
TAMKANG JOURNAL OF MATHEMATICS

Volume 39, Number 2, 143-153, Summer 2008

A GENERALIZATION OF H-CLOSED SPACES

C. K. BASU, M. K. GHOSH AND S. S. MANDAL

Abstract. Whereas a space X can be embedded in a compact space if and only if it is Tychonoff, every space X

can be embedded in an H-closed space(a generalization of compact space). In this paper, we further generalize,

the concept of H-closedness into g H-closedness and have shown that every connected space is either a g H-closed

space or can be embedded in a g H-closed space. Also, in a locally connected regular space the concept of g H-

closedness is equivalent to the concepts of J-ness and strong J-ness due to E. Michael [7] and θJ-ness due to C.K.

Basu et. al [1]. Several characterizations and properties of g H-closed spaces with respect to subspaces, products

and functional preservations (along with various examples) are given.

1. Introduction

The concept of an H-set (a generalization of an H-closed space) was initiated by N. Veličko

[15]. Since then H-sets played a major role in the development of the theory of H-closed

spaces, locally H-closed spaces [10] although the exact relationship between H-sets and H-

closed subspaces is as yet unknown. Indeed, unlike compactness, H-closure is not an abso-

lute property.

Attempts have been made to use such H-sets in place of compact sets as is in the case of

strong J-spaces due to E. Michael [7], to initiate a new class of spaces called g H-closed spaces.

In what follows, attention will be focused upon g H-closed spaces because of the fact that not

only every H-closed space is g H-closed (shown in section 2) but also every connected space

is either a g H-closed space or can be embedded in a g H-closed space (shown in section 4).

This result may make a new insight in investigating connected non H-closed (non compact

as well) spaces. Several characterizations and properties of g H-closed spaces analogous to

strong J-spaces due to E. Michael [7] have been achieved.

All the spaces considered herein are assumed to be Hausdorff. We assume that the reader

is familiar with the concepts of H-closedness, H-sets, θ-closed sets and θ-continuity; [12, 16]

might very well serve as the necessary background. The θ-closure of a subset A of a space X

is the set [A]θ ≡ {x ∈ X : U ∩ A 6= ; for all open sets U containing x }. A subset A is θ-closed if

A = [A]θ and the complement of a θ-closed set is a θ-open set; a subset which is both θ-open

as well as θ-closed is called θ-clopen. The θ-boundary [1] of a subset A of X (θ-bd A, for short)

is defined as [A]θ∩ [X − A]θ .
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The other concepts needed for investigation of g H-closed spaces are: almost regularity, θ-

connectedness, θ-rigidity and θ-perfectness. A space (X ,τ) is said to be almost regular [13, 8]

iff τs = τθ (where τs , τθ are respectively the semi-regularization topology and the θ-topology).

Every regular space is almost regular but not conversely. A pair (P,Q) of non-empty subsets

of X is called a θ-separation relative to X iff (P ∩ [Q]θ)∪ (Q ∩ [P ]θ) = ;; a subset A is called

θ-connected [2] iff A is not the union of P and Q where (P,Q) is a θ-separation relative to

X. Clearly every connected set is θ-connected but the converse is not true and in a regular

space these two concepts coincide. A subset A of X is θ-rigid [3] iff for each open cover U

of A, there is a finite subfamily {U1,U2, . . . ,Un} of U such that A ⊆ i nt(
n⋃

i=1
Ui ); in a Hausdorff

space, every θ-rigid set is an H-set [3]. A filter F in X almost converges [3] to a subset A

(written F ,→ A) if for each open cover A of A, there is a finite subfamily B ⊆ A such that

∪{clV : V ∈ B} ∈ F . A function f : X → Y is θ-perfect [3] iff for every filter base F on f (X ),

F ,→ y implies f −1(F ) ,→ f −1(y).

Some results from literature are cited below:

♯1.1. If f : X → Y is θ-continuous surjective and X is H-closed then Y is H-closed [16].

