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A COUPLED HYBRID FIXED POINT THEOREM FOR

SUM OF TWO MIXED MONOTONE COUPLED OPERATORS

IN A PARTIALLY ORDERED BANACH SPACE WITH APPLICATIONS

BAPURAO C. DHAGE

Abstract. In this paper we prove a coupled hybrid fixed point theorem involving the sum

of two coupled operators in a partially ordered Banach space and apply to a pair of non-

linear second order coupled linearly perturbed hybrid differential equations with the pe-

riodic boundary conditions for proving the existence and approximation of coupled solu-

tions under certain mixed hybrid conditions. The abstract existence result of the coupled

periodic boundary value problems is also illustrated by furnishing a numerical example.

1. Introduction

Let (X ,≤,d ) denote a partially ordered metric space with the partial order relation ≤ and

the metric d defined on X and let (E ,≤,‖ · ‖) denote a partially ordered Banach space with

order relation ≤ and the norm ‖ · ‖ defined in it. Given a mapping T : X × X → X , consider a

pair of mapping equations

x =T (x, y) (1.1)

and

y =T (y, x) (1.2)

which are called the coupled mapping equations and the mapping F involved in them is

called a coupled mapping on X ×X .

A pair (x∗, y∗) of elements in X ×X is called a coupled fixed point of the coupled mapping

T or a coupled solution of the coupled mapping equations (1.1) and (1.2) if

x∗
=T (x∗, y∗) and y∗

=T (y∗, x∗).
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A coupled fixed point (x∗, y∗) is called unique comparable if there does not exist another cou-

pled fixed point (u∗, v∗) which is comparable to it. A coupled fixed point (x∗, y∗) is called

unique if it is the only coupled solution of the coupled mapping equations (1.1) and (1.2) in

X ×X . Finally, a point (x∗, y∗) is called a fixed point if x∗ = y∗, i.e., x∗ =T (x∗, x∗).

The coupled fixed point theorems for mixed monotone operators using the properties

of the cones in an ordered Banach space have been proved by Chang and Ma [7], Sun [33]

and Nistri et.al [31]. But the coupled hybrid fixed point theorems for mixed monotone par-

tially condensing coupled mappings on a partially ordered metric space guaranteeing the ex-

istence of coupled fixed points have been proved in Dhage [18] which includes the coupled

fixed point theorems of Bhaskar and Laksmikatham [5], Berinde [4], Dhage and Dhage [25]

and Dhage [16] as special cases. Bhaskar and Lakshmikathan [5] used a partial contraction

type condition on the mixed monotone coupled mapping T which is further generalized by

Berinde [4] by generalizing the partial contraction condition to symmetric partial contrac-

tion type condition to get the same conclusion via constructive method. See also Petrusel

et. al [30] and references threin. However, Dhage [16] used a compactness type topological

arguments on the mixed monotonic coupled mapping T and obtained an algorithm for the

coupled solutions for the coupled mapping equations (1.1) and (1.2). Sometimes it may hap-

pen that the mixed monotone maping T on a patially ordered Banach space E ×E neither

satisfies condition of partial contraction condition nor the compactness type condition, but

the splitting of the coupled operator T into two coupled operators F and G into the form

T = F +G satisfy the above criteria. See Dhage [9, 10, 11, 12] and the references therein. So

in this case it is interesting to establish the coupled hybrid fixed point theorems involving the

sum of two operators in a partially ordered Banach space (cf. Dhage [13, 14, 15, 16]).

The rest of the paper is organized as follows: Section 2 deals with preliminaries and aux-

iliary results that will be used in the subsequent part of the paper. Section 3 consists of some

basic results concerning regularity and Janhavi sets in a partially ordered metric space and

the partial measure noncompactness along with a key coupled hybrid fixed point theorem

is presented in Section 4. Section 5 contains our main coupled hybrid fixed point theorem

for sum of two coupled operators and Section 5 contains PBVPs of second order differential

equations. Finally, the application of our abstract hybrid fixed point theorem to coupled hy-

brid PBVPs is given in Section 7. We claim that the results of this paper are new to the literature

on nonlinear analysis and applications.
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2. Preliminaries and auxiliary results

In this section, we give some basic concepts and terminologies in a partially ordered met-

ric space X with partial order ≤ and the metric d on X . These concepts are also applicable

to a partially ordered normed linear space and in an ordered Banach space because they are

the examples of a partially ordered metric space. Two elements x and y in X are said to be

comparable if either the relation x ≤ y or y ≤ x holds. A non-empty subset C of X is called a

chain or totally ordered if all the elements of C are comparable. It is known that X is regular

if {xn} is a nondecreasing (resp. nonincreasing) sequence in X and xn → x∗ as n →∞, then

xn ≤ x∗ (resp. xn ≥ x∗) for all n ∈N. The conditions guaranteeing the regularity of X may be

found in Guo and Lakshmikantham [28] and the references therein. Similarly a few details

of a partially ordered normed linear space are given in Dhage [9] while orderings defined by

different order cones are given in Deimling [8], Guo and Lakshmikantham [28], Heikkilä and

Lakshmikantham [29], Carl and Heikkilä [6] and references therein.

We need the following definitions (see Dhage [12, 13, 14, 15, 16] and the references therein)

in what follows.

A mapping T : X → X is called isotone or monotone nondecreasing if it preserves the

order relation ≤, that is, if x ≤ y implies T x ≤T y for all x, y ∈ X . Similarly, T is called mono-

tone nonincreasing if x ≤ y implies T x ≥ T y for all x, y ∈ X . Finally, T is called monotonic

or simply monotone if it is either monotone nondecreasing or monotone nonincreasing on

X . A mapping T : X → X is called partially continuous at a point a ∈ X if for given ǫ> 0 there

exists a δ > 0 such that d (T x,T a) < ǫ whenever x is comparable to a and d (x, a) < δ. T is

called partially continuous on X if it is partially continuous at every point of it. It is clear that

if T is partially continuous on X , then it is continuous on every chain C contained in X and

vice-versa. A non-empty subset S of the partially ordered metric space X is called partially

bounded if every chain C in S is bounded. A mapping T on a partially ordered metric space

X into itself is called partially bounded if T (X ) is a partially bounded subset of X . T is called

uniformly partially bounded if all chains C in T (X ) are bounded by a unique constant. A

non-empty subset S of the partially ordered metric space X is called partially compact if ev-

ery chain C in S is a compact subset of X . A mapping T : X → X is called partially compact if

every chain C in T (X ) is a compact subset of X . T is called uniformly partially compact if T

is a uniformly partially bounded and partially compact operator on X . T is called partially

totally bounded if for any bounded subset S of X , T (S) is a partially totally bounded sub-

set of X . If T is partially continuous and partially totally bounded, then it is called partially

completely continuous on X .

Remark 2.1. Suppose that T is a nondecreasing operator on X into itself. Then T is a par-

tially bounded or partially compact on X if T (C ) is a bounded or relatively compact subset

of X for each chain C in X .
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Definition 2.1 (Dhage [13, 14], Dhage and Dhage [25]). The order relation ≤ and the metric

d on a non-empty set X are said to be D-compatible if {xn} is a monotone sequence, that is,

monotone nondecreasing or monotone nonincreasing sequence in X and if a subsequence

{xnk
} of {xn} converges to x∗ implies that the original sequence {xn} converges to x∗. Similarly,

given a partially ordered normed linear space (E ,≤,‖ · ‖), the order relation ≤ and the norm

‖ · ‖ are said to be D-compatible if ≤ and the metric d defined through the norm ‖ · ‖ are D-

compatible. A subset S of X or E is called Janhavi if the order relation ≤ and the metric d or

the norm ‖ · ‖ are D-compatible in it. In particular, if S = X or S = E , then X or E is called a

Janhavi metric or Janhavi Banach space.

There do exist several examples of the regular and Janhavi metric spaces in the literature.

In fact, every finite dimensional Euclidean space R
n is regular as well as Janhavi with respect

to the usual componentwise order relation and the standard norm in R
n. The following results

are of fundamental importance concerning the regularity of a partially ordered Banach space

and the Janhavi sets whereby it is possible to extend the utility or applicability of the abstract

coupled hybrid fixed point theorems of this paper to the variety of nonlinear problems in a

natural way.

We often need the concepts of regularity and janhavi sets in a partially ordered metric

space X or Banach space E in the development of coupled hybrid fixed point theory and

applications. In the following we obtain some basic results in this direction.

We recall that a non-empty closed and convex subset K of the Banach space E is called

a cone if i) K +K ⊆ K , ii) λK ⊆ K for λ ∈ R, λ ≥ 0, and iii) {−K }
⋂

K = {θ}, where θ is a zero

element of E . The details of cones and their properties may be found in Guo and Laksh-

mikantham [28], Heikkilä and Lakshmikantham [29] and references therein. We define an

order relation ≤ in the Banach space E by

x ≤ y ⇐⇒ y −x ∈ K (2.1)

for all x, y ∈ E , where K is a cone in E . The Banach space E together with the order relation ≤

becomes a partially ordered or simply ordered Banach space and it is denoted by (E ,K ). We

observe that every ordered Banach space (E ,K ) is not necessarily a Janhavi Banach space. The

following two useful lemmas are recently proved in Dhage [19, 20] which play a crucial role in

this connection. Since the proofs of these lemmas are not well-known, we give the details of

them for completeness and ready reference.

Lemma 2.1 (Dhage [21, 22]). Every ordered Banach space (E ,K ) is regular.
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Proof. Let {xn} be a monotone nondecreasing sequence of points in a partially ordered Ba-

nach space (E ,K ). Then,

x1 ≤ x2 ≤ ·· · ≤ xn ≤ ·· · . (∗)

Suppose that the sequence {xn} converges to a point x∗, that is, xn → x∗ as n →∞. Then,

every subsequence {xnk
} of {xn} also converges to the same limit point x∗, that is, xnk

→ x∗

as k →∞. Since {xn} is nondecreasing, for any given positive integer n, we have xn ≤ xnk
for

each k ≥ n ∈N. This further by definition of the order relation ≤ implies that xnk
− xn ∈ K . As

the cone K is closed and convex set in E , one has

lim
k→∞

(
xnk

−xn

)
= x∗

−xn ∈ K

for each n ∈ N. Therefore, xn ≤ x∗ for all n ∈ N. Similarly, if {xn} is monotone noincreasing

sequence of points in E , then using the similar arguments, it can be proved that x∗ ≤ xn for

all n ∈ N. As a result, (E ,K ) is a regular ordered Banach space and the proof of the lemma is

complete. ���

Lemma 2.2 (Dhage [21, 22]). Every partially compact subset S of an ordered Banach space

(E ,K ) is Janhavi.

