g H-closed subspace. Again H> is being a regular
closed H-set in X, by result 1.9, H, is an H-closed subspace of X and hence is a g H-closed
subspace in X (by Remark 2.2). Since {A, H,} is a @-clopen cover of X, A and H- are g H-closed
subspaces and H> is an H-set, by Theorem 2.9, X is a g H-closed space.

Theorem 2.13. Let X be an almost regular g H-closed space. Then every regular closed set
B which is a union of §-components of X [2] is g H-closed.

Proof. Let Ac B be an H-set in the subspace B. Then by result 1.8, A is an H-set in X and
hence the g H-closedness of X implies the existence of an H-set H(in X) such that Ac H and
X — H is 0-connected relative to X. Now, if B ¢ H, then because of X is almost regular, B is a 8-
closed set (by result 1.11) contained in an H-set H and hence (by result 1.15) B is an H-set. In
fact, B is a H-closed subspace of X (by result 1.9). So, by Remark 2.2, Bis gH-closed. If B¢ H,
then the f-connected set X — H intersects B; but as B is a union of 8-components of X, the
only possibility is X — H c B. Let H; = Hn B. Using results 1.3, 1.4 and 1.15, it can be shown
that H; is an H-set in X. Obviously A c H; and also B — H; = X — H is 8-connected relative to
X. Since X — H is a §-open set (in X) contained in B, then by lemma 2.5, X — H is 6-open in
the subspace B. If (B, Q) is any 0-separation of the 8-open set X — H in the subspace B, such
that X — H = Pu Q then by [8, Proposition 1], P, Q are 8-open sets in B. Since the 8-closure
and the closure of an open set are equal and B is closed in X, (P, Q) is therefore a separation
of the connected set X — H (because an open subset of (X, 1) is connected iff it is 0-connected
relative to X [8, Proposition 2]) — a contradiction. So, B— H; = X — H is 8-connected in the
subspace B and hence B is a g H-closed subspace of X.

Corollary 2.14. Every regular closed subset which is a union of 0-components of an almost
regular H-closed space is g H-closed.

Definition 2.15. A space X is a 8]-space [1] if whenever {H;, Hy} is a 0-closed cover of X
with Hy n H, an H-set, H; or H, is an H-set.

Theorem 2.16. Every g H-closed space is a 0] -space.

Proof. Suppose (X,7) is a gH-closed space. Let {Hj, H} be a 0-closed cover of X with
Hyn Hy an H-set. As (X, 1) is gH-closed and Hy N H, < X is an H-set, so Hy N Hy < K for some
H-set K of (X, 7) with X—K 6-connected. Bylemma 2.5, (H; N (X —-K), HoN(X—K)) is a disjoint
6-closed cover of the 6-connected set X — K. So, either HN(X-K)=@¢or HobN(X—-K) =9
implying either H; < K or H, < K. But H; or H> is a 8-closed subset contained in an H-set K.
So, by result 1.15, either H; or H- is an H-set. Therefore (X, 1) is a 8]-space.

We shall show that in a locally connected almost regular space, these two concepts are
equivalent. For this we first state a theorem.

Theorem 2.17.([1]) An almost regular space X is a 0]-space iff whenever H c X is an H-set
and % is a disjoint 0-open cover of X — H, then X — U is an H-set for some U € % .
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In view of the following proposition due to MrSevic et al i.e.

Proposition 2.18.([8]) In (X, 1), the conditions (i) — (iii) below are equivalent:
every point has a neighbourhood basis in (X, t) consisting of:

(i) connected neighbourhoods.
(i) O-connected neighbourhoods.
(iii) neighbourhoods 0-connected relative to X.

We have the following theorem:

Theorem 2.19. A locally connected almost regular space is a 8]-space iff it is a g H-closed
space.

Proof. Every g H-closed space is a 8]-space (by Theorem 2.16).