♯1.2. If f : X → Y is θ-continuous, when A ⊂ X is an H-set, then f (A) is an H-set in Y [16].

♯1.3. An almost regular T2 space is Urysohn [13].

♯1.4. An H-set in a Urysohn space is θ-closed [14].

♯1.5. Let f : X → Y be a function, where X and Y are almost regular spaces. Then f is θ-

continuous iff inverse image of every θ-open (resp. θ-closed) set of Y is θ-open (resp. θ-

closed) in X [5].

♯1.6. A θ-closed subset of an H-closed space is an H-set [3].

♯1.7. A space X is H-closed iff for every space Y , the projection map from X ×Y onto Y takes

a θ-closed subset onto a θ-closed subset [6].

♯1.8. If A ⊂ X is an H-set of X and X ⊂ Y , then A is an H-set in Y [16].

♯1.9. Let B be a regular closed subset of a T2 space X. If A ⊂ X is an H-set and B ⊂ A then B is

H-closed [16].

♯1.10. For any subset A ⊂ X , [A]θ is θ-closed if X is almost regular [5].

♯1.11. In an almost regular space X , every regular closed (resp. every regular open) subset is

θ-closed (resp. θ-open) [5].

♯1.12. If f : X → Y is θ-continuous, the mapping f : X → f (X ) need not be θ-continuous

(even if f (X ) is a regular subspace of Y)[15].

♯1.13. If f : X → Y is θ-continuous and f (X ) ⊂ Z ⊂ Y and Z is dense in Y , then f : X → Z is

θ-continuous [16].

♯1.14. If f : X → Y is θ-continuous and A ⊂ X , then f /A : A → Y is θ-continuous [16].

♯1.15. If Y is an H-set in X and A is a θ-closed subset of X then A is an H-set if A ⊂ Y [14].

♯1.16. If A ⊂ Y ⊂ X , A is θ-open in Y and Y is θ-open in X , then A is θ-open in X [14].

♯1.17. If A ⊂ Y ⊂ X and Y is θ-open in X ; A is θ-closed in Y , then A = F ∩Y , where F is θ-

closed in X [14].

♯1.18. Let Y be an open subset of X and X be almost regular; then Y is almost regular [5].

♯1.19. In an H-closed Urysohn space, every H-set is θ-closed and every θ-closed set is an H-

set [3].
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♯1.20. Let f : X → Y be a θ-continuous θ-bd perfect map from an almost regular space X onto

a Urysohn space Y . If X is a θJ-space then so is Y [1].

2. g H-closed spaces.

Definition 2.1. A space X is called a generalized H-closed space (g H-closed, for short) if

for every H-set H of X , there is an H-set K in X such that H ⊂ K and X −K is θ-connected

relative to X .

Remark 2.2. Every H-closed space is a g H-closed space. But the converse is not true.

Examples of g H-closed spaces that are not H-closed.

Example 2.3. On R+ = [0,∞), let us consider τ, the countable complement extension

topology of the usual topology U on R+ = [0,∞). Then as τs = τθ = U , the space (R+,τ) is

almost regular and Hausdorff. It can be checked that this space is non-regular, non H-closed

and non locally connected. In this space (R+,τ), let H be an H-set and hence H is compact in

(R+,U ). Therefore, h = supH exists. Obviously, H ⊂ [0,h] and R+−[0,h] = (h,∞) is connected

in (R+,U ). As (h,∞) is θ-open in (R+,τ) and is connected in (R+,τθ), by proposition 3 [8],

(h,∞) is θ-connected relative to (R+,τ). Clearly [0,h] is an H-set in (R+,τ). Hence (R+,τ) is a

g H-closed space.

Example 2.4. Let τ be the countable complement extension topology of the real line

(R,U ). Then as τs = τθ = U , the space (R,τ) is almost regular. Easy verification shows that

this space is connected but not H-closed; also (R,τ) is not g H-closed because of the Theorem

2.16 (given latter) and it is not θJ [Example 2.4, 1]. Therefore, by Theorem 4.1(given latter),

(Rn ,τn ), n > 1 is a g H-closed space. Obviously (Rn ,τn) is not H-closed; otherwise, (R,τ)

would be H-closed — a contradiction.