Proof. Let C be an arbitrary chain in a partially compact subset S of an ordered Banach space

E . Then C = C is a compact set in E . Let {xn} be a monotone nondecreasing sequence of

points in the chain C , that is,

x1 ≤ x2 ≤ ·· · ≤ xn ≤ ·· · . (2.2)

Then {xn} is a relatively compact set in E . Therefore, {xn} has a convergent subsequence,

say {xnk
} converging to a point x∗. We show that {xn} also converges to x∗. Suppose not. Then

for ǫ> 0 there exists a subsequence {xni
} of {xn} such that

‖xni
−x∗

‖ ≥ ǫ for each i = 1,2, . . . . (2.3)

Now, by relative compactness of {xni
}, there is a subsequence {xni j

} of {xni
} such that

xni j
→ x ′ as j →∞. Hence for any given positive integer k , by nondecreasing nature of {xn} it

follows that when j is large enough ( j ≥ k), we have that xnk
≤ xni j

. Then xni j
−xnk

∈ K . As K

is closed and convex, taking the limit first as j →∞ and then as k →∞, we obtain

x ′
−x∗

∈ K =⇒ x∗
≤ x ′.

Similarly, it can be shown that x ′ ≤ x∗. As a result, we have x ′ = x∗ and that xni j
→ x∗ as

j →∞. Therefore, we get

‖xni j
−x∗

‖< ǫ (2.4)
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for large j . This is a contradiction to (2.3) and the proof of the lemma is complete. ���

3. Regularity and Janhavi sets in product metric spaces

Next, we discuss some more information of the regularity and Janhavi sets in a partially

ordered product metric space. We consider the following definitions in what follows.

Definition 3.1. A mapping f : Rn
+ →R+ is called sublinear if

(i) f (x + y) ≤ f (x)+ f (y) (subadditivity), and

(ii) f (λx) =λ f (x) (homogeneity)

for all x, y ∈R+ and λ ∈R, λ≥ 0.

Definition 3.2. A continuous mapping f : Rn
+ →R+ is called Kasu if

(i) f is sublinear,

(ii) f (r1, . . . ,rn) = 0 if and only if xi = 0 for all i , i = 1,2, . . . ,n, and

(iii) f (r1, . . . ,rn) is nondecreasing in each coordinate variable.

The class of Kasu functions on R
n
+ is denoted by K.

Example 3.1. Define a mapping fs : Rn
+ →R+ by

fs (r1, . . . ,rn) =
n∑

i=1

ai ri , ai > 0. (3.1)

Then fs is a Kasu function on R
n
+.

Example 3.2. Let the mapping fm :Rn
+ →R+ be defined by

fm(r1, . . . ,rn) = a max{ri , . . . ,rn}, (3.2)

where a > 0. Then fm is a Kasu function on R
n
+.

Proposition 3.1. Let d1, . . . ,dn be the metrics on n metric spaces X1, . . . , Xn respectively and let

X = X1 ×·· ·×Xn . Then the function d : X ×X →R+ defined by

d = f
(
d1, . . . ,dn

)
(3.3)

is a metric on X and so (X ,d ) is a metric space, where f ∈K.

Proof. We shall show that the function d satisfies all the properties of a metric on X .

(i) Nonnegativity: Let x =
(

x1, . . . , xn

)
and y =

(
y1, . . . , yn

)
be any two points in X1×·· ·×Xn = X

Then, by definition of the Kasu function, we obtain

d (x, y)= d
((

x1, . . . , xn

)
,
(
y1, . . . , yn

))



A COUPLED HYBRID FIXED POINT THEOREM AND APPLICATIONS 7

= f
(
d1(x1, y1), . . . ,dn(xn , yn)

)

≥ 0

and so d is nonnegative real function on X ×X .

(ii) Coincidence: Now,

d (x, y)= d
((

x1, . . . , xn

)
,
(

y1, . . . , yn

))

= f
(
d1(x1, y1), . . . ,dn(xn , yn)

)

= 0

if and only if d1 = ·· · = dn = 0 which implies that d (x, y)= 0 ⇐⇒ x = y in view of the property

(ii) of the Kasu function f .

(iii)Symmetry: Now,

d (x, y)= d
((

x1, . . . , xn

)
,
(

y1, . . . , yn

))

= f
(
d1(y1, x1), . . . ,dn(yn , xn)

)

= d (y, x)

and so d is symmetric function.

(iv) Triangle inequality: Let x =
(

x1, . . . , xn

)
, y =

(
y1, . . . , yn

)
and z =

(
z1, . . . , zn

)
be any three

points in X1 ×·· ·×Xn = X . Then,

d (x, y)= d
((

x1, . . . , xn

)
,
(
y1, . . . , yn

))

= f
(
d1(y1, x1), . . . ,dn(yn , xn)

)

≤ f
(
d1(x1, y1)+d1(y1, z1), . . . ,dn(xn , yn)+dn(yn , zn)

)

≤ f
(
d1(x1, y1), . . . ,dn(xn , yn)

)
+ f

(
d1(y1, z1), . . . ,dn(yn , zn)

)

= d (x, y)+d (y, z)

for all x, y, z ∈ X and so, d satisfies the triangle inequality. Thus, d is a metric on X and so

(X ,d ) is a metric space. ���

Proposition 3.2. Let ‖ · ‖1, . . . ,‖ · ‖n be the norms on n vector spaces E1, . . . ,En respectively and

let E = E1 ×·· ·×En . Then the function ‖ ·‖ : E →R+ defined by

‖x‖= f
(
‖x1‖1, . . . ,‖xn‖n

)
(3.4)

is a norm on E, where x =
(

x1, . . . , xn

)
∈ E1 ×·· ·×En and f ∈K.
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Remark 3.1. The metric d defined by (3.3) is called a Kasu metric on the product metric space

X1 × ·· · × Xn . Similarly, the norm ‖ · ‖ defined by (3.4) is called a Kasu norm on a product

normed linear space E = E1 ×·· ·×En .

Proposition 3.3. Let (X1,d1), . . . , (Xn ,dn) be n metric spaces and let X = X1 ×·· ·×Xn . Suppose

that the Kasu metric d is defined by (3.3). If each metric space X1, . . . , Xn is complete, then so is

also (X ,d ).

Proof. We show that every Cauchy sequence of points in X converges to a point in X . Let

{xm} =
{
(xm

1 , . . . , xm
n )

}
be a Cauchy sequence in X . Then, we have

lim
m,p→∞

d (xm , xp ) = 0.

Now, by definition of the norm d , we have that

lim
m,p→∞

f
(
d1(xm

1 , x
p
1 ), . . . ,dn(xm

n , x
p
n )

)
= 0

which further yields

lim
m,p→∞

di (xm
i , x

p

i
) = 0

for each i , i = 1,2, . . . ,n. This shows that {xm
i

} is a Cauchy sequence in Xi for i = 1,2, . . . ,n.

Since each Xi is complete , {xm
i

} converges to a point, say x∗
i
∈ Xi for i = 1,2, . . . ,n. As a result,

we have

lim
m→∞

di (xm
i , x∗

i ) = 0, i = 1,2, . . . ,n.

Now, by definition of the norm d we obtain

lim
m→∞

d (xm , x∗) = lim
m→∞

(
d

(
xm

1 , . . . , xm
n

)
,
(
x∗

1 , . . . , x∗
n

) )

= lim
m→∞

f
(
d1(xm

1 , x∗
1 ), . . . ,dn(xm

n , x∗
n)

)

= f
(

lim
m→∞

d1(xm
1 , x∗

1 ), . . . , lim
m→∞

dn(xm
n , x∗

n)
)

= 0.

As a result every Cauchy sequence sequence in X is convergent and converges to a point

in X . Hence, X is a complete metric space. ���

Example 3.3. Let d be a metric in a metric space X . Then the functions d∗ defined by

ds(((x, y) , (u, v)
)
= d (x,u)+d (y, v) (3.5)

and

dm(((x, y) , (u, v)
)
= max

{
d (x,u) , d (y, v)

}
(3.6)

are the Kasu metrics on X 2 = X ×X in view of the relations (3.1) and (3.2), where (x, y), (u, v)∈

X 2.
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Now, we introduce an order relation α in the product metric space X = X1 ×·· ·× Xn . An

order relation ¹ is a binary relation which is reflexive, antisymmetric and transitive. Note that

a metric space X together with the order relation ¹ is called partially ordered metric space. A

few details of a partially ordered metric space appear in Dhage [9] and references therein. If

a partial order ¹ is introduced in a metric space X which is also complete with respect to the

metric d , then (X ,¹,d ) is called a partially ordered complete metric space.

Letα1, . . . ,αn be the partial order relations in the partially ordered metric spaces X1, . . . , Xn

respectively. Denote X = X1 ×·· ·×Xn and α=α1 ×·· ·×αn . We define a partial order α in the

product metric space X as follows. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two elements of

X . Then,

x α y ⇐⇒ xi αi yi for i = 1,2, . . . ,n. (3.7)

The order relation ,α defined by the relation (3.7) is called the Kasu partial order on the

product metric space X = X1 ×·· ·× Xn . The product metric space X together with the above

partial order α becomes a partially ordered product metric space. Now, we are equipped with

all the necessary details to state significant results concerning the Janhavi sets and regularity

of the partially ordered product metric space (X ,α,d ).

Theorem 3.1. Assume that each of the partially ordered metric spaces (X1,α1,d1), . . . , (Xn ,αn ,dn)

is regular. Suppose that X = X1 ×·· ·× Xn and α = α1 ×·· ·×αn . If the metric d in X is defined

by the Kasu function (3.3), then the partially ordered product metric space (X ,α,d ) is regular.

Proof. Suppose first that {xm} is a monotone nondecreasing sequence of points in X . Then

xm α xm+1 for each m ∈N. By definition of the partial order α, we obtain xm
i

αi xm+1
i

for each

i , i = 1,2, . . . ,n. Next, we assume that xm → x∗. Then,

lim
m→∞

d (xm , x∗) = 0.

Now, by definition of the Kasu metric (3.3), we obtain

lim
m→∞

di (xm
i , x∗

i )= 0

for each i = 1, . . . ,n. Thus the sequence {xm
i

} is monotone nondecreasing and converges to a

point x∗
i

for i = 1, . . . ,n. Since each
(
Xi ,αi ,di

)
is a regular partially ordered metric space, one

has xm
i

αi x∗
i

for all m ∈N and for each i , i = 1, . . . ,n. Hence, by definition of α, we get xm α x∗

for all m ∈ N. Similarly, if {xm} is monotone nonincreasing sequence of points in X , that is,

xm+1 α xm for all m ∈N and if {xm} converges to a point x∗, then it can be shown that x∗ α xm

for all m ∈N. As a result (X ,α,d ) is a partially ordered regular metric space. This completes

the proof. ���
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Corollary 3.1. Let
(
E1,K1,‖ · ‖1

)
, . . . ,

(
En ,Kn ,‖ · ‖n

)
be n ordered Banach spaces. Suppose that

E = E1 ×·· · ×En and K = K1 ×·· · ×Kn . If the norm ‖ · ‖ in E is defined by Kasu function (3.4),

then the ordered Banach space (E ,K ,‖ ·‖) is regular.

