TAMKANG JOURNAL OF MATHEMATICS Volume 39, Number 2, 143-153, Summer 2008

A GENERALIZATION OF H-CLOSED SPACES

C. K. BASU, M. K. GHOSH AND S. S. MANDAL

Abstract. Whereas a space *X* can be embedded in a compact space if and only if it is Tychonoff, every space *X* can be embedded in an *H*-closed space(a generalization of compact space). In this paper, we further generalize, the concept of *H*-closedness into gH-closedness and have shown that every connected space is either a gH-closed space or can be embedded in a gH-closed space. Also, in a locally connected regular space the concept of gH-closedness is equivalent to the concepts of *J*-ness and strong *J*-ness due to E. Michael [7] and θ J-ness due to C.K. Basu et. al [1]. Several characterizations and properties of gH-closed spaces with respect to subspaces, products and functional preservations (along with various examples) are given.

1. Introduction

The concept of an *H*-set (a generalization of an *H*-closed space) was initiated by N. Veličko [15]. Since then *H*-sets played a major role in the development of the theory of *H*-closed spaces, locally *H*-closed spaces [10] although the exact relationship between *H*-sets and *H*-closed subspaces is as yet unknown. Indeed, unlike compactness, *H*-closure is not an absolute property.

Attempts have been made to use such *H*-sets in place of compact sets as is in the case of strong *J*-spaces due to E. Michael [7], to initiate a new class of spaces called gH-closed spaces. In what follows, attention will be focused upon gH-closed spaces because of the fact that not only every *H*-closed space is gH-closed (shown in section 2) but also every connected space is either a gH-closed space or can be embedded in a gH-closed space (shown in section 4). This result may make a new insight in investigating connected non *H*-closed (non compact as well) spaces. Several characterizations and properties of gH-closed spaces analogous to strong *J*-spaces due to E. Michael [7] have been achieved.

All the spaces considered herein are assumed to be Hausdorff. We assume that the reader is familiar with the concepts of *H*-closedness, *H*-sets, θ -closed sets and θ -continuity; [12, 16] might very well serve as the necessary background. The θ -closure of a subset A of a space *X* is the set $[A]_{\theta} \equiv \{x \in X : \overline{U} \cap A \neq \emptyset$ for all open sets U containing *x* }. A subset A is θ -closed if $A = [A]_{\theta}$ and the complement of a θ -closed set is a θ -open set; a subset which is both θ -open as well as θ -closed is called θ -clopen. The θ -boundary [1] of a subset A of *X* (θ -bd A, for short) is defined as $[A]_{\theta} \cap [X - A]_{\theta}$.

Received October 23, 2006; revised October 17, 2007.

2000 Mathematics Subject Classification. 54D20, 54D25, 54D99.

Key words and phrases. H-closed, *H*-set, θ -closed, θ -continuity, θ -connected, θ -perfect, almost regular, Urysohn, θ -rigid.

The other concepts needed for investigation of gH-closed spaces are: almost regularity, θ connectedness, θ -rigidity and θ -perfectness. A space (X, τ) is said to be almost regular [13, 8]
iff $\tau_s = \tau_{\theta}$ (where τ_s, τ_{θ} are respectively the semi-regularization topology and the θ -topology). Every regular space is almost regular but not conversely. A pair (P,Q) of non-empty subsets
of X is called a θ -separation relative to X iff $(P \cap [Q]_{\theta}) \cup (Q \cap [P]_{\theta}) = \phi$; a subset A is called θ -connected [2] iff A is not the union of P and Q where (P,Q) is a θ -separation relative to X. Clearly every connected set is θ -connected but the converse is not true and in a regular
space these two concepts coincide. A subset A of X is θ -rigid [3] iff for each open cover \mathscr{U} of A, there is a finite subfamily $\{U_1, U_2, \ldots, U_n\}$ of \mathscr{U} such that $A \subseteq int(\bigcup_{i=1}^n u_i)$; in a Hausdorff
space, every θ -rigid set is an H-set [3]. A filter \mathscr{F} in X almost converges [3] to a subset A(written $\mathscr{F} \hookrightarrow A$) if for each open cover \mathscr{A} of A, there is a finite subfamily $\mathscr{B} \subseteq \mathscr{A}$ such that

 $\cup \{clV : V \in \mathscr{B}\} \in \mathscr{F}$. A function $f : X \to Y$ is θ -perfect [3] iff for every filter base \mathscr{F} on f(X), $\mathscr{F} \hookrightarrow y$ implies $f^{-1}(\mathscr{F}) \hookrightarrow f^{-1}(y)$.

Some results from literature are cited below:

#**1.1**. If *f* : *X* → *Y* is *θ*-continuous surjective and *X* is *H*-closed then *Y* is *H*-closed [16].