Let X be a locally connected 6J-space and H c X be an H-set. As X is almost regular
T», X is not only a Urysohn space but also every H-set of X is 0-closed; further for any open
neighbourhood U of x there exists a f-open set V of x such that V c U. Indeed, by definition
of almost regularity, there exists, an open set W such that x € W c W < intU < U; but in
the almost regular space X, the regular open set V = intU is -open. Because of X is locally
connected Urysohn and H is 6 closed in X, it can be easily shown that, there is a disjoint 0-
open cover % of X — H with each U € % 0-connected. Since X is 8]-space by Theorem 2.17,
there exists a U* € % such that X — U* is an H-set. If we take K = X — U*, then H c K and
X — K =U" is 8-connected. So, X is a g H-closed space.

3. Preservation of g H-closedness in terms of 0-perfect (0-bd perfect) functions.

Definition 3.1.([1]) Amap f: X — Y is called 8-boundary perfect(0-bd perfect, for short)
if f is almost closed [3] (i.e. f([Alg) = [f(A)lg, VA c X) and O-bd f~!(y) is O-rigid [3] for every
yey.

Theorem 3.2. For an almost regular space X if

(i) X is gH-closed space then
(i) every@-continuous 6-bd perfect map f : X — Y onto a non H-closed Urysohn space Y is
0-perfect.

Proof. Let f : X — Y be a §-continuous 0-bd perfect map and let y € Y. Since 8-bdf~!(y)
is a 6-rigid set and hence is an H-set (by remark after Corollary 6.3, [3]), then as X is a gH-
closed space there exist an H-set K such that [f‘l(y)]g NniX- f‘1 Nlg =
0-bdf~'(y) c K and X — K is f-connected. But {[f~1(y)]g N (X — K),[X - f~1(1)]p N (X — K)}
is a f-separation of (X — K). So, either [f~'(y)]g < K or [X — f~1(})]p < K. But, by results 1.10
and 1.15, either [f~!())]g or [X — f~1()]g is an H-set. Now as f is O-continuous and {y} is
a O-closed set being an H-set in the Urysohn space Y (by result 1.4), f~1(y) is 6-closed i.e.
Y =1f1(]lp. Since [X — f~1(y)]p is an non- H-set otherwise Y would be H-closed, so by
Theorem 3.4 [3], f is O-perfect.
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Remark 3.3. If Y is H-closed then the above theorem fails. In fact, if f: X — Y, where Y is
a singleton and X is g H-closed but not H-closed then f is a 8-continuous 8-bd perfect map
onto a Urysohn space Y. But f is not 6-perfect as f~!(y) is not a 6-rigid set.

Theorem 3.4. Let f : X — Y be a 0-continuous, 6-bd perfect 8-open map (i.e. maps 0-
open sets into B-open sets) from an almost regular space X onto a Urysohn space Y. Then Y
is a gH-closed space if X is so.

Proof. If Y is H-closed then by Remark 2.2, Y is g H-closed. Suppose Y is not an H-closed
space. Then by above Theorem 3.2, f is §-perfect. Let H < Y be an H-set then H; = f~'(H) c
X is an H-set, by Corollary 3.1.1.(c) [3]; but the g H-closedness of X implies the existence of
an H-set Kj c X such that H; c K; and X — K is 8-connected. Since f is 8-continuous, by
Theorem 2.7 [2], f(X — Kj) is 8-connected. Obviously, H, = Y — f(X — Kj) is O-closed and f
being #-continuous, the §-closed set f~!(H,) c Kj is an H-set in X by result 1.15. Since f is
0-continuous, by result 1.2, H, is an H-set in Y such that Hc H,. But Y — Hy = f(X - Kj) is
0-connected. So, Y is a gH-closed space.

Theorem 3.5. Let f : X — Y (where X and Y are almost regular spaces) be a
0-continuous, 0-perfect map onto Y. Then, if Y is a gH-closed space, so is X.

