GENERALIZED SEQUENCE SPACE F(X, r)

D. GHOSH AND P. D. SRIVASTAVA

Abstract. In this paper, we define and study vector valued sequence space F(X, r). Few topological properties, inclusion relation, boundedness properties of subset are studied for this class.

1. Introduction

Rosier [3] has developed the theory of vector valued sequence space relative to scalar valued sequence space by introducing and studying a composite space $\Lambda\{E\}$. Barnes and Roy [1] also studied the boundedness in a topological linear space. Maddox [2] and Simons [4] used the idea of a sequence of a strictly positive numbers $p = (p_k)$ (not necessarily bounded in general) to generalize the classical spaces c, c_0, ℓ_{∞} and strongly summable sequence spaces w_0, w, w_{∞} . In the present note, we introduce a more generalized space using a sequence $r = (r_k)$ of strictly positive real numbers which includes the corresponding work of Maddox [2], Simons [4] and Rosier [3].

2. Notions/Terminology

Throughout this paper, we consider X as a locally convex Hausdorff space equipped with a topology T generated by the family P of continuous seminorms p_u on X given by

$$p_u(z) = \sup_f \{ |f(z)| : f \in u^0, z \in X \}$$

where u^0 is the polar of $u \in u(X)$ and u(X) is the fundamental system of absolutely convex closed neighborhoods at origin of X. We denote the topological dual of X by X' which is always equipped with strong topology $\beta(X', X)$ generated by the family $p' = (p_{B^0})$ of seminorms p_{B^0} given by

$$p_{B^0}(f) = \sup\{|f(z)| : z \in B, f \in X'\}$$

where B is bounded subset of X and B^0 is the polar of B.

Received February 8, 2001; revised December 19, 2002.

2000 Mathematics Subject Classification. 46A45.

Key words and phrases. Vector valued sequence space, seminorm, boundedness.

3. The Space F(X, r)

Let F be a normal Banach space over the field of complex sequences with monotone norm $\| \|_F$ and having Schauder basis (e_k) where $e_k = (0, 0, \ldots, 1, 0, \ldots)$ with 1 in the k-th place. Further, let $r = (r_k)$ be a sequence of positive real numbers such that $0 < r_k \leq 1$. We define

 $F(X,r) = \{x = (x_k) : x_k \in X \text{ for each } k \text{ and for every } u \in u(X), (p_u^{r_k}(x_k)) \in F\}.$ (3.1)

For $x = (x_k) \in F(X, r)$, we define

$$g_u(x) = \|(p_u^{r_k}(x_k))\|_F.$$
(3.2)

One can easily verify that the space $(F(X, r), d_u)$ is a pseudometric space under the pseudometric d_u given by

$$d_u(x,y) = g_u(x-y)$$
 where $x = (x_k), \ y = (y_k) \in F(X,r)$ and $u \in u(X)$. (3.3)

Consider the space $(F(X, r), Vg_u)$ where the topology induced by Vg_u is the supremum of the topologies induced by all the paranorms g_u , $u \in u(X)$. This means that

"a net
$$(x^{\mu})$$
 converges to $x = (x_k)$ in Vg_u if and only if
 (x^{μ}) converges to $x = (x_k)$ in each $g_u, u \in u(X)$ ". (3.4)

4. In this section, we study some topological properties and obtain some inclusion relations for the space F(X, r).

Theorem 4.1. F(X,r) is paranormed space under the paranorm g_u given by (3.2).

Proof is straightforward, so we omit it.

Theorem 4.2. If X is complete, then $(F(X, r), Vg_u)$ is complete.

The proof is straight forward, so we omit it.

Theorem 4.3. Let $0 < r_k \le s_k \le 1$ for all k and $x = (x_k) \in F(X, r)$. Let $A = \{k : p_u(x_k) \ge 1\}$ and $B = \{k : p_u(x_k) < 1\}$. Then

(i) $F(X,r) \subseteq F(X,s)$ if $n'(A) < \infty$,

(ii) $F(X,s) \subseteq F(X,r)$ if $n'(B) < \infty$, where n'(A) and n'(B) denote the number of indiana

where n'(A) and n'(B) denote the number of indices in A and B respectively and F(X, s) is defined accordingly as in Section 3.

Proof. Let $n'(A) < \infty$ and let $x = (x_k) \in F(X, r)$. Define two sequences (y_k) and (z_k) as

$$y_{k} = \begin{cases} x_{k} & \text{if } p_{u}(x_{k}) \ge 1, \\ \theta & \text{if } p_{u}(x_{k}) < 1, \end{cases} \quad z_{k} = \begin{cases} \theta & \text{if } p_{u}(x_{k}) \ge 1, \\ x_{k} & \text{if } p_{u}(x_{k}) < 1, \end{cases}$$
(4.1)

(where θ is the zero element of X). Clearly from (4.1) it follows that

$$p_u^{s_k}(y_k) \ge p_u^{r_k}(y_k)$$
 and $p_u^{s_k}(z_k) \le p_u^{r_k}(z_k)$ (4.2)

for each k. But we can find an integer n_k such that

$$p_u^{s_k}(y_k) \le n_k p_u^{r_k}(y_k) \le M p_u^{r_k}(y_k).$$
(4.3)

where $M = \max n_k (k \in n'(A))$.

Since F is normal space, so (4.2) and (4.3) imply that $x = (x_k) \in F(X, s)$. Hence

$$F(X,r) \subseteq F(X,s) \tag{4.4}$$

If $n'(B) < \infty$, then on the similar lines as used in above. Theorem 4.3 (i) we can prove that

$$F(X,s) \subseteq F(X,r). \tag{4.5}$$

This completes the proof.