#**1.2**. If *f* : *X* → *Y* is *θ*-continuous, when *A* ⊂ *X* is an *H*-set, then *f*(*A*) is an *H*-set in *Y* [16].

 \sharp **1.3**. An almost regular T_2 space is Urysohn [13].

 \sharp **1.4**. An *H*-set in a Urysohn space is θ -closed [14].

 \sharp **1.5**. Let *f* : *X* → *Y* be a function, where *X* and *Y* are almost regular spaces. Then *f* is *θ*-continuous iff inverse image of every *θ*-open (resp. *θ*-closed) set of *Y* is *θ*-open (resp. *θ*-closed) in *X* [5].

 \sharp **1.6**. A θ -closed subset of an *H*-closed space is an H-set [3].

 \sharp **1.7**. A space *X* is *H*-closed iff for every space *Y*, the projection map from *X* × *Y* onto *Y* takes a θ -closed subset onto a θ -closed subset [6].

 \sharp **1.8**. If $A \subset X$ is an *H*-set of *X* and $X \subset Y$, then A is an *H*-set in *Y* [16].

 \sharp **1.9**. Let B be a regular closed subset of a T_2 space X. If $A \subset X$ is an *H*-set and $B \subset A$ then B is *H*-closed [16].

\sharp1.10. For any subset *A* ⊂ *X*, [*A*]_{θ} is θ -closed if *X* is almost regular [5].

\sharp1.11. In an almost regular space *X*, every regular closed (resp. every regular open) subset is θ -closed (resp. θ -open) [5].

‡1.12. If *f* : *X* → *Y* is *θ*-continuous, the mapping *f* : *X* → *f*(*X*) need not be *θ*-continuous (even if *f*(*X*) is a regular subspace of Y)[15].

 \sharp **1.13**. If *f* : *X* → *Y* is *θ*-continuous and *f*(*X*) ⊂ *Z* ⊂ *Y* and *Z* is dense in *Y*, then *f* : *X* → *Z* is *θ*-continuous [16].

#1.14. If $f: X \to Y$ is θ -continuous and $A \subset X$, then $f/A: A \to Y$ is θ -continuous [16].

 \sharp **1.15**. If *Y* is an *H*-set in *X* and *A* is a θ -closed subset of *X* then *A* is an *H*-set if *A* \subset *Y* [14].

 \sharp **1.16**. If $A \subset Y \subset X$, *A* is θ -open in *Y* and *Y* is θ -open in *X*, then *A* is θ -open in *X* [14].

#**1.17**. If *A* ⊂ *Y* ⊂ *X* and *Y* is *θ*-open in *X*; *A* is *θ*-closed in *Y*, then *A* = *F* ∩ *Y*, where F is *θ*-closed in *X* [14].

 \sharp **1.18**. Let Y be an open subset of X and X be almost regular; then Y is almost regular [5].

 \sharp **1.19**. In an *H*-closed Urysohn space, every *H*-set is θ -closed and every θ -closed set is an *H*-set [3].

144

1.20. Let *f* : *X* → *Y* be a *θ*-continuous *θ*-bd perfect map from an almost regular space *X* onto a Urysohn space *Y*. If *X* is a *θ*J-space then so is *Y* [1].

2. gH-closed spaces.

Definition 2.1. A space *X* is called a generalized *H*-closed space (*gH*-closed, for short) if for every *H*-set *H* of *X*, there is an *H*-set *K* in *X* such that $H \subset K$ and X - K is θ -connected relative to *X*.

Remark 2.2. Every *H*-closed space is a *gH*-closed space. But the converse is not true.

Examples of *gH*-closed spaces that are not *H*-closed.

Example 2.3. On $R^+ = [0,\infty)$, let us consider τ , the countable complement extension topology of the usual topology \mathscr{U} on $R^+ = [0,\infty)$. Then as $\tau_s = \tau_\theta = \mathscr{U}$, the space (R^+,τ) is almost regular and Hausdorff. It can be checked that this space is non-regular, non *H*-closed and non locally connected. In this space (R^+,τ) , let *H* be an *H*-set and hence *H* is compact in (R^+, \mathscr{U}) . Therefore, $h = \sup H$ exists. Obviously, $H \subset [0, h]$ and $R^+ - [0, h] = (h, \infty)$ is connected in (R^+, \mathscr{U}) . As (h, ∞) is θ -open in (R^+, τ) and is connected in (R^+, τ_θ) , by proposition 3 [8], (h, ∞) is θ -connected relative to (R^+, τ) . Clearly [0, h] is an *H*-set in (R^+, τ) . Hence (R^+, τ) is a *gH*-closed space.