Lemma 2.5 [1]. If Y ⊂ X and B is θ-closed (θ-open) in (X ,τ) then B ∩Y is θ-closed (θ-

open) in (Y ,τY ), where τY is the subspace topology on Y .

Lemma 2.6 [14]. If A ⊂ Y ⊂ X , and A is θ-open in Y and Y is a θ-open in X then A is

θ-open in X .

But for θ-closed sets, the lemma 2.6 does not hold.

Example 2.7.([1]) Let τ be the countable complement extension topology of the real line

(R,U ). Now, let Y = {0,1, 1
2 , 1

3 , · · · }, obviously {0} is open and closed in (Y ,τY ) and Y is θ-closed

in (R,τ) as Y is closed in (R,U ). Hence {0}∩ {1, 1
2

, 1
3

, · · · } = ;, implying that A = {1, 1
2

, 1
3

, · · · } is

θ-closed in (Y ,τY ) (where the closure is taken in the subspace topology) but A is not θ-closed

in (R,τ), since A is not closed in (R,U ).

Lemma 2.8.([1]) A subset H of an almost regular space X is an H-set, iff every θ-open cover

of A has a finite subcover.
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It is well known that every H-closed subspace is an H-set but example exists in [15], which

shows that the converse is not true in general. Now we give the following characterization

theorem for g H-closed spaces.

Theorem 2.9. Let {H1, H2} be a θ-clopen cover of an almost regular space X , with H1 ∩H2

an H-set. Then the following are equivalent:

(i) X is g H-closed.

(ii) H1 and H2 are g H-closed, and H1 or H2 is an H-set.

Proof. (i)⇒(ii) Let H1 be an H-set. Then obviously H1 is regular closed and hence H1 is an

H-closed subspace of X (by result 1.9). Therefore, by Remark 2.2, H1 is a g H-closed subspace

of X . To show H2 is a g H-closed subspace of X , let K2 ⊂ H2 be an H-set in the subspace H2.

Then, by result 1.8, K2 is an H-set in X . So, H = K2∪H1 is an H-set in X. Since X is g H-closed,

there exists some H-set L in X with H ⊂ L and X −L is θ-connected. Let L2 = L ∩ H2. Then

K2 ⊂ L2 and L2 is not only a θ-closed set in H2 but also in X (by result 1.3 and 1.4). In addition,

L2 ⊂ H2 is an H-set in X (by result 1.15). Since H2 is θ-open and hence is almost regular (by

result 1.18), then by lemma 2.8, it can be easily shown that L2 is an H-set in subspace H2.

Since H2 − L2 = X − L then H2 − L2 is θ-connected in X . Again as H2 is θ-open, H2 − L2 is

θ-connected in the subspace H2. Therefore, H2 is a g H-closed space.

(ii)⇒ (i) Suppose (ii) holds and also suppose H1 be an H-set. Let H ⊂ X be an H-set. Then

K = (H ∪ H1)∩ H2 is an H-set in X such that K ⊂ H2. Since H2 is θ-open, by lemma 2.8 and

results 1.16, 1.18, we can easily prove that K is an H-set in H2. The g H-closedness of the

subspace H2 implies that there exists some H-set L in the subspace H2 such that K ⊂ L and

H2 −L is θ-connected in H2. The set L⋆ = L∪H1 is an H-set containing H and one can check

that X −L⋆ = H2 −L is θ-connected in X . Therefore X is a g H-closed space.

Corollary 2.10. If A is a θ-clopen subset of an almost regular g H-closed space X then A is

a g H-closed space.