Proof. Let Y be gH-closed and let H c X be an H-set in X. Since f is 8-continuous, by
result 1.2, f(H) c Y is an H-set. Because of gH-closedness of Y, there is an H-set K in Y
such that f(H) c K with Y — K 0-connected. Hence H c f‘l(K) and since f is 0-perfect, by
Corollary 3.1.1(c) [3], f~}(K) is an H-set in X. We shall show that X — f~(K) = f~1(Y - K)
is 8-connected. If, {B;, B} is a O-separation relative to X of the 8-open set f “1(Y = K) (since
f is O-continuous and Y — K is #-open such that f~}(Y — K) = Bj U B,). Then by proposition
1 [8], B; and B, are disjoint f-open sets in X. Since f is 8-perfect, by Corollary 3.1.1(b) [3],
for each 0-closed set A of X, f(A) is 8-closed. From this, one can easily verify that the sets
Vi={yeY—-K:f1(y) cB;} for i = 1,2 are disjoint -open sets. Therefore, Y — K, is not 0-
connected — a contradiction. So, f‘l(Y —K) is O-connected i.e. X — f‘l(K) is -connected.
Hence X is a g H-closed space.

Corollary 3.6. An almost regular space (X, 1) is g H-closed iff (X, 1) is g H-closed.

Proof. Since the 0-closure of a subset A in (X, 7) is the same as the 0-closure of Ain (X, ),
the identity map i; : (X, 1) — (X, 1) is -continuous and almost closed; also point inverses are
0-rigid sets. Hence by Theorem 3.4 [4], the identity map i; : (X, 1) — (X, 1) is O-perfect. So, if
(X, 1) is gH-closed then by above Theorem 3.5, (X, 75) is gH-closed. On the otherhand, by the
same reason, the identity map i, : (X,7) — (X, 7¢) is 0-perfect and 0-continuous. So, if (X, 1)
is gH-closed then by Theorem 3.5, (X, 1) is g H-closed.

Theorem 3.7. For an almost regular locally connected space (X, 1), the following are equiv-
alent:

(i) (X,7) is gH-closed.
(i) (X,7s) is gH-closed.
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(iii) (X,7p) is gH-closed.
(iv) (X,71)is0].
W) (X,1s) isO].
i) (X,71g) is0].

Proof. The proof follows from Corollary 3.6, Theorem 2.19 and from the fact that a space
(X, 1) is almost regular iff 7, = 7.

Definition 3.8. A space (X, 1) is a J-space (resp. strong J-space) [7] if, whenever {A, B} is
a closed cover of X with An B compact, then A or B is compact (resp. if every compact set
K c X is contained in a compact set L ¢ X with X — L connected).

Theorem 3.9. For a regular locally connected space (X, 1) the following are equivalent:

(i) (X,7) is gH-closed.
(i) (X,7)is].
(iii) (X,7) is@].
(iv) (X,7) strong].

4. g H-closedness in products.

Theorem 4.1. If X;, X» are connected and non-H-closed spaces then X1 x X, is a g H-closed
space.

Proof. Let H be an H-set in the product space X = Xj x X, and let 7; : X — X;, i =1,2
are projection maps. Since ;s are continuous and hence are 8-continuous then by result
1.2, m;(H) = H;, i = 1,2 are H-sets in X;, i = 1,2 respectively. Obviously H c H; x H, where
Hy x Hy is an H-set, by result [12, Theorem 4.8L].

But X; — H; # ¢, i = 1,2 otherwise X;’s,i = 1,2 would have been H-closed. Let x; € X; — H;,
i=1,2. Now the set B = ({x1} x X») U (X] x {x2}) being a union of two intersecting connected
and hence 0-connected sets is 8-connected and also B ¢ X — (H; x Hy). But X — (H; x Hy) is
the union of 6-connected sets of the form {x;} x X, with x; € Xj or Xj x {x»} with x» € X, and
all of which intersects B is thus 8-connected. Therefore, X; x X is a g H-closed space.

Corollary 4.2. Any connected space is either a g H-closed space or can be embedded in a
gH-closed space.

Proof. Let X be a connected space. If it is H-closed then by Remark 2.2, X is gH-closed.
If X is not an H-closed space, then by Theorem 4.1, X x X is a gH-closed space. But as X is
homeomorphic to some subspace of X x X, the proof follows immediately.

Corollary 4.3. R", n > 1, where R is the real line with the usual topology is a g H-closed
space.

Example 4.4. Example of a g H-closed space which is not an H-closed space.