Example 2.4. Let τ be the countable complement extension topology of the real line (R, \mathcal{U}) . Then as $\tau_s = \tau_\theta = \mathcal{U}$, the space (R, τ) is almost regular. Easy verification shows that this space is connected but not *H*-closed; also (R, τ) is not *gH*-closed because of the Theorem 2.16 (given latter) and it is not θ J [Example 2.4, 1]. Therefore, by Theorem 4.1(given latter), (R^n, τ^n) , n > 1 is a *gH*-closed space. Obviously (R^n, τ^n) is not *H*-closed; otherwise, (R, τ) would be *H*-closed — a contradiction.

Lemma 2.5 [1]. If $Y \subset X$ and *B* is θ -closed (θ -open) in (X, τ) then $B \cap Y$ is θ -closed (θ -open) in (Y, τ_Y), where τ_Y is the subspace topology on *Y*.

Lemma 2.6 [14]. If $A \subset Y \subset X$, and A is θ -open in Y and Y is a θ -open in X then A is θ -open in X.

But for θ -closed sets, the lemma 2.6 does not hold.

Example 2.7.([1]) Let τ be the countable complement extension topology of the real line (R, \mathcal{U}) . Now, let $Y = \{0, 1, \frac{1}{2}, \frac{1}{3}, \cdots\}$, obviously $\{0\}$ is open and closed in (Y, τ_Y) and Y is θ -closed in (R, τ) as Y is closed in (R, \mathcal{U}) . Hence $\overline{\{0\}} \cap \{1, \frac{1}{2}, \frac{1}{3}, \cdots\} = \emptyset$, implying that $A = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$ is θ -closed in (Y, τ_Y) (where the closure is taken in the subspace topology) but A is not θ -closed in (R, τ) , since A is not closed in (R, \mathcal{U}) .

Lemma 2.8.([1]) A subset H of an almost regular space X is an H-set, iff every θ -open cover of A has a finite subcover.

It is well known that every *H*-closed subspace is an *H*-set but example exists in [15], which shows that the converse is not true in general. Now we give the following characterization theorem for gH-closed spaces.

Theorem 2.9. Let $\{H_1, H_2\}$ be a θ -clopen cover of an almost regular space X, with $H_1 \cap H_2$ an H-set. Then the following are equivalent:

- (i) X is gH-closed.
- (ii) H_1 and H_2 are gH-closed, and H_1 or H_2 is an H-set.

Proof. (i) \Rightarrow (ii) Let H_1 be an H-set. Then obviously H_1 is regular closed and hence H_1 is an H-closed subspace of X (by result 1.9). Therefore, by Remark 2.2, H_1 is a gH-closed subspace of X. To show H_2 is a gH-closed subspace of X, let $K_2 \subset H_2$ be an H-set in the subspace H_2 . Then, by result 1.8, K_2 is an H-set in X. So, $H = K_2 \cup H_1$ is an H-set in X. Since X is gH-closed, there exists some H-set L in X with $H \subset L$ and X - L is θ -connected. Let $L_2 = L \cap H_2$. Then $K_2 \subset L_2$ and L_2 is not only a θ -closed set in H_2 but also in X (by result 1.3 and 1.4). In addition, $L_2 \subset H_2$ is an H-set in X (by result 1.15). Since H_2 is θ -open and hence is almost regular (by result 1.18), then by lemma 2.8, it can be easily shown that L_2 is an H-set in subspace H_2 . Since $H_2 - L_2 = X - L$ then $H_2 - L_2$ is θ -connected in X. Again as H_2 is θ -open, $H_2 - L_2$ is θ -connected in the subspace H_2 .

(ii) \Rightarrow (i) Suppose (ii) holds and also suppose H_1 be an H-set. Let $H \subset X$ be an H-set. Then $K = (H \cup H_1) \cap H_2$ is an H-set in X such that $K \subset H_2$. Since H_2 is θ -open, by lemma 2.8 and results 1.16, 1.18, we can easily prove that K is an H-set in H_2 . The gH-closedness of the subspace H_2 implies that there exists some H-set L in the subspace H_2 such that $K \subset L$ and $H_2 - L$ is θ -connected in H_2 . The set $L^* = L \cup H_1$ is an H-set containing H and one can check that $X - L^* = H_2 - L$ is θ -connected in X. Therefore X is a gH-closed space.

Corollary 2.10. If A is a θ -clopen subset of an almost regular gH-closed space X then A is a gH-closed space.

Remark 2.11. (a) In [1] we considered a kind of spaces termed θ -J spaces (see Definition 2.15) which satisfy a condition weaker than that given in (ii) of Theorem 2.9. Indeed, we shall show shortly (see Theorem 2.16) that every *gH*-closed space is a θ -J space for which we need not assume the condition of almost regularity on the underlying space.