Remark 2.11. (a) In [1] we considered a kind of spaces termed θ-J spaces (see Definition

2.15) which satisfy a condition weaker than that given in (ii) of Theorem 2.9. Indeed, we shall

show shortly (see Theorem 2.16) that every g H-closed space is a θ-J space for which we need

not assume the condition of almost regularity on the underlying space.

(b) The condition in the above corollary is not necessary. In the space (R+,τ) in Example

2.3, Y = [0,1] with the subspace topology τY is H-closed and hence is a g H-closed subspace.

Although Y is θ-closed in (R+,τ) but because of the fact that Y is not open in (R+,U ), it is not

θ-open in (R+,τ).

On the otherhand, union of even two θ-closed g H-closed subspaces may not be g H-

closed. In Example 2.4, R+ = {x ∈ R : x ≥ 0} and R− = {x ∈ X : x ≤ 0} are both θ-closed g H-

closed subspaces but their union (R,τ) is not so. But we have the following corollary.

Corollary 2.12. If an almost regular space X be such that X = H1 ∪ H2 with H1 an open

g H-closed subspace, H2 a θ-clopen H-set, then X is a g H-closed space.
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Proof. Let A = X − H2. Then A is θ-clopen subset in the subspace H1. By result 1.18 H1

is almost regular (being an open subspace of an almost regular space X ) and as H1 is a g H-

closed space, the Corollary 2.10 implies A is a g H-closed subspace. Again H2 is being a regular

closed H-set in X , by result 1.9, H2 is an H-closed subspace of X and hence is a g H-closed

subspace in X (by Remark 2.2). Since {A, H2} is a θ-clopen cover of X , A and H2 are g H-closed

subspaces and H2 is an H-set, by Theorem 2.9, X is a g H-closed space.

Theorem 2.13. Let X be an almost regular g H-closed space. Then every regular closed set

B which is a union of θ-components of X [2] is g H-closed.

Proof. Let A ⊂ B be an H-set in the subspace B. Then by result 1.8, A is an H-set in X and

hence the g H-closedness of X implies the existence of an H-set H(in X ) such that A ⊂ H and

X −H is θ-connected relative to X . Now, if B ⊂ H , then because of X is almost regular, B is a θ-

closed set (by result 1.11) contained in an H-set H and hence (by result 1.15) B is an H-set. In

fact, B is a H-closed subspace of X (by result 1.9). So, by Remark 2.2, B is g H-closed. If B 6⊂ H ,

then the θ-connected set X − H intersects B ; but as B is a union of θ-components of X , the

only possibility is X −H ⊂ B . Let H1 = H ∩B . Using results 1.3, 1.4 and 1.15, it can be shown

that H1 is an H-set in X . Obviously A ⊂ H1 and also B −H1 = X −H is θ-connected relative to

X . Since X −H is a θ-open set (in X ) contained in B , then by lemma 2.5, X −H is θ-open in

the subspace B . If (P,Q) is any θ-separation of the θ-open set X −H in the subspace B , such

that X −H = P ∪Q then by [8, Proposition 1], P , Q are θ-open sets in B . Since the θ-closure

and the closure of an open set are equal and B is closed in X , (P,Q) is therefore a separation

of the connected set X −H (because an open subset of (X ,τ) is connected iff it is θ-connected

relative to X [8, Proposition 2]) — a contradiction. So, B −H1 = X −H is θ-connected in the

subspace B and hence B is a g H-closed subspace of X .

Corollary 2.14. Every regular closed subset which is a union of θ-components of an almost

regular H-closed space is g H-closed.

Definition 2.15. A space X is a θJ-space [1] if whenever {H1, H2} is a θ-closed cover of X

with H1 ∩H2 an H-set, H1 or H2 is an H-set.

Theorem 2.16. Every g H-closed space is a θJ-space.