Proof. By Lemma 2.1, each of the ordered Banach spaces
(
E1,K1,‖ · ‖1), . . . , (En ,Kn ,‖ · ‖n

)
is

regular. Now the desired conclusion follows by an application of Theorem 3.1. ���

Theorem 3.2. Assume that each of the partially partially ordered metric spaces (X1,α1,d1), . . .,

(Xn ,αn ,dn) is Janhavi. Suppose that X = X1×·· ·×Xn and α=α1×·· ·×αn . If the metric Kasu d

in X is defined by the relation (3.3) and the Kasu partial order α is defined by the relation (3.7),

then partially ordered metric space (X ,α,d ) is also Janhavi.

Proof. Let {xm} be a monotone sequence of points in X and let a subsequence {xmk } of {xm} be

convergent converging to the point x∗. Then, from the nature of the sequence {xm}, it follows

that the sequence {xm
i

} is monotone and has a convergent subsequence {x
mk

i
} converging to

a point x∗
i

in Xi for i = 1, . . . ,n. As each partially ordered metric space (Xi ,αi ,di ) is Janhavi,

we have that xm
i

→ x∗
i

as m →∞ for each i = 1,2, . . . ,n. Finally, from the definition of the Kasu

function it follows that xm → x∗ as n → ∞. As a result the partially ordered Banach space

(X ,α,d ) is Janhavi. ���

Corollary 3.2. Let
(
E1,K1,‖ · ‖1

)
, . . . ,

(
En ,Kn ,‖ · ‖n) be n partially ordered Banach spaces. Sup-

pose that E = E1 × ·· · ×En and K = K1 × ·· · ×Kn . If the norm ‖ · ‖ in E is defined by the Kasu

function (3.4), then the ordered Banach space (E ,K ,‖ ·‖) is also Janhavi.

Proof. By Lemma 2.2, each of the ordered Banach spaces
(
E1,K1,‖ · ‖1), . . . , (En ,Kn ,‖ · ‖n

)
is

Janhavi. Now the desired conclusion follows by an application of Theorem 3.2. ���

Theorem 3.3. Assume that every partially compact subset of each of the partially ordered met-

ric spaces (X1,α1,d1), . . . , (Xn ,αn ,dn) is Janhavi. Suppose that X = X1 × ·· ·× Xn and α = α1 ×

·· ·×αn . If the metric d in X is defined by the Kasu function (3.3), then every partially compact

subset of the partially ordered metric space (X ,α,d ) is also Janhavi.

Proof. Suppose that S is a partially compact subset of the partially ordered metric space

(X ,α,d ). Then S = S1 × ·· · × Sn , where S1, . . . ,Sn are partially compact natural projections

of S on X1, . . . , Xn respectively. Let C be a chain in S which is compact by virtue of partial

compactness of S. Then C = C1 × ·· · ×Cn , where C1, . . . ,Cn are compact chains and natural

projections of C on S1, . . . ,Sn respectively. Let {xm} be any monotone sequence of points in

C . Then, by compactness of C , it has a convergent subsequence {xmk } converging to a point,

say x∗ ∈ C . Now, xm =
(

xm
1 , . . . , xm

n

)
, so that there are monotone sequences {xm

i
} in Ci for

i = 1, . . . ,n and the subsequences {x
mk

i
} converging to the point x∗

i
in view of the definition
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of the Kasu metric in X . Since every partially compact subset of the partially ordered metric

spaces (Xi ,αi ,di ) is Janhavi, the sequence {xm
i

} converges to x∗
i

for each i , i = 1, . . . ,n. From

definition of the metric d it follows that the original sequence {xm} converges to x∗. This

shows that the partially compact subset S of the partially ordered metric space X is Janhavi.

This completes the proof. ���

Corollary 3.3. Let
(
E1,K1,‖ · ‖1

)
, . . . ,

(
En ,Kn ,‖ · ‖n

)
be n ordered Banach spaces. Suppose that

E = E1 × ·· · ×En and K = K1 × ·· · ×Kn . If the norm ‖ · ‖ in E is defined by the Kasu function

(3.4), then every partially compact subset of the partially ordered Banach space (E ,K ,‖ · ‖) is

also Janhavi.

Proof. Suppose that S is a partially compact subset of the ordered Banach space E and sup-

pose that S1, . . . ,Sn be the natural projections of S on the ordered Banach spaces E1, . . . ,En

respectively. Then the sets S1, . . . ,Sn are also partially compact subset of E1, . . . ,En respec-

tively. By Lemma 2.2, each of the sets S1, . . . ,Sn is Janhavi. Now the desired conclusion follows

by an application of Theorem 3.3. This completes the proof. ���

Definition 3.3. An element u of the partially ordered set (E ,¹) is called a lower bound for a

pair {x, y} of elements in E if u ¹ x and u ¹ y . Similarly, an upper bound for a pair of elements

in the partially set E is defined. If every pair of elements in E have a lower as well as an upper

bound, then the partially ordered set (E ,¹) is called a lattice. Moreover, if E is a Banach space,

then it is called a Banach lattice.

The following results are sometimes useful for proving the uniqueness of fixed point for

nonlinear operators and coupled operators in a partially ordered product Banach space sat-

isfying partial contraction condition along with the applications to nonlinear simultaneous

equations.

Lemma 3.1. Let
(
X1,α1,d1

)
, . . . ,

(
Xn ,αn ,dn

)
be n partially ordered metric spaces and let X =

X1 ×·· ·× Xn . Suppose that d and α are respectively the Kasu metric and Kasu partial order in

X defined by (3.3) and (3.7) respectively. If every pair of elements in each of X1, . . . , Xn have a

lower bound or an upper bound, then every pair of elements in X have a lower bound or an

upper bound. In particular, the above conclusion holds if each of X1, . . . , Xn is a lattice.

Proof. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be any two elements of X . Then xi , yi ∈ Xi

for each i = 1, . . . ,n. Suppose that each pair of elements in each Xi have a lower bound, say

zi ∈ Xi . Then, we have zi αi xi and zi αi yi for each i = 1, . . . ,n. Therefore, the elements

z = (z1, . . . , zn) serves as a lower bound for the pair of elements {x, y} in X . Similarly, if each

pair of elements in each Xi have an upper bound for each i , i = 1, . . . ,n, then it can be proved

that every pair of elements of X have an upper bound in X . Again, if each of X1, . . . , Xn is a

lattice, then the partially ordered product metric space X is also a lattice and a fortiori, the

above conclusion holds for all elements in X . This completes the proof. ���
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Lemma 3.2. Let
(
E1,α1,‖ · ‖1

)
, . . . ,

(
En ,αn ,‖ · ‖n

)
be n partially ordered Banach spaces and let

E = E1×·· ·×En . Suppose that ‖·‖ and α are respectively the Kasu norm and Kasu partial order

in E defined by (3.4) and (3.7) respectively. If every pair of elements in each of E1, . . . ,En have

a lower bound or an upper bound, then every pair of elements in E have a lower bound or an

upper bound. In particular, the above conclusion holds if each of E1, . . . ,En is a Banach lattice.

Proof. Since each partially ordered Banach space
(
Ei ,αi ,‖ · ‖i

)
, i = 1, . . . ,n, is a partially or-

dered metric space, where the metric di on Ei is defined through the norm ‖ · ‖i by di (x, y)

= ‖x − y‖i , x, y ∈ Ei . Therefore, the desired conclusion follows by an application of Lemma

3.1. ���

Lemma 3.3. If every pair of elements in a partially ordered Banach space (E ,¹,‖ · ‖E ) have a

lower bound or an upper bound, then every pair of elements in the partially ordered product

Banach space (E 2,α,‖ · ‖) have a lower bound or an upper bound in E 2, where α and ‖ · ‖ are

respectively the Kasu partial order and Kasu norm defined E 2. Moreover, the conclusion holds

if E is a Banach lattice.

Proof. Here, E1 = E2. Hence, the proof of the lemma follows by an application of Lemma 3.2.

We omit the details. ���

Remark 3.2. The assertions of Lemma 3.1 remains true if we replace the partially ordered

Banach spaces (Ei ,αi ,‖·‖Ei
) with the ordered Banach spaces (Ei ,Ki ), i = 1, . . . ,n. Similarly the

assertion of Lemma 3.2 also remains true if we replce the partially ordered Banach space E

with the ordered Banach space (E ,K ).

4. Partial measure of noncompactness

The second most important concept that will be used in the development of coupled

hybrid fixed point theory and applications is the partial measure of noncompactness in the

partially ordered metric spaces. A few details concerning the partial measures of noncom-

pactness along with their applications to nonlinear differential and integral equations appear

in Dhage [12, 13, 14, 15, 16] and the references therein. For ready reference, we describe in the

following some basic facts about the partial measures of noncompactness in a metric space

X .

If C is a chain in X , then C ′ denotes the set of all limit points of C in X . The symbol C

stands for the closure of C in X defined by C = C ∪C ′. The set C is also a closed chain in X .

Thus, C is the intersection of all closed chains containing C . Clearly, infC , supC ∈C provided

infC and supC exist. The supC is an element z ∈ X such that for every ǫ > 0 there exists a
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c ∈ C such that d (c , z) < ǫ and x ≤ z for all x ∈ C . Similarly, infC is defined essentially in an

analogous way.

In what follows, let Pp (X ) denote the class of all subsets of X with property p . In par-

ticular, we denote by Pcl (X ), Pbd (X ), Pr cp (X ), Pcn (X ), Pbd ,cn (X ), Pr cp,cn (X ) the family

of all nonempty and closed, bounded, relatively compact, chains, bounded chains and rela-

tively compact chains of X respectively. Now we introduce the concept of a partial measure

of noncompactness of the chains in X on the lines of Dhage [13, 14, 15, 16]. The related idea

of classical measure of noncompactness may be found in Appell [1], Banas and Goebel [3],

Dhage [9], Arab [2] and references therein.