(b) The condition in the above corollary is not necessary. In the space (R^+, τ) in Example 2.3, Y = [0, 1] with the subspace topology τ_Y is *H*-closed and hence is a *gH*-closed subspace. Although *Y* is θ -closed in (R^+, τ) but because of the fact that *Y* is not open in (R^+, \mathcal{U}) , it is not θ -open in (R^+, τ) .

On the other hand, union of even two θ -closed gH-closed subspaces may not be gH-closed. In Example 2.4, $R^+ = \{x \in R : x \ge 0\}$ and $R^- = \{x \in X : x \le 0\}$ are both θ -closed gH-closed subspaces but their union (R, τ) is not so. But we have the following corollary.

Corollary 2.12. If an almost regular space *X* be such that $X = H_1 \cup H_2$ with H_1 an open *gH*-closed subspace, H_2 a θ -clopen *H*-set, then *X* is a *gH*-closed space.

146

Proof. Let $A = X - H_2$. Then *A* is θ -clopen subset in the subspace H_1 . By result 1.18 H_1 is almost regular (being an open subspace of an almost regular space *X*) and as H_1 is a *g H*-closed space, the Corollary 2.10 implies *A* is a *g H*-closed subspace. Again H_2 is being a regular closed *H*-set in *X*, by result 1.9, H_2 is an *H*-closed subspace of *X* and hence is a *gH*-closed subspace in *X* (by Remark 2.2). Since {*A*, H_2 } is a θ -clopen cover of *X*, *A* and H_2 are *gH*-closed subspaces and H_2 is an *H*-set, by Theorem 2.9, *X* is a *gH*-closed space.

Theorem 2.13. Let *X* be an almost regular gH-closed space. Then every regular closed set *B* which is a union of θ -components of *X* [2] is gH-closed.

Proof. Let $A \subset B$ be an H-set in the subspace B. Then by result 1.8, A is an H-set in X and hence the gH-closedness of X implies the existence of an H-set H(in X) such that $A \subset H$ and X - H is θ -connected relative to X. Now, if $B \subset H$, then because of X is almost regular, B is a θ -closed set (by result 1.11) contained in an H-set H and hence (by result 1.15) B is an H-set. In fact, B is a H-closed subspace of X (by result 1.9). So, by Remark 2.2, B is gH-closed. If $B \not\subset H$, then the θ -connected set X - H intersects B; but as B is a union of θ -components of X, the only possibility is $X - H \subset B$. Let $H_1 = H \cap B$. Using results 1.3, 1.4 and 1.15, it can be shown that H_1 is an H-set in X. Obviously $A \subset H_1$ and also $B - H_1 = X - H$ is θ -connected relative to X. Since X - H is a θ -open set (in X) contained in B, then by lemma 2.5, X - H is θ -open in the subspace B. If (P,Q) is any θ -separation of the θ -open sets in B. Since the θ -closure and the closure of an open set are equal and B is closed in X, (P,Q) is therefore a separation of the connected set X - H (because an open subset of (X, τ) is connected iff it is θ -connected relative to X [8, Proposition 2]) — a contradiction. So, $B - H_1 = X - H$ is θ -connected in the subspace B and hence B is a gH-closed subspace of X.

Corollary 2.14. Every regular closed subset which is a union of θ -components of an almost regular H-closed space is gH-closed.

Definition 2.15. A space *X* is a θ J-space [1] if whenever { H_1, H_2 } is a θ -closed cover of *X* with $H_1 \cap H_2$ an *H*-set, H_1 or H_2 is an *H*-set.

Theorem 2.16. Every gH-closed space is a θ J-space.

Proof. Suppose (X, τ) is a *gH*-closed space. Let $\{H_1, H_2\}$ be a θ -closed cover of *X* with $H_1 \cap H_2$ an *H*-set. As (X, τ) is *gH*-closed and $H_1 \cap H_2 \subset X$ is an *H*-set, so $H_1 \cap H_2 \subset K$ for some *H*-set *K* of (X, τ) with $X - K \theta$ -connected. By lemma 2.5, $(H_1 \cap (X - K), H_2 \cap (X - K))$ is a disjoint θ -closed cover of the θ -connected set X - K. So, either $H_1 \cap (X - K) = \emptyset$ or $H_2 \cap (X - K) = \emptyset$ implying either $H_1 \subset K$ or $H_2 \subset K$. But H_1 or H_2 is a θ -closed subset contained in an *H*-set *K*. So, by result 1.15, either H_1 or H_2 is an *H*-set. Therefore (X, τ) is a θ -space.

We shall show that in a locally connected almost regular space, these two concepts are equivalent. For this we first state a theorem.

Theorem 2.17.([1]) An almost regular space X is a θ J-space iff whenever $H \subset X$ is an H-set and \mathcal{U} is a disjoint θ -open cover of X - H, then X - U is an H-set for some $U \in \mathcal{U}$.

In view of the following proposition due to Mrševic et al i.e.