Proof. Suppose (X ,τ) is a g H-closed space. Let {H1, H2} be a θ-closed cover of X with

H1∩H2 an H-set. As (X ,τ) is g H-closed and H1∩H2 ⊂ X is an H-set, so H1∩H2 ⊂ K for some

H-set K of (X ,τ) with X −K θ-connected. By lemma 2.5, (H1∩(X −K ), H2∩(X −K )) is a disjoint

θ-closed cover of the θ-connected set X −K . So, either H1 ∩ (X −K ) = ; or H2 ∩ (X −K ) = ;

implying either H1 ⊂ K or H2 ⊂ K . But H1 or H2 is a θ-closed subset contained in an H-set K .

So, by result 1.15, either H1 or H2 is an H-set. Therefore (X ,τ) is a θJ-space.

We shall show that in a locally connected almost regular space, these two concepts are

equivalent. For this we first state a theorem.

Theorem 2.17.([1]) An almost regular space X is a θJ-space iff whenever H ⊂ X is an H-set

and U is a disjoint θ-open cover of X −H, then X −U is an H-set for some U ∈U .
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In view of the following proposition due to Mrševic et al i.e.

Proposition 2.18.([8]) In (X ,τ), the conditions (i) — (iii) below are equivalent:

every point has a neighbourhood basis in (X ,τ) consisting of:

(i) connected neighbourhoods.

(ii) δ-connected neighbourhoods.

(iii) neighbourhoods θ-connected relative to X .

We have the following theorem:

Theorem 2.19. A locally connected almost regular space is a θJ-space iff it is a g H-closed

space.

Proof. Every g H-closed space is a θJ-space (by Theorem 2.16).

Let X be a locally connected θJ-space and H ⊂ X be an H-set. As X is almost regular

T2, X is not only a Urysohn space but also every H-set of X is θ-closed; further for any open

neighbourhood U of x there exists a θ-open set V of x such that V ⊂U . Indeed, by definition

of almost regularity, there exists, an open set W such that x ∈ W ⊂ W ⊂ i ntU ⊂ U ; but in

the almost regular space X , the regular open set V = i ntU is θ-open. Because of X is locally

connected Urysohn and H is θ closed in X , it can be easily shown that, there is a disjoint θ-

open cover U of X −H with each U ∈ U θ-connected. Since X is θJ-space by Theorem 2.17,

there exists a U⋆ ∈ U such that X −U⋆ is an H-set. If we take K = X −U⋆, then H ⊂ K and

X −K =U⋆ is θ-connected. So, X is a g H-closed space.

3. Preservation of g H-closedness in terms of θ-perfect (θ-bd perfect) functions.

Definition 3.1.([1]) A map f : X → Y is called θ-boundary perfect(θ-bd perfect, for short)

if f is almost closed [3] (i.e. f ([A]θ) = [ f (A)]θ,∀A ⊂ X ) and θ-bd f −1(y) is θ-rigid [3] for every

y ∈ Y .

Theorem 3.2. For an almost regular space X if

(i) X is g H-closed space then

(ii) every θ-continuous θ-bd perfect map f : X → Y onto a non H-closed Urysohn space Y is

θ-perfect.

Proof. Let f : X → Y be a θ-continuous θ-bd perfect map and let y ∈ Y . Since θ-bd f −1(y)

is a θ-rigid set and hence is an H-set (by remark after Corollary 6.3, [3]), then as X is a g H-

closed space there exist an H-set K such that [ f −1(y)]θ∩ [X − f −1(y)]θ =

θ-bd f −1(y) ⊂ K and X −K is θ-connected. But {[ f −1(y)]θ ∩ (X −K ), [X − f −1(y)]θ ∩ (X −K )}

is a θ-separation of (X −K ). So, either [ f −1(y)]θ ⊂ K or [X − f −1(y)]θ ⊂ K . But, by results 1.10

and 1.15, either [ f −1(y)]θ or [X − f −1(y)]θ is an H-set. Now as f is θ-continuous and {y} is

a θ-closed set being an H-set in the Urysohn space Y (by result 1.4), f −1(y) is θ-closed i.e.

f −1(y) = [ f −1(y)]θ. Since [X − f −1(y)]θ is an non-H-set otherwise Y would be H-closed, so by

Theorem 3.4 [3], f is θ-perfect.
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Remark 3.3. If Y is H-closed then the above theorem fails. In fact, if f : X → Y , where Y is

a singleton and X is g H-closed but not H-closed then f is a θ-continuous θ-bd perfect map

onto a Urysohn space Y . But f is not θ-perfect as f −1(y) is not a θ-rigid set.