Definition 4.1. A mapping µp : Pbd ,cn (X ) → R+ = [0,∞) is said to be a partial measure of

noncompactness in X if it satisfies the following properties:

(P1) ; 6= (µp )−1({0}) ⊂Pr cp,cn (X ). (kernel compactivity)

(P2) µp (C ) =µp (C ). (closure invariance)

(P3) µp is nondecreasing, i.e., if C ⊂ D ⇒µp (C ) ≤µp (D). (monotonicity)

(P4) If {Cn} is a sequence of closed chains from Pbd ,cn (X ) such that Cn+1 ⊂Cn , n ∈N and if

lim
n→∞

µp (Cn) = 0, then C∞ =
⋂

∞
n=1 Cn is nonempty. (limit intersection property)

The family of sets described in (P1) is said to be the kernel of the partial measure of non-

compactness µp and is defined as

ker µp =
{
C ∈Pbd ,cn (X ) |µp (C ) = 0

}
. (4.1)

Clearly, ker µp ⊂ Pr cp,cn (X ). Observe that the intersection set C∞, from condition (P3)

is a member of the family ker µp . In fact, since µp (C∞) ≤ µp (Cn) for any n, we infer that

µp (C∞) = 0. This yields that C∞ ∈ ker µp . This simple observation will be essential in our

further investigations.

The partial measure µp of noncompactness is called full or complete if it satisfies

(P5) ker µp =Pr cp,cn (X ).

Finally, µp is said to satisfy maximum property if

(P6) µp

(
C1

⋃
C2

)
=max

{
µp (C1),µp (C2)

}
.

Example 4.1. Define three functions αp ,βp ,δp : Pbd ,cn (X ) →R+ by

αp (C ) = inf
{

r > 0
∣∣∣ C =

n⋃

i=1

Ci , diam (Ci ) ≤ r ∀ i
}

, (4.2)
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where C ∈Pbd ,cn (X ) and diam(Ci ) = sup{d (x, y) : x, y ∈Ci },

βp (C ) = inf
{

r > 0
∣∣∣ C ⊂

n⋃

i=1

B(xi ,r ) for some xi ∈ X
}

, (4.3)

where B(xi ,r ) = {x ∈ X : d (xi , x)< r }, and

δp (C ) = diam(C ) = sup
{

d (x, y) : x, y ∈C
}

. (4.4)

It is easy to prove that αp , βp and δp are partial measures of noncompactness and are

called the partial Kuratowskii, partial ball and partial diametric measures of noncompactness

in X respectively. Note that partial measures αp and βp are full and enjoy the maximum

property in X but the partial measure δp is not full as well as does not satisfy the maximum

property.

When E is a Banach space, the partial Kuratowskii and partial ball measures of noncom-

patness satisfy the following two sublinear properties:

(P7) µp (λC ) = |λ|µp (C ). (scalar multiplicativity)

(P8) µp (C +D) ≤µp (C )+µp (D). (subadditivity)

The following proposition is very much useful for obtaining the partial measure of non-

compactness in the partially ordered product metric spaces provided the partial measures of

components in the partially ordered metric spaces are known to us.

Proposition 4.1. Let µ1
p , . . . ,µn

p be the partial measures of noncompactness in the n partially

ordered metric spaces X1, . . . , Xn respectively and let X = X1×·· ·×Xn . Suppose that f : Rn
+ →R+

is a Kasu function. Then the function µp : Pbd ,cn (X )→R+ defined by

µp (C )= f
(
µ1

p

(
C1

)
, . . . ,µn

p

(
Cn

))
(4.5)

is a partial measure of noncompactness in X , where C1, . . . ,Cn denote the natural projections

of C on X1, . . . , Xn respectively.

Proof. We shall show that the function µp satisfies all the conditions (P1) through (P4) of a

partial measure of noncompactness on the partially ordered metric space (X ,α,d ).

(i) Kernel compactivity :

Let C1, . . . ,Cn be the natural projections of the chain C in X on X1, . . . , Xn respectively.

Then, µp (C ) = f
(
µ1

p

(
C1

)
, . . . ,µn

p

(
Cn

))
= 0 ⇒ µi

p (Ci ) = 0 for i = 1, . . . ,n. Therefore, C1, . . . ,Cn

are relatively compact chains in X1, . . . , Xn respectively. As a result C = C1 ×·· ·×Cn is a rela-

tively compact chain in the product metric space X .
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(ii) Closure invariance :

Now, for any C = C1 × ·· · ×Cn , we have that C1 ×·· ·×Cn = C1 × ·· ·×Cn . Therefore, we

obtain

µp (C ) = f
(
µ1

p

(
C1

)
, . . . ,µn

p

(
Cn

))
= f

(
µ1

p

(
C1

)
, . . . ,µn

p

(
Cn

))
=µp (C ).

(iii) Monotonicity :

Let C and D be two chains in X with natural projections C1, . . . ,Cn and D1, . . . ,Dn on

X1, . . . , Xn respectively. Suppose that C ⊂ D. Then, it follows that Ci ⊂ Di for each i , i =

1, . . . ,n. Now, by nondecreasing nature of the Kasu function f in each co-ordinate variable,

we obtain

µp (C )= f
(
µ1

p

(
C1

)
, . . . ,µn

p

(
Cn

))
≤ f

(
µ1

p

(
D1

)
, . . . ,µn

p

(
Dn

))
=µp (D).

This shows that µp is nondecreasing on X .

(vi) Limit intersection property :

Let {C m} be a decreasing sequence of closed and bounded chains in the partially ordered

metric space X , that is, C
1 ⊃ ·· · ⊃ C

m · · · ; and let us assume that limm→∞µp (C m) = 0. Sup-

pose that C1, . . . ,Cn be the natural projections of the chain C on X1, . . . , Xn respectively. For

the sake of convenience we write this as C =C1 ×·· ·×Cn . Then {C m
i

} is also a decreasing se-

quence of closed and bounded chains in the partially ordered metric space Xi for i = 1, . . . ,n.

Now by definition of µp ,

µp

(
C

m
)
= f

(
µ1

p (C m
1 ), . . . ,µn

p (C m
n )

)
.

Therefore,

lim
m→∞

µp

(
C

m
)
= lim

m→∞
f
(
µ1

p

(
C m

1

)
, . . . ,µn

p

(
C m

n

))

= f
(

lim
m→∞

µ1
p

(
C m

1

)
, . . . , lim

m→∞
µn

p

(
C m

n

))

= 0

if and only if lim
m→∞

µi
p (C m

i ) = 0 for i = 1, . . . ,n. As µi
p are the partial measures of noncompact-

ness in the partially ordered metric spaces Xi , we have that
⋂

∞
m=1 C m

i
= C∞

i
6= ; for each i ,

i = 1, . . . ,n. Therefore, we obtain

∞⋂
m=1

C
m
=C

∞
=C∞

1 ×·· ·×C∞
n 6= ;.

Thus, the function µp satisfies the properties (P1) through (P4) of the partial measure of

noncompactness and hence it is a partial measure of noncompactness in X . This completes

the proof. ���
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Example 4.2. Let µ1
p , . . . ,µn

p be the partial measures of noncompactness on the n partially

ordered Banach spaces X1, . . . , Xn respectively and let X = X1×·· ·×Xn . Define a two functions

µs
p and µm

p on Pbd ,cn (X ) by

µs
p (C ) =

n∑

i=1

ai µ
i
p (Ci ), ai > 0 ∀ i , (4.6)

and

µm
p (C ) = a max

{
µ1

p (C1), . . . ,µn
p (Cn)

}
, a > 0, (4.7)

where C1, . . . ,Cn are the natural projections of the chain C on X1, . . . , Xn respectively. Then

the functions µs
p and µm

p are partial measures of noncompactness in X , because here the

Kasu functions fs abd fm are defined by (3.1) and (3.2) respectively.

Example 4.3. Let µp be the partial measure in the partially ordered Banach space E . Then

the partial measures µs
p and µm

p of noncompactness of a chain C = C ×D in E 2 = E ×E may

be defined as

µs
p (C ) = µp (C )+µp (D) (4.8)

and

µm
p (C ) = max{µp (C ) , µp (D)} (4.9)

where C and D are the natural projections or components of the chain C in E .

In the following we prove a coupled hybrid fixed point theorem for partially condensing

mappings in a partially ordered product metric space. We need the following useful defini-

tions concerning the coupled operators are introduced in Dhage [17, 18].

Definition 4.2. Let (X 2,α,d ) be a partially ordered metric space, where α and d are Kasu

partial order and Kasu metric on X 2 respectively. A mapping T : X 2 → X 2 is called mono-

tone nondecreasing if it preserves the order relation α in X 2, that is, T z α T w for all z, w ∈

X 2, z α w . Similarly, a mapping T on X 2 into itself is called monotone nonincreasing if

T z α′
T w for all z, w ∈ X 2, z α w , where α′ is the reverse of the order relation α in X . Fi-

nally, the mapping T is called monotone if it is either monotone nondecreasing or monotone

nonincreasing on X .

Definition 4.3. Let (X 2,α, d̃ ) be a partially ordered metric space, where α and d̃ are Kasu

partial order and Kasu metric defined in X 2 = X × X respectively. A monotone mapping T :

X 2 → X 2 is called partially condensing if

µ̃p

(
T (C )

)
< µ̃p (C ) (4.10)

for all bounded chains C in X 2 for which µ̃p (C ) > 0, where µ̃p is a Kasu partial measure of

noncompactness in X 2.
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Note that monotone partially compact and monotone partially contractions mappings

on X × X are partially condensing, however the converse may not be true. Now we state a

basic hybrid fixed point theorem for partially condensing monotone mappings in a partially

ordered product metric space which is useful in the development of coupled hybrid fixed

point theory and applications.

Theorem 4.1. Let
(
X ,¹,d

)
be a regular partially ordered metric space and let every compact

chain C in X be Janhavi. Suppose that α and d̃ are the Kasu partial order and Kasu metric de-

fined in X × X respectively and suppose that Q : X × X → X × X is a monotone nondecreasing,

partially continuous, partially bounded and partially condensing mapping. If there exists an

element (x0, y0) ∈ X × X such that (x0, y0)αQ(x0, y0) or Q(x0, y0)α(x0, y0), then Q has a fixed

point (x∗, y∗) ∈ X × X and the sequence {Qn(x0, y0)} of successive iterations converges mono-

tonically to (x∗, y∗).