A GENERALIZATION OF H-CLOSED SPACES 151

Let (R, %) be the real line with usual topology . Then by above Corollary 4.3, R, n>1isa
gH-closed space. But R” is not an H-closed space.

Theorem 4.5. The following are equivalent for any locally connected almost regular space
X.

(@) X isa gH-closed space.
(b) X xY isa gH-closed space for every connected H -closed almost regular space Y .
(c) X xY isa gH-closed space for some H-closed almost regular spaceY .

Proof. For proving (a)= (b) and (b)= (c), the assumption of local connectedness of X is
not needed. Let us prove:

(a)= (b). Let px: X x Y — X be the projection map. Now, p)‘(l(x) = {x} x Y is an H-set
in the almost regular space X x Y (as the product of any family of almost regular space is
almost regular [3, Theorem 5.1]) and therefore is a 8-rigid set in X x Y, by Theorem 6.4 [3].
We shall next show that for each Ac X x Y, [px(A)lg < px([Alg). For this, we first show for
each O-closed set B of X x Y, px(B) is 6-closed. Indeed, if xeX— px(B); then ({xl} xY)n
B = @. Therefore, for each point (x', ¥), has a open neighbourhood Vy(x/) x V(y) such that

(Vy(x') x V(y))NnB = @. Since {xl} x Y is an H-set we can select Vyi(xl) xV(y),i=12,...,n

! n !
such that the union of the closures of such subfamily covers {x } x Y. Then N Vj,(x ) is a open
i=1

U n i
neighbourhood of x in X such that 1 Vy,(x ) px(B) = @. Therefore, px(B) is 0-closed.
=1

Now, Ac X xY, [Algis 6—closedlin X x Y (byresult 1.10) and hence px([Alp) is 8-closed.
But we always have px(A) c px([Alg). So [px(A)lg < px([Alg). Therefore by Corollary 3.4.1
[3], px is B-perfect. Since py is continuous and hence is 8-continuous, by Theorem 3.5, X x Y’
is gH-closed.

(b)=(c) is obvious.

(c)= (a) If X is H-closed then by Remark 2.2, X is g H-closed. Suppose X is non H-closed
then for the projection map px : X x Y — X (where Y is some H-closed space), we have
[px(A)]g < px([Alg) for every Ac X x Y. Since py is 6-continuous, by Corollary 2.10.1 [3],
px([Alg) c [px(A)lg. Therefore, px is a almost closed map. Again, p)‘(l (x) is an H-set in the
almost regular space X x Y. So, p;(l (x) is 8-closed. Now, as H-bdp;(1 (x) is a 8-closed subset of
the H-set p)‘(l (x), then by result 1.15, (9—bdp)‘(1 (x) is an H-set in the almost regular space X x Y’
and hence is 0-rigid so px is a 6-bd perfect mapping. Since X x Y is 0] (by Theorem 2.16) then
by result 1.20, X is 8]. Because of X is locally connected, X is a g H-closed space by Theorem
3.7.

Remark 4.6. In Example 2.4, we have seen the product space (R",7" = 7 x 7 x...x T) where

7 is the countable complement extension topology of the real line with usual topology (R, %),
is gH-closed but (R, 1) is not so. We now give some sufficient conditions so that the product
of two spaces is g H-closed.

Theorem 4.7. If the spaces X and Y satisfy any one of the following conditions then X x Y
is gH-closed.
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(i) X andY are connected non H-closed.
(i) X andY are H-closed.
(iii) X is gH-closed and Y is connected H-closed (both X and Y are almost regular).
(iv) X andY are connected g H-closed spaces.
(v) X is connected, non H-closed gH-closed space and Y is connected (both X and Y are
almost regular).

Proof.
(i) Follows from Theorem 4.1.
(ii) By proposition 4.8L [12], X x Y is H-closed and hence is g H-closed, by Remark 2.2.
(iii) Follows from Theorem 4.5, (a)= (b).
(iv) If X or Y is H-closed, this follows (iii). If X and Y are both non H-closed, then by Theo-
rem4.1, X x Y is g H-closed.
(v) IfY is H-closed, then proof follows from (iii). If Y is not H-closed, then the proof follows
from Theorem 4.1.
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