Theorem 3.4. Let f : X → Y be a θ-continuous, θ-bd perfect θ-open map (i.e. maps θ-

open sets into θ-open sets) from an almost regular space X onto a Urysohn space Y . Then Y

is a g H-closed space if X is so.

Proof. If Y is H-closed then by Remark 2.2, Y is g H-closed. Suppose Y is not an H-closed

space. Then by above Theorem 3.2, f is θ-perfect. Let H ⊂ Y be an H-set then H1 = f −1(H) ⊂

X is an H-set, by Corollary 3.1.1.(c) [3]; but the g H-closedness of X implies the existence of

an H-set K1 ⊂ X such that H1 ⊂ K1 and X −K1 is θ-connected. Since f is θ-continuous, by

Theorem 2.7 [2], f (X −K1) is θ-connected. Obviously, H2 = Y − f (X −K1) is θ-closed and f

being θ-continuous, the θ-closed set f −1(H2) ⊂ K1 is an H-set in X by result 1.15. Since f is

θ-continuous, by result 1.2, H2 is an H-set in Y such that H ⊂ H2. But Y −H2 = f (X −K1) is

θ-connected. So, Y is a g H-closed space.

Theorem 3.5. Let f : X → Y (where X and Y are almost regular spaces) be a

θ-continuous, θ-perfect map onto Y . Then, if Y is a g H-closed space, so is X .

Proof. Let Y be g H-closed and let H ⊂ X be an H-set in X . Since f is θ-continuous, by

result 1.2, f (H) ⊂ Y is an H-set. Because of g H-closedness of Y , there is an H-set K in Y

such that f (H) ⊂ K with Y −K θ-connected. Hence H ⊂ f −1(K ) and since f is θ-perfect, by

Corollary 3.1.1(c) [3], f −1(K ) is an H-set in X . We shall show that X − f −1(K ) = f −1(Y −K )

is θ-connected. If, {B1,B2} is a θ-separation relative to X of the θ-open set f −1(Y −K ) (since

f is θ-continuous and Y −K is θ-open such that f −1(Y −K ) = B1 ∪B2). Then by proposition

1 [8], B1 and B2 are disjoint θ-open sets in X . Since f is θ-perfect, by Corollary 3.1.1(b) [3],

for each θ-closed set A of X , f (A) is θ-closed. From this, one can easily verify that the sets

Vi = {y ∈ Y −K : f −1(y) ⊂ Bi } for i = 1,2 are disjoint θ-open sets. Therefore, Y −K , is not θ-

connected — a contradiction. So, f −1(Y −K ) is θ-connected i.e. X − f −1(K ) is θ-connected.

Hence X is a g H-closed space.

Corollary 3.6. An almost regular space (X ,τ) is g H-closed iff (X ,τs ) is g H-closed.

Proof. Since the θ-closure of a subset A in (X ,τ) is the same as the θ-closure of A in (X ,τs ),

the identity map i1 : (X ,τs ) → (X ,τ) is θ-continuous and almost closed; also point inverses are

θ-rigid sets. Hence by Theorem 3.4 [4], the identity map i1 : (X ,τs ) → (X ,τ) is θ-perfect. So, if

(X ,τ) is g H-closed then by above Theorem 3.5, (X ,τs ) is g H-closed. On the otherhand, by the

same reason, the identity map i2 : (X ,τ) → (X ,τs ) is θ-perfect and θ-continuous. So, if (X ,τs )

is g H-closed then by Theorem 3.5, (X ,τ) is g H-closed.