Proposition 2.18.([8]) In (X, τ) , the conditions (i) — (iii) below are equivalent: every point has a neighbourhood basis in (X, τ) consisting of:

- (i) connected neighbourhoods.
- (ii) δ -connected neighbourhoods.
- (iii) neighbourhoods θ -connected relative to X.

We have the following theorem:

Theorem 2.19. A locally connected almost regular space is a θ J-space iff it is a *gH*-closed space.

Proof. Every *gH*-closed space is a θ J-space (by Theorem 2.16).

Let *X* be a locally connected θ J-space and $H \subset X$ be an *H*-set. As *X* is almost regular T_2 , *X* is not only a Urysohn space but also every *H*-set of *X* is θ -closed; further for any open neighbourhood *U* of *x* there exists a θ -open set *V* of *x* such that $V \subset \overline{U}$. Indeed, by definition of almost regularity, there exists, an open set *W* such that $x \in W \subset \overline{W} \subset int\overline{U} \subset \overline{U}$; but in the almost regular space *X*, the regular open set $V = int\overline{U}$ is θ -open. Because of *X* is locally connected Urysohn and *H* is θ closed in *X*, it can be easily shown that, there is a disjoint θ -open cover \mathscr{U} of X - H with each $U \in \mathscr{U} \theta$ -connected. Since *X* is θ J-space by Theorem 2.17, there exists a $U^* \in \mathscr{U}$ such that $X - U^*$ is an *H*-set. If we take $K = X - U^*$, then $H \subset K$ and $X - K = U^*$ is θ -connected. So, *X* is a *g*H-closed space.

3. Preservation of gH-closedness in terms of θ -perfect (θ -bd perfect) functions.

Definition 3.1.([1]) A map $f : X \to Y$ is called θ -boundary perfect(θ -bd perfect, for short) if f is almost closed [3] (i.e. $f([A]_{\theta}) = [f(A)]_{\theta}, \forall A \subset X$) and θ -bd $f^{-1}(y)$ is θ -rigid [3] for every $y \in Y$.

Theorem 3.2. For an almost regular space X if

- (i) X is gH-closed space then
- (ii) $every \theta$ -continuous θ -bd perfect map $f : X \to Y$ onto a non H-closed Urysohn space Y is θ -perfect.

Proof. Let $f : X \to Y$ be a θ -continuous θ -bd perfect map and let $y \in Y$. Since θ -bd $f^{-1}(y)$ is a θ -rigid set and hence is an *H*-set (by remark after Corollary 6.3, [3]), then as *X* is a *gH*-closed space there exist an *H*-set *K* such that $[f^{-1}(y)]_{\theta} \cap [X - f^{-1}(y)]_{\theta} =$

 θ -bd $f^{-1}(y) \subset K$ and X - K is θ -connected. But $\{[f^{-1}(y)]_{\theta} \cap (X - K), [X - f^{-1}(y)]_{\theta} \cap (X - K)\}$ is a θ -separation of (X - K). So, either $[f^{-1}(y)]_{\theta} \subset K$ or $[X - f^{-1}(y)]_{\theta} \subset K$. But, by results 1.10 and 1.15, either $[f^{-1}(y)]_{\theta}$ or $[X - f^{-1}(y)]_{\theta}$ is an *H*-set. Now as *f* is θ -continuous and $\{y\}$ is a θ -closed set being an *H*-set in the Urysohn space *Y* (by result 1.4), $f^{-1}(y)$ is θ -closed i.e. $f^{-1}(y) = [f^{-1}(y)]_{\theta}$. Since $[X - f^{-1}(y)]_{\theta}$ is an non-*H*-set otherwise *Y* would be *H*-closed, so by Theorem 3.4 [3], *f* is θ -perfect.

148

Remark 3.3. If *Y* is *H*-closed then the above theorem fails. In fact, if $f : X \to Y$, where *Y* is a singleton and *X* is *gH*-closed but not *H*-closed then *f* is a θ -continuous θ -bd perfect map onto a Urysohn space *Y*. But *f* is not θ -perfect as $f^{-1}(y)$ is not a θ -rigid set.

Theorem 3.4. Let $f : X \to Y$ be a θ -continuous, θ -bd perfect θ -open map (i.e. maps θ -open sets into θ -open sets) from an almost regular space X onto a Urysohn space Y. Then Y is a *gH*-closed space if X is so.