Proof. Set X 2 = X ×X . As α and d̃ are respectively the Kasu order and Kasu metric defined in

X 2, the triplet (X 2,α, d̃ ) is a regular partially ordered metric space and every compact chain

C in X 2 is Janhavi in view of Theorems 3.1 and 3.3. Furthermore, since the operator Q is a

partially continuous, partially bounded, partially condensing and monotone nondecreasing

on (X 2,α, d̃ ) into itself and there exists an element (x0, y0) ∈ X ×X such that (x0, y0)αQ(x0, y0)

or Q(x0, y0)α(x0, y0), the desired conclusion follows by an application of a hybrid fixed point

theorem for partial condensing mappings in a partially ordered metric space proved in Dhage

[15, 16, 17, 18]. This completes the proof. ���

Corollary 4.1. Let
(
X ,¹,d

)
be a regular partially ordered metric space and let every compact

chain C in X be Janhavi. Suppose that α and d̃ are the Kasu partial order and Kasu metric de-

fined in X 2 = X ×X respectively and suppose that Q : X 2 → X 2 is partially continuous, partially

compact and monotone nondecreasing mapping. If there exists an element (x0, y0) ∈ X ×X such

that (x0, y0)αQ(x0, y0) or Q(x0, y0)α(x0, y0), then Q has a fixed point (x∗, y∗)∈ X ×X and the

sequence {Qn(x0, y0)} of successive iterations converges monotonically to (x∗, y∗).

Remark 4.1. As mentioned in Dhage [15, 17] the condition

(A) every compact chain C in X is Janhavi,

of Theorem 4.1 may be replaced with a weaker condition that

(B) every compact chain C in Q(X ×X ) is Janhavi.

We note that condition (A) ⇒ condition (B), however the converse may not be true. To see

this, let us assume that the condition (A) holds. Then, by Theorem 3.3, every compact chain

C in X × X is Janhavi. As Q is partially continuous, it is continuous on C and consequently

Q(C ) is also again a compact chain in X ×X and so it is Janhavi. As C is an arbitrary chain in

X ×X , every compact chain in Q(X ×X ) is Janhavi.
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In view of the above remark, Remark 4.1 we obtain the following applicable coupled hy-

brid fixed point result as a special case of Theorem 4.1.

Corollary 4.2. Let
(
X ,¹,d

)
be a regular partially ordered metric space let α and d̃ be respec-

tively the Kasu partial order and Kasu metric defined in X 2. Suppose that Q : X 2 → X 2 is a

monotone nondecreasing mapping satisfying the condition of linear partial contraction,

d̃ (QZ ,QW )≤ k d̃(Z ,W ) (4.11)

for all comparable elements Z ,W ∈ X 2, where 0 ≤ k < 1. If there exists an element (x0, y0) ∈

X×X such that (x0, y0)αQ(x0, y0) or Q(x0, y0)α(x0, y0), then Q has a unique comparable fixed

point (x∗, y∗) ∈ X × X and the sequence {Qn(x0, y0)} of successive iterations converges mono-

tonically to (x∗, y∗). Moreover, the fixed point is unique if every pair of elements in X have a

lower bound or an upper bound.

Proof. First we show that the condition (B) of Remark 4.1 holds. Let C be an arbitrary chain in

Q(X ×X ) and let {xn} be a monotone sequence in C . Since C is compact, it has a convergent

subsequence {xni
} converging to a point, say x∗. Without loss of generality, we may assume

that xn = Q
n(x) for some x ∈ C . After simple computation, by condition (4.11), it can be

shown that {xn} is a Cauchy sequence of points in C . As a result, the original sequence {xn}

converges to x∗ and that the compact chain C is Janhavi in Q(X ×X ). Next, using the routine

arguments, it can be shown that the operator Q is a k-set- contraction on X×X with respect to

the Kasu partial Kuratowskii measure of noncompactness α̃p in X 2 with k < 1. Now, by a direct

application of Theorem 4.1 implies that operator Q has a fixed point Z∗= (x∗, y∗) ∈ E ×E . If

there is another fixed point W ∗ = (u∗, v∗) of Q which is comparable to Z∗, then from the

contraction condition (4.11) we get a contradiction. As a result, Q has a unique comparable

fixed point.

To prove the uniqueness of fixed point, let W ∗ = (u∗, v∗) be another fixed point of the

operator Q. Since given that every pair of elements of the partially ordered Banach space E

have a lower or an upper bound, by Lemma 3.3, every pair of elements in E 2 also have a lower

or an upper bound. Without loss of generality, we assume that there exists an upper bound U

for the pair of elements {Z∗,W ∗} in E 2. Then, the elements Z∗ and W ∗ are comparable to the

element U . By nondecreasing nature of Q, we obtain Z∗ =Q
n Z∗¹Q

nU and W ∗ =Q
nW ∗ ¹

Q
nU for each n ∈N. Now, by contraction condition (4.11), we obtain

d̃ (Z∗,W ∗) = d̃ (Qn Z∗,QnW ∗)

≤ d̃ (Qn Z∗,QnU )+ d̃ (QnU ,QnW ∗)

≤ kn
[
d̃(Z∗,U )+ d̃ (U ,W ∗)

]

→ 0 as n →∞.
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Hence Z∗ = W ∗ and consequently, the mapping Q has a unique fixed point. This com-

pletes the proof. ���

Corollary 4.3. Let (E ,K ) be an ordered Banach space and let α and ‖ · ‖ be the Kasu partial

order and Kasu norm defined in E 2 = E ×E respectively. Suppose that Q : E 2 → E 2 is partially

continuous, partially condensing and monotone nondecreasing operator. If there exists an ele-

ment (x0, y0) ∈ E×E such that (x0, y0)αQ(x0, y0) or Q(x0, y0)α(x0, y0), then Q has a fixed point

(x∗, y∗) ∈ E ×E and the sequence {Qn(x0, y0)} of successive iterations converges monotonically

to (x∗, y∗).

Proof. By Lemma 2.1, the ordered Banach space (E ,K ) is regular. Again, every compact chain

C in E is Janhavi in view of Lemma 2.2. Now the desired conclusion follows by an application

of Theorem 4.1. ���

Remark 4.2. We remark that the regularity of the partially ordered metric space X in above

Theorem 4.1 may be relaxed and compensated with the continuity of the operators Q on X 2

into itself. See Dhage [15, 16, 17, 18] and the references therein. Furthermore, Corollary 4.2

includes the main coupled hybrid fixed point theorems of Berinde [4] and Dhage [22] for cou-

pled mappings in a partially ordered metric space satisfying the symmetric partial contraction

condition as the special cases.

As mentioned in Dhage [19], the above coupled hybrid fixed point results are useful to

obtain a coupled hybrid fixed point theorem involving the sum of two coupled operators in

a partially ordered Banach space. In the following section we prove our main coupled hybrid

fixed point theorem of the paper on this line.

5. A coupled hybrid fixed point theorem

Given two mappings F ,G : E ×E → E , consider a couple of operator equations

x = F (x, y)+G (x, y) (5.1)

and

y = F (y, x)+G (y, x) (5.2)

for all (x, y) ∈ E ×E , where the operators F and G are not necessarily continuous.

The operators F and G involved in the coupled operator equations (5.1)-(5.2) are called

the coupled operators on E ×E into E . A pair of elements (x∗, y∗) ∈ E ×E is called a coupled

fixed point of the sum F +G of two coupled operators F and F or coupled solution of the

coupled operator equations (1.1) and (1.2) if

x∗
=F (x∗, y∗)+G (x∗, y∗) and y∗

=F (y∗, x∗)+G (y∗, x∗). (5.3)
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The existence of such coupled fixed points for coupled operators is generally obtained

under certain monotonic condition of the coupled operator T on E ×E . See Heikkilá and

Lakshmikantham [29], Sun [33], Bhaskar and Lakshmikantham [5] and Dhage and Dhage [25]

and the references therein. A coupled operator T (x, y) is called mixed monotone if the map

x 7→ T (x, y) is nondecreasing for each y ∈ E and the map y 7→ T (x, y) is nonincreasing for

each x ∈ E .

Before proving the main coupled hybrid fixed point theorem, we give some useful defini-

tions in what follows.

Definition 5.1 (Dhage [9, 10]). An upper semi-continuous and monotonic nondecreasing

function ψ : R+ → R+ is called a D-function if ψ(0) = 0. The class of all D-functions is de-

noted by D.

Definition 5.2 (Dhage [21]). A coupled operator T : E ×E → E is called partial D-Lipschitz if

there exists a D-function ψT ∈D such that

‖T (x, y)−T (u, v)‖≤
1

2
·ψT

(
‖x −u‖+‖v − y‖

)
(5.4)

for all comparable elements (x, y), (u, v)∈ E ×E . If ψT (r )= k r , T is called a partial Lipschitz

on E×E with the Lipschitz constant k . Again, if 0 ≤ k < 1, then T is called a partial contraction

on E ×E with contraction constant k . Furthermore, if ψT (r ) < r for r > 0, then T is called a

nonlinear partial D- contraction on E ×E .

Definition 5.3 (Dhage [18]). A coupled operator T : E ×E → E is called nonlinear symmetric

partial D-Lipschitz if there exists a D-function ψ ∈D such that

‖T (x, y)−T (u, v)‖+‖T (y, x)−T (v,u)‖≤ψT

(
‖x −u‖+‖y −v‖

)
(5.5)

for all comparable elements (x, y), (u, v)∈ E ×E . If ψ(r ) = k r , 0≤ k < 1, T is called a symmet-

ric partial contraction on E ×E with the contraction constant k . Furthermore, if ψT (r )< r for

r > 0, then T is called a nonlinear symmetric partial D- contraction on E ×E .

Remark 5.1. Note that partial contraction coupled operators are considered by Bhaskar and

Lakshmikantham [5] whereas symmetric partial contraction coupled operators are consid-

ered by Berinde [4] in the study of coupled fixed point theorems in the partially ordered met-

ric spaces with applications. It is clear that every nonlinear partial D-contraction is nonlinear

symmetric partial D-contraction, but the converse may not be true.

The following lemma implicit in Dhage [15, 16, 17] is crucial in the proof of our main cou-

pled hybrid fixed point theorem for the sum of two coupled operators in a partially ordered

Banach space.
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Lemma 5.1 (Dhage [15, 16, 17]). Let (X ,≤,d ) be a partially ordered metric space and let X 2 =

X ×X be equipped with the Kasu partial order ¹ and the Kasu metric d̃ . Suppose that Q : X 2 →

X 2 is a monotone mapping satisfying the inequality

d̃
(
QZ ,QW

)
≤ψ

(
d̃(Z ,W )

)
(5.6)

for all comparable elements Z ,W ∈ X 2, where ψ ∈D. Then, for any bounded chain C in X 2,

α̃p

(
Q(C )

)
≤ψ

(
α̃p (C )

)
(5.7)

where, α̃p is a partial Kuratowskii measure of noncompactness in X 2.

Theorem 5.1. Let
(
E ,≤,‖·‖E

)
be a complete regular partially ordered normed linear space and

let every compact chain C in E be Janhavi. Let F ,G : E×E → E be two mixed monotone coupled

operators satisfying the following conditions.