Theorem 3.7. For an almost regular locally connected space (X ,τ), the following are equiv-

alent:

(i) (X ,τ) is g H-closed.

(ii) (X ,τs ) is g H-closed.
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(iii) (X ,τθ) is g H-closed.

(iv) (X ,τ) is θJ .

(v) (X ,τs ) is θJ .

(vi) (X ,τθ) is θJ .

Proof. The proof follows from Corollary 3.6, Theorem 2.19 and from the fact that a space

(X ,τ) is almost regular iff τs = τθ.

Definition 3.8. A space (X ,τ) is a J-space (resp. strong J-space) [7] if, whenever {A,B} is

a closed cover of X with A ∩B compact, then A or B is compact (resp. if every compact set

K ⊂ X is contained in a compact set L ⊂ X with X −L connected).

Theorem 3.9. For a regular locally connected space (X ,τ) the following are equivalent:

(i) (X ,τ) is g H-closed.

(ii) (X ,τ) is J .

(iii) (X ,τ) is θJ .

(iv) (X ,τ) strong J .

4. g H-closedness in products.

Theorem 4.1. If X1, X2 are connected and non-H-closed spaces then X1×X2 is a g H-closed

space.

Proof. Let H be an H-set in the product space X = X1 × X2 and let πi : X → Xi , i = 1,2

are projection maps. Since πi ’s are continuous and hence are θ-continuous then by result

1.2, πi (H) = Hi , i = 1,2 are H-sets in Xi , i = 1,2 respectively. Obviously H ⊂ H1 × H2, where

H1 ×H2 is an H-set, by result [12, Theorem 4.8L].

But Xi −Hi 6= ;, i = 1,2 otherwise Xi ’s ,i = 1,2 would have been H-closed. Let xi ∈ Xi −Hi ,

i = 1,2. Now the set B = ({x1}× X2)∪ (X1 × {x2}) being a union of two intersecting connected

and hence θ-connected sets is θ-connected and also B ⊂ X − (H1 ×H2). But X − (H1 ×H2) is

the union of θ-connected sets of the form {x1}× X2 with x1 ∈ X1 or X1 × {x2} with x2 ∈ X2 and

all of which intersects B is thus θ-connected. Therefore, X1 ×X2 is a g H-closed space.

Corollary 4.2. Any connected space is either a g H-closed space or can be embedded in a

g H-closed space.

Proof. Let X be a connected space. If it is H-closed then by Remark 2.2, X is g H-closed.

If X is not an H-closed space, then by Theorem 4.1, X × X is a g H-closed space. But as X is

homeomorphic to some subspace of X ×X , the proof follows immediately.

Corollary 4.3. Rn , n > 1, where R is the real line with the usual topology is a g H-closed

space.

Example 4.4. Example of a g H-closed space which is not an H-closed space.
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Let (R,U ) be the real line with usual topology . Then by above Corollary 4.3, Rn , n > 1 is a

g H-closed space. But Rn is not an H-closed space.

Theorem 4.5. The following are equivalent for any locally connected almost regular space

X .

(a) X is a g H-closed space.

(b) X ×Y is a g H-closed space for every connected H-closed almost regular space Y .

(c) X ×Y is a g H-closed space for some H-closed almost regular space Y .

Proof. For proving (a)⇒ (b) and (b)⇒ (c), the assumption of local connectedness of X is

not needed. Let us prove:

(a)⇒ (b). Let pX : X ×Y → X be the projection map. Now, p−1
X (x) = {x}×Y is an H-set

in the almost regular space X × Y (as the product of any family of almost regular space is

almost regular [3, Theorem 5.1]) and therefore is a θ-rigid set in X ×Y , by Theorem 6.4 [3].