Proof. If *Y* is *H*-closed then by Remark 2.2, *Y* is *gH*-closed. Suppose *Y* is not an *H*-closed space. Then by above Theorem 3.2, *f* is θ -perfect. Let $H \subset Y$ be an *H*-set then $H_1 = f^{-1}(H) \subset X$ is an *H*-set, by Corollary 3.1.1.(c) [3]; but the *gH*-closedness of *X* implies the existence of an *H*-set $K_1 \subset X$ such that $H_1 \subset K_1$ and $X - K_1$ is θ -connected. Since *f* is θ -continuous, by Theorem 2.7 [2], $f(X - K_1)$ is θ -connected. Obviously, $H_2 = Y - f(X - K_1)$ is θ -closed and *f* being θ -continuous, the θ -closed set $f^{-1}(H_2) \subset K_1$ is an *H*-set in *X* by result 1.15. Since *f* is θ -connected. So, *Y* is a *gH*-closed space.

Theorem 3.5. Let $f : X \to Y$ (where *X* and *Y* are almost regular spaces) be a θ -continuous, θ -perfect map onto *Y*. Then, if *Y* is a *gH*-closed space, so is *X*.

Proof. Let *Y* be *gH*-closed and let $H \subset X$ be an *H*-set in *X*. Since *f* is θ -continuous, by result 1.2, $f(H) \subset Y$ is an *H*-set. Because of *gH*-closedness of *Y*, there is an *H*-set *K* in *Y* such that $f(H) \subset K$ with $Y - K \theta$ -connected. Hence $H \subset f^{-1}(K)$ and since *f* is θ -perfect, by Corollary 3.1.1(c) [3], $f^{-1}(K)$ is an *H*-set in *X*. We shall show that $X - f^{-1}(K) = f^{-1}(Y - K)$ is θ -connected. If, $\{B_1, B_2\}$ is a θ -separation relative to *X* of the θ -open set $f^{-1}(Y - K)$ (since *f* is θ -continuous and Y - K is θ -open such that $f^{-1}(Y - K) = B_1 \cup B_2$). Then by proposition 1 [8], B_1 and B_2 are disjoint θ -open sets in *X*. Since *f* is θ -perfect, by Corollary 3.1.1(b) [3], for each θ -closed set *A* of *X*, f(A) is θ -closed. From this, one can easily verify that the sets $V_i = \{y \in Y - K : f^{-1}(y) \subset B_i\}$ for i = 1, 2 are disjoint θ -open sets. Therefore, Y - K, is not θ -connected ... So, $f^{-1}(Y - K)$ is θ -connected i.e. $X - f^{-1}(K)$ is θ -connected. Hence *X* is a *gH*-closed space.

Corollary 3.6. An almost regular space (X, τ) is gH-closed iff (X, τ_s) is gH-closed.

Proof. Since the θ -closure of a subset A in (X, τ) is the same as the θ -closure of A in (X, τ_s) , the identity map $i_1 : (X, \tau_s) \to (X, \tau)$ is θ -continuous and almost closed; also point inverses are θ -rigid sets. Hence by Theorem 3.4 [4], the identity map $i_1 : (X, \tau_s) \to (X, \tau)$ is θ -perfect. So, if (X, τ) is gH-closed then by above Theorem 3.5, (X, τ_s) is gH-closed. On the other and, by the same reason, the identity map $i_2 : (X, \tau) \to (X, \tau_s)$ is θ -perfect and θ -continuous. So, if (X, τ_s) is gH-closed then by Theorem 3.5, (X, τ_s) is gH-closed.

Theorem 3.7. For an almost regular locally connected space (X, τ) , the following are equivalent:

- (i) (X, τ) is gH-closed.
- (ii) (X, τ_s) is gH-closed.

- (iii) (X, τ_{θ}) is gH-closed.
- (iv) (X,τ) is θJ .
- (v) (X, τ_s) is θJ .
- (vi) (X, τ_{θ}) is θJ .

Proof. The proof follows from Corollary 3.6, Theorem 2.19 and from the fact that a space (X, τ) is almost regular iff $\tau_s = \tau_{\theta}$.

Definition 3.8. A space (X, τ) is a J-space (resp. strong J-space) [7] if, whenever $\{A, B\}$ is a closed cover of *X* with $A \cap B$ compact, then *A* or *B* is compact (resp. if every compact set $K \subset X$ is contained in a compact set $L \subset X$ with X - L connected).

Theorem 3.9. For a regular locally connected space (X, τ) the following are equivalent:

- (i) (X, τ) is gH-closed.
- (ii) (X,τ) is J.
- (iii) (X, τ) is θJ .
- (iv) (X, τ) strong J.

4. gH-closedness in products.

Theorem 4.1. If X_1 , X_2 are connected and non-H-closed spaces then $X_1 \times X_2$ is a gH-closed space.

Proof. Let *H* be an *H*-set in the product space $X = X_1 \times X_2$ and let $\pi_i : X \to X_i$, i = 1, 2 are projection maps. Since π_i 's are continuous and hence are θ -continuous then by result 1.2, $\pi_i(H) = H_i$, i = 1, 2 are *H*-sets in X_i , i = 1, 2 respectively. Obviously $H \subset H_1 \times H_2$, where $H_1 \times H_2$ is an *H*-set, by result [12, Theorem 4.8L].