(a) F is partially bounded and nonlinear symmetric partial D-contraction, and

(b) G is a partially continuous and partially compact.

If there exists an element (x0, y0) ∈ E×E such that x0 ≤F (x0, y0)+G (x0, y0) and y0 ≥F (y0, x0)+

G (y0, x0) or x0 ≥ F (x0, y0)+G (x0, y0) and y0 ≤ F (y0, x0)+G (y0, x0), then the coupled opera-

tor equations (5.1) and (5.2) have a coupled solution (x∗, y∗) and the sequences {xn} and {yn}

defined by

xn+1 = F (xn , yn)+G (xn , yn) (5.8)

and

yn+1 = F (yn , xn)+G (yn , xn) (5.9)

converge monotonically to x∗ and y∗ respectively. Moreover, the set of all comparable coupled

solutions is compact.

Proof. Define a Kasu norm ‖ ·‖and a Kasu partial order ¹ in E 2 by

‖(x, y)‖ = ‖x‖E +‖y‖E (5.10)

and

X ¹m Y ⇐⇒ x1 ≤ y1 ∧x2 ≥ y2 (5.11)

for X = (x1, y1),Y = (y1, y2) ∈ E 2. We define a Kasu partial Kuratowskii measure α̃ of noncom-

patness in E 2 as follows. Let C and D be two chains in the partially ordered Banach space E

and let C =C ×D. Then C is a chain in E 2. Now define a partial Kuratowskii measure α̃ by

α̃(C )=αp (C )+αp (D), (5.12)
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where αp is a partial Kuratowskii measure of noncompactness in E .

Clearly, (E 2,¹m ,‖ · ‖) is a regular partial ordered Banach space and every compact chain

C in E 2 is Janhavi in view of Theorems 3.1 and 3.3. Define an operator Q : E ×E → E ×E by

Q(x, y)=
(
F (x, y)+G (x, y) , F (y, x)+G (y, x)

)
(5.13)

for all (x, y)∈ E 2.

Now the operator Q may be written as

Q(x, y)=
(
F (x, y)+G (x, y) , F (y, x)+G (y, x)

)

=

(
F (x, y) , F (y, x)

)
+

(
G (x, y) , G (y, x)

)

=S (x, y)+T (x, y) (5.14)

where the operators S ,T : E 2 → E 2 are given by

S (x, y) =
(
F (x, y) , F (y, x)

)
(5.15)

and

T (x, y) =
(
G (x, y) , G (y, x)

)
. (5.16)

Since F is a partial nonlinear D-contraction, it is partially continuous on E ×E . As a

result, the coupled operator S is well defined and partially continuous on E ×E into E ×E .

We show that S is a monotone nondecreasing coupled operator with respect to the order

relation ¹m in E 2. Let Z = (x, y) and W = (u, v) be two elements in E 2 such that Z ¹m W .

Then, by definition of ¹m , we obtain x ≤u and y ≥ v . Since F is mixed monotone, we have

F (x, y) ≤F (u, y)≤F (u, v)

and

F (y, x) ≥F (v, x)≥F (v,u).

Thus, we have

S (x, y)=
(
F (x, y) , F (y, x)

)
¹m

(
F (u, v) , F (v,u)

)
=S (u, v)

and so, S is a monotone nondecrerasing operator on E 2 with respect to the order relation ¹m .

Similarly, it can be shown that the operator T is partially bounded and monotone nonde-

creasing on E ×E into itself. Then from (5.13) it follows that that Q is bounded and monotone

nondecreasing bi-variate operator on E 2 into itself.
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Now, we show that the operators S is a nonlinear partial D-contraction on E 2. Let Z =

(x, y) and W = (u, v) be any two elements of E 2 such that Z ºm W . Then, by symmetric partial

D-contraction of F , we obtain

‖S Z −S W ‖ = ‖S (x, y)−S (u, v)‖

=

∥∥∥
(
F (x, y) , F (y, x)

)
−

(
F (u, v) , F (v,u)

)∥∥∥

=

∥∥∥
(
F (x, y)−F (u, v) , F (y, x)−F (v,u)

)∥∥∥

≤ ‖F (x, y)−F (u, v)‖E +‖F (y, x)−F (v,u)‖E

≤ψ
(
‖x −u‖E +‖v − y‖E

)

=ψ
(
‖Z −W ‖

)
. (5.17)

This shows that S is a nonlinear partial D-contraction on E 2 into itself. This further in

view of Lemma 5.1 yields that α̃p

(
S (C )

)
≤ψ

(
α̃p (C )

)
for all bounded chains C in E 2.

Next, we show that Q is a partially condensing operator with respect to the partial Kura-

towski measure of noncompactneess in E 2 = E ×E . Let C be a chain in E 2. Then, by (5.14),

we get Q(C ) ⊂ S (C )+T (C ). Now, from the properties (P3) and (P8) of partial Kuratowskii

measure of noncompactness, it follows that

α̃p (Q(C )) ≤ α̃p (S (C ))+ α̃p (T (C ))≤φ
(
α̃p (C )

)
< α̃p

(
C

)

provided α̃p

(
C

)
> 0.

This shows that the operator Q is a partially condensing on E 2 into itself. Now, by an

application of Theorem 4.1 gives that there is a point Z∗ = (x∗, y∗) in E 2 such that

(x∗, y∗) = Z∗
=Q(Z∗) =Q(x∗, y∗)

which further yields that

x∗
= F (x∗, y∗)+G (x∗, y∗)

and

y∗
= F (y∗, x∗)+G (y∗, x∗).

This completes the proof. ���

We note that Theorem 5.1 is a generalization of the following applicable coupled hybrid

fixed point theorem of Dhage [20] with a different proof in view of Remark 5.1.

Corollary 5.1 (Dhage [22]). Let (E ,≤,‖ ·‖) be a complete regular partially ordered normed lin-

ear space and let every compact chain C in E is Janhavi. Let F ,G : E ×E → E be two mixed

monotone coupled operators satisfying the following conditions.
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(a) F is partially bounded and nonlinear partial D-contraction, and

(b) G is a partially continuous and partially compact.

If there exists an element (x0, y0) ∈ E×E such that x0 ≤F (x0, y0)+G (x0, y0) and y0 ≥F (y0, x0)+

G (y0, x0) or x0 ≥F (x0, y0)+G (x0, y0) and y0 ≤F (y0, x0)+G (y0, x0), then the coupled operator

equations (5.1) and (5.2) have a coupled solution (x∗, y∗) and the sequences {xn} and {yn} de-

fined by (5.7) and (5.8) converge monotonically to x∗ and y∗ respectively. Moreover, the set of

all comparable coupled solutions is compact.

Corollary 5.2 (Dhage [22]). Let (E ,K ) be an ordered Banach space and let α and ‖ · ‖ be the

Kasu order and Kasu norm defined in E 2 = E×E respectively. Let F ,G : E×E → E be two mixed

monotone coupled operators satisfying the following conditions.

(a) F is partially bounded and nonlinear symmetric partial D-contraction, and

(b) G is a partially continuous and partially compact.

If there exists an element (x0, y0) ∈ E×E such that x0 ≤F (x0, y0)+G (x0, y0) and y0 ≥F (y0, x0)+

G (y0, x0) or x0 ≥F (x0, y0)+G (x0, y0) and y0 ≤F (y0, x0)+G (y0, x0), then the coupled operator

equations (5.1) and (5.2) have a coupled solution (x∗, y∗) and the sequences {xn} and {yn} de-

fined by (5.7) and (5.8) converge monotonically to x∗ and y∗ respectively. Moreover, the set of

all comparable coupled solutions is compact.

Remark 5.2. The regularity of the partially ordered metric space E in above Theorem 5.1 may

be relaxed and compensated with the continuity of the operators F and G on E ×E into E .

See Dhage [15, 16, 17, 18] and the references therein.

Remark 5.3. If x = y in the coupled operator equations (5.1) and (5.2), then they reduce to

the operator equation A x+Bx = x, where A x =F (x, x) and Bx =G (x, x), and consequently,

Theorem 5.1 reduce to a hybrid fixed point theorem for the sum of two operators in E proved

in Dhage [14, 15, 16].

We remark that the coupled hybrid fixed point theorems, Theorems 4.1 and 5.1 constitute

a part of Dhage iteration principle for nonlinear equations whose central idea is “the mono-

tone convergence of the sequence of successive iterations or approximations to the solution of a

noninear equation beginning with a lower or an upper solution as its first or initial approxima-

tion" (see Dhage [14, 15, 16, 17]). The method of application of above principle to nonlinear

equations is commonly known as Dhage iteration method which is widely used in the theory

of nonlinear differential and integral equations for proving the existence and approximation

theorems (see Dhage [18, 19, 20, 21, 22, 23, 24] and references therein).
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The periodic boundary value problems are often discussed for different aspects of the so-

lutions via applications of the tools form nonlinear functional analysis. In the following sec-

tion we state a coupled periodic boundary value problem of second order linearly perturbed

nonlinear differential equations to be discussed by an application of Theorem 5.1.

6. Periodic boundary value problems

Given a closed and bounded interval J = [0,T ] in R, we consider the coupled hybrid peri-

odic boundary value problems (in short coupled HPBVPs) of nonlinear second order ordinary

differential equations,

−x ′′(t )+λ2x(t )= f (t , x(t ), y(t ))+ g (t , x(t ), y(t )), t ∈ J ,

x(0) = x(T ), x ′(0) = x ′(T ),



 (6.1)

and
−y ′′(t )+λ2 y(t )= f (t , y(t ), x(t ))+ g (t , y(t ), x(t )), t ∈ J ,

y(0) = y(T ), y ′(0) = y ′(T ),



 (6.2)

for λ ∈R, λ> 0, where f , g : J ×R×R→R are continuous functions.

By a coupled solution of the coupled HPBVPs (6.1) and (6.2) we mean a pair of functions

(x∗, y∗) ∈ C 1(J ,R)×C 1(J ,R) that satisfies the equations (6.1) and (6.2), where C 1(J ,R) is the

space of continuously differentiable real-valued functions defined on J .

The coupled hybrid PBVPs (6.1) and (6.2) are the linear perturbations of first kind of the

following coupled HPBVPs of the form

−x ′′(t )+λ2x(t )= f (t , x(t ), y(t )), t ∈ J ,

x(0) = x(T ), x ′(0) = x ′(T ),



 (6.3)

and
−y ′′(t )+λ2 y(t )= f (t , y(t ), x(t )), t ∈ J ,

y(0) = y(T ), y ′(0) = y ′(T ),



 (6.4)

which have been discussed in Dhage [13] for the existence and uniqueness theorem if the

nonlinearity f satisfies a Lipschitz and compactness type condition and when f satisfies a

partial compactness type condition it has been discussed in Dhage [16] for the existence and

approximation of coupled solutions on J (see Dhage [13]). The purpose of the present study is

to establish an existence and develop an algorithm for approximating the coupled solutions of

the coupled HPBVPs (6.1) and (6.2) under some mixed hybrid conditions on the nonlinearities

f and g .