We shall next show that for each A ⊂ X ×Y , [pX (A)]θ ⊂ pX ([A]θ). For this, we first show for

each θ-closed set B of X ×Y , pX (B) is θ-closed. Indeed, if x
′

∈ X − pX (B); then ({x
′

}×Y )∩

B = ;. Therefore, for each point (x
′

, y), has a open neighbourhood Vy (x
′

)×V (y) such that

(Vy (x
′
)×V (y))∩B = ;. Since {x

′

}×Y is an H-set we can select Vyi
(x

′

)×V (yi ), i = 1,2, . . . ,n

such that the union of the closures of such subfamily covers {x
′

}×Y . Then
n⋂

i=1
Vyi

(x
′

) is a open

neighbourhood of x
′

in X such that
n⋂

i=1
Vyi

(x
′

)
⋂

pX (B) =;. Therefore, pX (B) is θ-closed.

Now, A ⊂ X ×Y , [A]θ is θ-closed in X ×Y (by result 1.10) and hence pX ([A]θ) is θ-closed.

But we always have pX (A) ⊂ pX ([A]θ). So [pX (A)]θ ⊂ pX ([A]θ). Therefore by Corollary 3.4.1

[3], pX is θ-perfect. Since pX is continuous and hence is θ-continuous, by Theorem 3.5, X ×Y

is g H-closed.

(b)⇒(c) is obvious.

(c)⇒ (a) If X is H-closed then by Remark 2.2, X is g H-closed. Suppose X is non H-closed

then for the projection map pX : X × Y → X (where Y is some H-closed space), we have

[pX (A)]θ ⊂ pX ([A]θ) for every A ⊂ X ×Y . Since pX is θ-continuous, by Corollary 2.10.1 [3],

pX ([A]θ) ⊂ [pX (A)]θ. Therefore, pX is a almost closed map. Again, p−1
X

(x) is an H-set in the

almost regular space X ×Y . So, p−1
X (x) is θ-closed. Now, as θ-bdp−1

X (x) is a θ-closed subset of

the H-set p−1
X (x), then by result 1.15, θ-bdp−1

X (x) is an H-set in the almost regular space X ×Y

and hence is θ-rigid so pX is a θ-bd perfect mapping. Since X ×Y is θJ (by Theorem 2.16) then

by result 1.20, X is θJ. Because of X is locally connected, X is a g H-closed space by Theorem

3.7.

Remark 4.6. In Example 2.4, we have seen the product space (Rn ,τn = τ×τ×. . .×τ) where

τ is the countable complement extension topology of the real line with usual topology (R,U ),

is g H-closed but (R,τ) is not so. We now give some sufficient conditions so that the product

of two spaces is g H-closed.

Theorem 4.7. If the spaces X and Y satisfy any one of the following conditions then X ×Y

is g H-closed.
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(i) X and Y are connected non H-closed.

(ii) X and Y are H-closed.

(iii) X is g H-closed and Y is connected H-closed (both X and Y are almost regular).

(iv) X and Y are connected g H-closed spaces.

(v) X is connected, non H-closed g H-closed space and Y is connected (both X and Y are

almost regular).

Proof.

(i) Follows from Theorem 4.1.

(ii) By proposition 4.8L [12], X ×Y is H-closed and hence is g H-closed, by Remark 2.2.

(iii) Follows from Theorem 4.5, (a)⇒ (b).

(iv) If X or Y is H-closed, this follows (iii). If X and Y are both non H-closed, then by Theo-

rem 4.1, X ×Y is g H-closed.

(v) If Y is H-closed, then proof follows from (iii). If Y is not H-closed, then the proof follows

from Theorem 4.1.
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[15] N. V. Veličko, H-closed toplogical spaces, Mat. Sb. 79(112),(1966), 98–112, Amer. Math. Soc. Transl.

78(2),(1968), 103–118.

[16] J. Vermeer, Closed subspaces of H-closed spaces, Pacific J. Math. Soc. 118(1), (1985), 229–246.

Department of Mathematics, University of Kalyani. P.O.- Kalyani, Dist.-Nadia, West Bengal, Pin-741235,

India.

E-mail: ckbasu1962@yahoo.com

mailto:ckbasu1962@yahoo.com