But $X_i - H_i \neq \emptyset$, i = 1, 2 otherwise X_i 's, i = 1, 2 would have been H-closed. Let $x_i \in X_i - H_i$, i = 1, 2. Now the set $B = (\{x_1\} \times X_2) \cup (X_1 \times \{x_2\})$ being a union of two intersecting connected and hence θ -connected sets is θ -connected and also $B \subset X - (H_1 \times H_2)$. But $X - (H_1 \times H_2)$ is the union of θ -connected sets of the form $\{x_1\} \times X_2$ with $x_1 \in X_1$ or $X_1 \times \{x_2\}$ with $x_2 \in X_2$ and all of which intersects B is thus θ -connected. Therefore, $X_1 \times X_2$ is a gH-closed space.

Corollary 4.2. Any connected space is either a gH-closed space or can be embedded in a gH-closed space.

Proof. Let *X* be a connected space. If it is *H*-closed then by Remark 2.2, *X* is *gH*-closed. If *X* is not an *H*-closed space, then by Theorem 4.1, $X \times X$ is a *gH*-closed space. But as *X* is homeomorphic to some subspace of $X \times X$, the proof follows immediately.

Corollary 4.3. \mathbb{R}^n , n > 1, where \mathbb{R} is the real line with the usual topology is a gH-closed space.

Example 4.4. Example of a *gH*-closed space which is not an *H*-closed space.

Let (R, \mathcal{U}) be the real line with usual topology. Then by above Corollary 4.3, R^n , n > 1 is a *gH*-closed space. But R^n is not an *H*-closed space.

Theorem 4.5. *The following are equivalent for any locally connected almost regular space X*.

- (a) *X* is a gH-closed space.
- (b) $X \times Y$ is a gH-closed space for every connected H-closed almost regular space Y.
- (c) $X \times Y$ is a gH-closed space for some H-closed almost regular space Y.

Proof. For proving (a) \Rightarrow (b) and (b) \Rightarrow (c), the assumption of local connectedness of *X* is not needed. Let us prove:

(a) \Rightarrow (b). Let $p_X : X \times Y \to X$ be the projection map. Now, $p_X^{-1}(x) = \{x\} \times Y$ is an *H*-set in the almost regular space $X \times Y$ (as the product of any family of almost regular space is almost regular [3, Theorem 5.1]) and therefore is a θ -rigid set in $X \times Y$, by Theorem 6.4 [3]. We shall next show that for each $A \subset X \times Y$, $[p_X(A)]_{\theta} \subset p_X([A]_{\theta})$. For this, we first show for each θ -closed set *B* of $X \times Y$, $p_X(B)$ is θ -closed. Indeed, if $x' \in X - p_X(B)$; then $(\{x'\} \times Y) \cap$ $B = \emptyset$. Therefore, for each point (x', y), has a open neighbourhood $V_y(x') \times V(y)$ such that $(\overline{V_y(x')} \times \overline{V(y)}) \cap B = \emptyset$. Since $\{x'\} \times Y$ is an *H*-set we can select $V_{y_i}(x') \times V(y_i)$, i = 1, 2, ..., nsuch that the union of the closures of such subfamily covers $\{x'\} \times Y$. Then $\bigcap_{i=1}^{n} V_{y_i}(x')$ is a open

neighbourhood of x' in X such that $\bigcap_{i=1}^{n} V_{y_i}(x') \cap p_X(B) = \emptyset$. Therefore, $p_X(B)$ is θ -closed.

Now, $A \subset X \times Y$, $[A]_{\theta}$ is θ -closed in $X \times Y$ (by result 1.10) and hence $p_X([A]_{\theta})$ is θ -closed. But we always have $p_X(A) \subset p_X([A]_{\theta})$. So $[p_X(A)]_{\theta} \subset p_X([A]_{\theta})$. Therefore by Corollary 3.4.1 [3], p_X is θ -perfect. Since p_X is continuous and hence is θ -continuous, by Theorem 3.5, $X \times Y$ is *gH*-closed.

(b) \Rightarrow (c) is obvious.