The following useful lemma is obvious and may be found in Dhage [12] and the references

therein.
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Lemma 6.1. For any real number λ > 0 and σ ∈ L1(J ,R), x is a solution to the differential

equation

−x ′′(t )+λ2 x(t )=σ(t ) a.e. t ∈ J ,

x(0) = x(T ), x ′(0) = x ′(T ),



 (6.5)

if and only if it is a solution of the integral equation

x(t )=

∫T

0
Gλ(t , s)σ(s)d s (6.6)

where,

Gλ(t , s)=





1

2λ(eλT −1)

[
eλ(t−s)

+eλ(T−t+s)
]

, 0 ≤ s ≤ t ≤T,

1

2λ(eλT −1)

[
eλ(s−t )

+eλ(T−s+t )
]

, 0 ≤ t < s ≤T.

(6.7)

Notice that the Green’s function Gλ is continuous and nonnegative on J × J and the num-

bers

α = min{ |Gλ(t , s)| : t , s ∈ [0,T ] } =
eλT

2λ(eλT −1)

and

β = max{ |Gλ(t , s)| : t , s ∈ [0,T ] } =
eλT +1

λ(eλT −1)

exist for all positive real number λ. For the sake of convenience, we write Gλ(t , s) as G(t , s) in

the subsequent part of the paper.

Other useful results for establishing the main existence result are as follows.

Lemma 6.2. If there exists a function u ∈C 1(J ,R) such that

−u′′(t )+λ2u(t )≤σ(t ), t ∈ J ,

u(0) ≤ u(T ), u′(0) ≤u′(T ),

}
(6.8)

for all t ∈ J , where λ ∈R, λ> 0 and σ∈ L1(J ,R), then

u(t )≤

∫T

0
G(t , s)σ(s)d s, (6.9)

for all t ∈ J , where G(t , s) is a Green’s function given by the expression (6.7) on J × J .

Proof. The proof of the lemma is obvious and follows from the maximum principle for BVPs

of second order ordinary differential equations (see Protter and Weinberger [32] and Dhage

and Heikkilä [27]). We omit the details. ���

Similarly, we have the following result of differential inequality related to the second or-

der periodic boundary value problems defined on J .
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Lemma 6.3. If there exists a differentiable function v ∈C (J ,R) such that

−v ′′(t )+λ2v(t )≥σ(t ), t ∈ J ,

v(0) ≥ v(T ), v ′(0) ≥ v ′(T ),

}
(6.10)

for all t ∈ J , where λ∈R, λ> 0 and σ ∈ L1(J ,R), then

v(t )≥

∫T

0
G(t , s)σ(s)d s, (6.11)

for all t ∈ J , where G(t , s) is a Green’s function given by the expression (6.7) on J × J .

Now we are ready to apply our abstract coupled hybrid fixed point theorem to coupled

HPBVPs (6.1) and (6.2) under suitable natural conditions. In the following section we prove

our main existence and approximation theorem for coupled solutions of the coupled HPBVPs

(6.1) and (6.2) defined on J .

7. Existence and approximation results

The equivalent integral forms of the HIDEs (6.1) and (6.1) will be considered in the func-

tion space C (J ,R) of continuous real-valued functions defined on J . We define a norm ‖ · ‖

and the order relation ≤ in C (J ,R) by

‖x‖= sup
t∈J

|x(t )| (7.1)

and

x ≤ y if and only if x(t )≤ y(t ) for all t ∈ J . (7.2)

Clearly, C (J ,R) is a Banach space with respect to above supremum norm and is also par-

tially ordered with respect to the above partial order relation ≤. It is known that the par-

tially ordered Banach space C (J ,R) is regular and is a lattice, so every pair of elements in the

space has an upper and a lower bound in the space. The next lemma concerning the D-

compatibility of sets in C (J ,R) follows by an application of the Arzelá-Ascoli theorem.

Lemma 7.1. Let
(
C (J ,R),≤,‖·‖

)
be a partially ordered Banach space with the norm ‖·‖ and the

order relation ≤ defined by (7.1) and (7.2) respectively. Then, every partially compact subset of

C (J ,R) possesses D-compatibility property w.r.t. ‖ ·‖ and ≤ and so is Janhavi.

Proof. The proof of the lemma is well-known and appears in the papers of Dhage [14, 15, 16,

17] and Dhage and Dhage [25, 26] and so we omit the details. ���

We need the following definition in what follows.
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Definition 7.1. A pair of functions (u, v) ∈ C 1(J ,R)×C 1(J ,R) is said to be a lower coupled

solution of the coupled equations (4.1) and (4.2) if

−u′′(t )+λu(t )≤ f (t ,u(t ), v(t ))+ g (t ,u(t ), v(t )), t ∈ J ,

u(0) ≤u(T ), u′(0) ≤u′(T ),





and
−v ′′(t )+λv(t )≥ f (t , v(t ),u(t ))+ f (t , v(t ),u(t )), t ∈ J ,

v(0) ≥ v(T ), v ′(0) ≥ v ′(T ).





Similarly, a pair of functions (w, z)∈C 1(J ,R)×C 1(J ,R) is called a upper coupled solution

of the coupled HPBVPs (6.1) and (6.2) if the above inequalities are satisfied with reverse sign.

The coupled HPBVPs (6.1) and (6.2) will be considered under the following set of assump-

tions:

(H1) The function f is bounded on J ×R×R with bound M f .

(H2) There exists a D-function ϕ ∈D such that

0≤ f (t , x1, y1)− f (t , x2, y2) ≤
1

2
·ϕ

(
x1 −x2 + y2 − y1

)

for all (x1, y1), (x2, y2) ∈R×R with x1 ≥ x2 and y2 ≥ y1. Moreover βTϕ(r )< r, r > 0.

(H3) g (t , x, y) is nondecreasing in x and nonincreasing in y for each t ∈ J .

(H4) The function g is bounded on J ×R×R with bound Mg .

(H5) The coupled HPBVPs (6.1)-(6.2) have a lower coupled solution (u, v)∈C (J ,R)×C (J ,R).

The hypotheses (H1) through (H5) are standard and have been widely used in the litera-

ture on nonlinear differential and integral equations. The special case of the hypothesis (H2)

with ϕ(r ) =
Lr

K + r
, L ≤ K is considered recently in Dhage [9, 12, 13, 14]. Now we formulate

the main existence and approximation result for the coupled HPBVPs (6.1)-(6.2) under above

mentioned natural conditions.

Theorem 7.1. Assume that the hypotheses (H1) through (H5) hold. Then the coupled HPB-

VPs (6.1)-(6.2) have a coupled solution (x∗, y∗) and the sequences {xn} and {yn} of successive

approximations defined by

x0 = u,

xn+1(t ) =

∫T

0
G(t , s) f (s, xn(s), yn(s))d s +

∫T

0
G(t , s)g (s, xn(s), yn(s))d s, n ≥ 0, (7.3)

and

y0 = v,
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yn+1(t ) =

∫T

0
G(t , s) f (s, yn(s), xn(s))d s +

∫T

0
G(t , s)g (s, yn(s), xn(s))d s, n ≥ 0, (7.4)

for t ∈ J , converge monotonically to x∗ and y∗ respectively.

Proof. Set E = C (J ,R). Then, by Lemma 2.2, every compact chain C in E is Janhavi. We

introduce a Kasu norm ‖ ·‖E 2 and a Kasu partial order ¹m in E 2 = E ×E by the relation

‖(x, y)‖E 2 = ‖x‖+‖y‖

and

(x, y) ¹m (u, v) ⇐⇒ x ≤u ∧ y ≥ v

for (x, y), (u, v)∈ E ×E . Clearly
(
E 2,¹m ,‖·‖E 2

)
is a regular partially ordered Banach space with

respect to above norm and partial order and every compact chain is E 2 is Janhavi in view of

Theorem 3.3.

Next, by Lemma 6.1, the coupled HPBVPs (6.1) and (6.2) are equivalent to the nonlinear

coupled integral equations of Fredholm type,

x(t ) =

∫T

0
G(t , s) f (s, x(s), y(s))d s +

∫T

0
G(t , s) f (s, x(s), y(s))d s, t ∈ J , (7.5)

and

y(t ) =

∫T

0
G(t , s) f (s, y(s), x(s))d s +

∫T

0
G(t , s) f (s, y(s), x(s))d s, t ∈ J . (7.6)

Now, consider the two coupled operators F ,G : E ×E → E defined by

F (x, y)(t ) =

∫T

0
G(t , s) f (s, x(s), y(s))d s, t ∈ J , (7.7)

and

G (x, y)(t ) =

∫T

0
G(t , s) f (s, x(s), y(s))d s, t ∈ J . (7.8)

Then the nonlinear coupled integral equations (7.5) and (7.6) are equivalent to the cou-

pled operator equations,

x(t ) = F (x, y)(t )+G (x, y)(t ), t ∈ J , (7.9)

and

y(t ) = F (y, x)(t )+G (y, x)(t ), t ∈ J . (7.10)

We shall show that the coupled operators F and G satisfy all the conditions of Theorem

5.1 on E ×E into E . This will be done in a series of following steps:

Step I: F and G are mixed monotone.
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Let (x, y), (u, v) ∈ E ×E be arbitrary and let (x, y) ¹m (u, v). Then by definition of ¹m , we

obtain x ≤ u and y ≥ v . Now, by hypotheses (H2) and (H4),

F (x, y)(t ) =

∫T

0
G(t , s) f (s, x(s), y(s))d s

≤

∫T

0
G(t , s) f (s,u(s), v(s))d s

= F (u, v)(t )

and

G (x, y)(t ) =

∫T

0
G(t , s) f (s, x(s), y(s))d s

≤

∫T

0
G(t , s) f (s,u(s), v(s))d s

= G (u, v)(t )

for all t ∈ J . Hence F and G are mixed monotone coupled operators on E ×E into E .

Step II: F is partially bounded and nonlinear symmetric partial D-contraction.

Let (x, y)∈ E ×E be arbitrary. Then,

|F (x, y)(t )| ≤

∫T

0
G(t , s)| f (s, x(s), y(s))|d s ≤βT M f

for all t ∈ J . Taking the supremum over t in the above inequality yields ‖F (x, y)‖≤βT M f for

all x, y ∈ E . So the coupled operator F is bounded and consequently partially bounded on

E ×E .

Next, let (x, y), (u, v) ∈ E ×E be any two elements such that (x, y) ºm (u, v). Then, by

hypothesis (H2),

|F (x, y)(t )−F (u, v)(t )| ≤

∫T

0
G(t , s)| f (s, x(s), y(s))− f (s,u(s), v(s))|d s

≤

∫T

0
G(t , s)

[
f (s, x(s), y(s))− f (s,u(s), v(s))

]
d s

≤
1

2

∫T

0
G(t , s)ϕ

(
x(s)−u(s)+v(s)− y(s)

)
d s

≤
1

2

∫T

0
G(t , s)ϕ

(
|x(s)−u(s)|+ |v(s)− y(s)|

)
d s

≤
1

2
βTϕ

(
‖x −u‖+‖v − y‖

)
.

Taking the supremum over t in the above inequality yields,

‖F (x, y)−F (u, v)‖≤
1

2
βTϕ

(
‖x −u‖+‖v − y‖

)
(7.11)
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for all comparable elements (x, y), (u, v)∈ E ×E . Similarly, we have

‖F (x, y)−F (u, v)‖≤
1

2
βTϕ

(
‖x −u‖+‖v − y‖

)
. (7.12)

Adding (5.11) and (5.12) together implies that

‖F (x, y)−F (u, v)‖+‖F (y, x)−F (v,u)‖≤βT ϕ
(
‖x −u‖+‖v − y‖

)

for all comparable elements (x, y), (u, v) ∈ E ×E . This shows that the coupled operator F is a

nonlinear symmetric partial D-contraction on E ×E .

Step III: G is partially continuous on E ×E.

Let C and D be any two chains in E and let {xn} and {yn} be two sequences in C and D

respectively such that xx → x and yn → y . Then, by continuity of the function g , we obtain

lim
n→∞

G (xn, yn)(t )= lim
n→∞

∫T

0
G(t , s)g (s, xn(s), yn(s))d s

=

∫T

0
G(t , s)

[
lim

n→∞
g (s, xn(s), yn(s))

]
d s

=

∫T

0
G(t , s)g (s, x(s), y(s))d s

=G (x, y)(t )

for all t ∈ J . This shows that the sequence {G (xn , yn)} converges to G (x, y) pointwise on J .

We show that the convergence is uniform. To do so, it is enough o show that the sequence

{F (xn , yn)} is equicontinuous set of functions in E . Let t1, t2 ∈ J be arbitrary. Then,

|G (xn , yn)(t1)−G (xn , yn)(t2)|

≤

∫T

0
|G(t1, s)−G(t2, s)| |g (s, xn(s), yn(s))|d s

≤ Mg

∫T

0
|G(t1, s)−G(t2, s)|d s

→ 0 as t1 → t2,

uniformly for all n ∈N. This proves the equicontinuity of the sequence {G (xn, yn)} of functions

in E . As a result, G (xn, yn) → G (x, y) uniformly. Hence G is continuous coupled operator on

C ×D. Consequently, G is partially continuous on E ×E .

Step IV: G is partially compact on E ×E .

Let C and D be any two chains in E . We show that G (C ×D) is a compact subset of E .

First we show that G (C ×D) is a uniformly bounded subset of E . Let z ∈ G (C ×D) be a fixed

element. Then there exists a point (x, y) ∈C ×D such that z =G (x, y). Then,

|z(t )| = |G (x, y)(t )| ≤

∫T

0
G(t , s)|g (s, x(s), y(s))|d s ≤ Mg K T
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for all t ∈ J . Taking the supremum over t , ‖z‖≤ Mg K T for all z ∈G (C ×D). Hence G (C ×D) is

a uniformly bounded subset of E .

Next, we show that G (C ×D) is an equicontinuous subset of E . Let t1, t2 ∈ J be arbitrary.

Then,

|z(t1)− z(t2)| ≤ |G (x, y)(t1)−G (x, y)(t2)|

≤

∫T

0
|G(t1, s)−G(t2, s)| |g (s, x(s), y(s))|d s

≤ Mg

∫T

0
|G(t1, s)−G(t2, s)|d s

→ 0 as t1 → t2,

uniformly for all z ∈ G (C ×D). This proves the equicontinuity of the set G (C ×D) in E . As a

result, G (C ×D) is compact in view of Arzelá-Ascoli theorem. Hence G is a partially compact

coupled operator on E ×E into E .

Step V: Coupled equations (5.9) and (5.10) have a lower coupled solution.

Now, by hypothesis (H5), there exists an element (u, v)∈ E ×E such that

−u′′(t )+λu(t )≤ f (t ,u(t ), v(t ))+ g (t ,u(t ), v(t )),

u(0) ≤ u(T ), u′(0) ≤u′(T ),

}

and
−v ′′(t )+λv(t ) ≥ f (t , v(t ),u(t ))+ f (t , v(t ),u(t )),

v(0) ≥ v(T ), v ′(0) ≥ v ′(T ),

}

for all t ∈ J . This further in view of Lemmas 6.2 and 6.3 implies that

u(t ) ≤

∫T

0
G(t , s) f (s,u(s), v(s))d s +

∫T

0
G(t , s) f (s,u(s), v(s)),

and

v(t ) ≥

∫T

0
G(t , s) f (s, v(s),u(s))d s +

∫T

0
G(t , s) f (s, v(s),u(s))

for all t ∈ J . Again, from the definition of the coupled operators F and G it follows that

u(t ) ≤ F (u, v)(t )+G (u, v)(t ), t ∈ J ,

and

v(t ) ≥ F (v,u)(t )+G (v,u)(t ), t ∈ J .

Therefore, the coupled operator equations (7.9)-(7.10) have a coupled lower solution

(u, v) in E ×E . Thus the coupled operators F and G satisfy all the conditions of Theorem

5.1 and hence the coupled operator equations and consequently the coupled HPBVPs (6.1)-

(6.2) have a coupled solution (x∗, y∗) and the sequences {xn} and {yn} defined by (7.3) and

(??) converge monotonically to x∗ and y∗ respectively. ���
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Remark 7.1. The conclusion of Theorem 5.1 also remains true if we replace the hypothesis

(H5) with the following one:

(H6) The coupled HPBVPs (6.1) and (6.2) have a upper coupled solution (u, v) ∈ C (J ,R)×

C (J ,R).

The proof under this new hypothesis is obtained by giving similar arguments with appropriate

modifications.

Example 7.1. Given a closed and bounded interval J = [0,1] in R, we consider the coupled

hybrid periodic boundary value problems (in short coupled HPBVPs) of nonlinear first order

ordinary differential equations,

−x ′′(t )+x(t ) = f1(t , x(t ), y(t ))+ g1(t , x(t ), y(t )), t ∈ J ,

x(0) = x(1), x ′(0) = x ′(1),



 (7.13)

and

−y ′′(t )+ y(t )= f1(t , y(t ), x(t ))+ g1(t , y(t ), x(t )), t ∈ J ,

y(0) = y(1), y ′(0) = y ′(1),
(7.14)

where f1, g1 : J ×R×R are continuous functions defined by

f1(t , x, y)=





0 if −∞< x, y ≤ 0,

1

4
·

[
x

1+x
−

y

1+ y

]
if 0 ≤ x, y <∞,

and

g1(t , x, y)= tanh x − tanh y

for all t ∈ [0,1].

We shall show that the nonlinearities f1 and g1 satisfy the hypotheses (H1) through (H4).

Clearly, the function f1 is bounded on [0,1]×R×R by 1. Next let x1, x2, y1, y2 ∈R be such that

x1 ≥ x2 > 0 and 0 < y1 ≤ y2. Then, we have

0 ≤ f1(t , x1, y1)− f1(t , x2, y2)

=
1

4

[
x1

1+x1
−

y1

1+ y1
−

x2

1+x2
+

y2

1+ y2

]

=
1

4

[
x1

1+x1
−

x2

1+x2
+

y2

1+ y2
−

y1

1+ y1

]

=
1

4

[
x1 −x2

(1+x1)(1+x2)
+

y2 − y1

(1+ y2)(1+ y1)

]
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=
1

4

[
x1 −x2

1+x1 +x2 +x1x2
+

y2 − y1

1+ y2 + y1 + y2 y1

]

≤
1

4

[
x1 −x2

1+x1 +x2
+

y2 − y1

1+ y2 + y1

]

≤
1

4

[
x1 −x2

1+x1 −x2
+

y2 − y1

1+ y2 − y1

]

≤
1

4
·

x1 −x2 + y2 − y1

1+x1 −x2 + y2 − y1

=
1

4
·ϕ(x1 −x2 + y2 − y1)

where, ϕ(r ) =
r

1+ r
for r > 0. Similarly, if 0 ≥ x1 ≥ x2 and y1 ≤ y2 ≤ 0, then also the above

inequality is satisfied. Therefore, the function f1 satisfies the hypothesis (H2).

Next, the function g1 is bounded on [0,1]×R×R with bound Mg1
= 2. Again, g1(t , x, y)

os nondecreasing in x and nonincreasing in y for each t ∈ [0,1]. Here, λ= 1 and T = 1, so the

Green’s function G1(t , s) associated with the HBVPs (7.13) or (7.14) is given by

G1(t , s)=





1

2(e −1)

[
e (t−s)

+e (1−t+s)
]

, 0 ≤ s ≤ t ≤ 1,

1

2(e −1)

[
e (s−t )

+e (1−s+t )
]

, 0 ≤ t < s ≤ 1.

(7.15)

Therefore, β= sup
t ,s∈J

G1(t , s)=
e +1

2(e −1)
≤ 2. Finally, the pair of functions (u, v) given by

u(t )=−3

∫1

0
G1(t , s)d s and v(t )= 3

∫1

0
G1(t , s)d s

is a lower coupled solution of the coupled HPBVPs (7.13) and (7.14) defined on J = [0,1], Fur-

thermore, βT ϕ(r ) ≤
1

2
·

e +1

2(e −1)
·

r

1+ r
< r for r > 0. Thus the functions f1 and g1 satisfy all the

hypotheses (H1) through (H4) of Theorem 7.1 and therefore, the coupled HPBVPs (7.13) and

(7.14) have a coupled solution (x∗, y∗) and the sequences {xn} and {yn} defined by

x0 = −3

∫1

0
G1(t , s)d s,

xn+1 =

∫1

0
G1(t , s) f1(s, xn(s), yn(s))d s +

∫1

0
G1(t , s)g1(s, xn(s), yn(s))d s

and

y0 = 3

∫1

0
G1(t , s)d s,

yn+1 =

∫1

0
G1(t , s) f1(s, yn(s), xn(s))d s +

∫1

0
G1(t , s)g1(s, yn(s), xn(s))d s

converge monotonically to x∗ and y∗ respectively.
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