(c) \Rightarrow (a) If *X* is *H*-closed then by Remark 2.2, *X* is *gH*-closed. Suppose *X* is non *H*-closed then for the projection map $p_X : X \times Y \to X$ (where *Y* is some *H*-closed space), we have $[p_X(A)]_{\theta} \subset p_X([A]_{\theta})$ for every $A \subset X \times Y$. Since p_X is θ -continuous, by Corollary 2.10.1 [3], $p_X([A]_{\theta}) \subset [p_X(A)]_{\theta}$. Therefore, p_X is a almost closed map. Again, $p_X^{-1}(x)$ is an *H*-set in the almost regular space $X \times Y$. So, $p_X^{-1}(x)$ is θ -closed. Now, as θ -bd $p_X^{-1}(x)$ is a θ -closed subset of the *H*-set $p_X^{-1}(x)$, then by result 1.15, θ -bd $p_X^{-1}(x)$ is an *H*-set in the almost regular space $X \times Y$ and hence is θ -rigid so p_X is a θ -bd perfect mapping. Since $X \times Y$ is θ J (by Theorem 2.16) then by result 1.20, *X* is θ J. Because of *X* is locally connected, *X* is a *gH*-closed space by Theorem 3.7.

Remark 4.6. In Example 2.4, we have seen the product space $(\mathbb{R}^n, \tau^n = \tau \times \tau \times ... \times \tau)$ where τ is the countable complement extension topology of the real line with usual topology $(\mathbb{R}, \mathcal{U})$, is *gH*-closed but (\mathbb{R}, τ) is not so. We now give some sufficient conditions so that the product of two spaces is *gH*-closed.

Theorem 4.7. *If the spaces* X *and* Y *satisfy any one of the following conditions then* $X \times Y$ *is* g H*-closed.*

- (i) X and Y are connected non H-closed.
- (ii) X and Y are H-closed.
- (iii) X is gH-closed and Y is connected H-closed (both X and Y are almost regular).
- (iv) X and Y are connected gH-closed spaces.
- (v) *X* is connected, non *H*-closed *gH*-closed space and *Y* is connected (both *X* and *Y* are almost regular).

Proof.

- (i) Follows from Theorem 4.1.
- (ii) By proposition 4.8L [12], $X \times Y$ is *H*-closed and hence is *gH*-closed, by Remark 2.2.
- (iii) Follows from Theorem 4.5, (a) \Rightarrow (b).
- (iv) If *X* or *Y* is *H*-closed, this follows (iii). If *X* and *Y* are both non *H*-closed, then by Theorem 4.1, $X \times Y$ is *gH*-closed.
- (v) If *Y* is *H*-closed, then proof follows from (iii). If *Y* is not *H*-closed, then the proof follows from Theorem 4.1.

Acknowledgement

The authors are grateful to the learned referee for his valuable suggestions in modifying the paper.

References

- [1] C. K. Basu and M. K. Ghosh, θ *J-spaces* (communicated).
- [2] J. P. Clay and J. E. Joseph, On a connectivity property induced by the θ-closure operator, Illinois Jour. Math. 25(2), (1981), 267–278.
- [3] R. F. Dickman, Jr. and J. R. Porter, θ -perfect and θ -absolutely closed functions, Illinois Jour. Math. **21**(1977), 42-60.
- [4] S. Fomin, Extensions of topological spaces, Ann. Math. 44(1943), 471–480.
- [5] S. Ganguly and S. Sinha Roy and T. Bandopadhyay, *A note on θ-metrizable spaces*, Jour. Tri. Math. Soc. I(1999), 71–82.
- [6] J. E. Joseph, On H-closed spaces, Proc. Amer. Math. Soc. 55(1), (1976), 223–226.
- [7] E. Michael, J-Spaces, Topology and its Applications, 102(2000), 315–339.
- [8] M. Mrševič and D. Andrijevič, On θ-connectedness and θ-closure spaces, Topology and its Applications 123(2002), 157–166.
- [9] T. Noiri, A characterization of almost regular spaces, Glasnik Mathematicki, 13(33) (1978), 335–338.
- [10] J. Porter, On Locally H-closed spaces, Proc. Lond. Math. Soc. (3), 20(1970), 193–204.
- [11] J. Porter and J. Thomas, On H-closed and minimal Hausdorff spaces, Trans. Amer. Math. Soc. **138**(1969), 159–170.
- [12] J. R. Porter and R. G. Woods, Extensoins and Absolutes of Hausdorff Spaces, Springer Verlag, New York, 1988.
- [13] M. K. Signal and S. P. Arya, On almost regular space, Glasnik Mathematicki, 4(34) (1969), 89–99.
- [14] S. Sinha Roy and S. Bandopadhyay, Onθ-completely regular and locallyθ-H-closed spaces, Bull. Cal. Math. Soc. 87(1995), 19–28.
- [15] N. V. Veličko, *H-closed toplogical spaces*, Mat. Sb. **79**(112),(1966), 98–112, Amer. Math. Soc. Transl. **78**(2),(1968), 103–118.
- [16] J. Vermeer, Closed subspaces of H-closed spaces, Pacific J. Math. Soc. 118(1), (1985), 229–246.

Department of Mathematics, University of Kalyani. P.O.- Kalyani, Dist.-Nadia, West Bengal, Pin-741235, India.

E-mail: ckbasu1962@yahoo.com