Theorem 4.4. Let $0 < r_k \leq 1$ for each k. If $\sum_{k=1}^{\infty} N^{\xi_k} < \infty$, for some integer N(>1) (where ξ_k is the conjugate index of r_k i.e. $(1/r_k) + (1/\xi_k) = 1$ and number of indices in $A = n'(A) < \infty$, (see Theorem 4.3), then F(X, r) = F(X), where F(X) is the vector space of all X-valued sequences $x = (x_k)$ such that sequence of scalars $(p_u(x_k)) \in F$, for each $u \in u(X)$.

Proof. Given $n'(A) < \infty$. So by Theorem 4.3

$$F(X,r) \subseteq F(X). \tag{4.6}$$

Conversely, let $x = (x_k) \in F(X)$ and define two sequences $y = (y_k)$ and $z = (z_k)$ as in Theorem 4.3. Since

 $p_u(y_k) \ge 1(k \in A)$ and $p_u(z_k) < 1(k \in B)$, we have

$$p_u^{r_k}(y_k) \le p_u(y_k) = p_u(x_k) \quad (k \in A)$$
(4.7)

and on the same lines as used by Simons [4, Theorem 3, p.427] we have

$$p_u^{r_k}(z_k) \le p_u(z_k)(1 + N\log N) = p_u(x_k)(1 + N\log N).$$
(4.8)

Since F is normal space and

$$p_u^{r_k}(x_k) = p_u^{r_k}(y_k) + p_u^{r_k}(z_k),$$

so we have $x = (x_k) \in F(X, r)$. Therefore

$$F(X) \subseteq F(X, r). \tag{4.9}$$

Hence from (4.6) and (4.9), we have F(X, r) = F(X).

5. This section deals with the results related to the boundedness properties of subset of F(X,r).

Let R be a normal subset of F and $u \in u(X)$. We define

$$[R, u] = \{ x = (x_k) \in F(X, r) : (p_u^{r_k}(x_k)) \in R \}.$$

Theorem 5.1. Let $\inf r_k > 0$ and $0 < r_k \le 1$. Then following statements are equivalent:

(i) subset [R, u] of F(X, r) is metrically bounded;

(ii) [R, u] is bounded.

Using the same procedure as in Theorem 6 of Simons [4], proof follows.

Remark 5.2. In Theorem 5.1 the condition $\inf r_k > 0$ is not needed while proving (ii) \Rightarrow (i).

Now we investigate the bounded set in F(X, r) when $\lim_k r_k = 0$. We define $M_k[R, u] = \sup p_u^{r_k}(x_k) ||e_k||_F$, where \sup is taken over k-th component of $x = (x_k) \in [R, u]$.

Theorem 5.3. Assuming that $\lim_k r_k = 0$. Then a set [R, u] is bounded in F(X, r)if and only if

(i) $M_k[R, u] < \infty$ for all $k \ge 1$,

(ii) Given any $\varepsilon > 0$, there exists an integer m such that $\|\sum_{k=m}^{\infty} p_u^{r_k}(x_k) e_k\|_F < \varepsilon$, for all $x = (x_k) \in [R, u]$.

Proof of the theorem is omitted as it can be proved using the same procedure as adopted by Barnes [1, Theorem 2.1].

Theorem 5.4. Assuming that $\lim r_k = 0$. Then, if [R, u] is bounded, then [R, u] is totally bounded.

Proof. Since [R, u] is bounded and $r_k \to 0$ $(k \to \infty)$ so for given $\varepsilon (> 0)$ by Theorem 5.3 (ii)

$$\|\sum_{k>k_0}^{\infty} p_u^{r_k}(x_k)e_k\|_F < \varepsilon/2.$$

Let $X^{k_0} = \prod_{i=1}^{k_0} X_i$ = product of X_i , where $X_i = X$, $1 \le i \le k_0$ and $P_{k_0} : F(X, r) \to x^{k_0}$ such that $P_{k_0}(x) = (x_1, x_2, \dots, x_{k_0})$, where $x = (x_k) \in F(X, r)$, it is easy to see that seminorm p_u of X induces a pseudometric

$$d_{u,k}(P_{k_0}(x), P_{k_0}(y)) = \sum_{k=1}^{k_0} P_u(x_k - y_k) \text{ on } X^{k_0}$$

96

where $x = (x_k)$ and $y = (y_k) \in F(X, r)$ which is equivalent to a pseudometric d'_{u,k_0} where

$$d'_{u,k_0}(P_{k_0}(x), P_{k_0}(y)) = \sum_{k=1}^{k_0} p_u^{r_k}(x_k - y_k) \text{ on } X^{k_0}.$$

Since projection map p_{k_0} is continuous, so $p_{k_0}[R, u]$ is bounded. So $P_{k_0}[R, u]$ is totally bounded. Hence

$$p_{k_0}[R,u] \subset \bigcup_{i=1}^m S(z^i, \varepsilon/(2m_0))$$

where $m_0 > \max_{i \le k \le k_0} \|e_k\|_F$, and $S(z^i, \varepsilon/(2m_0)) = \{P_k x_0 : d'_{u,k}(z^i, P_k x) < \varepsilon/(2m_0)\}.$ $z^i = (z^i_1, z^i_2, \dots, z^i_{k_0}), 1 \le i \le m$. Now let

$$D_{k_0} = \{b : b = (z_1^i, z_2^i, \dots, z_{k_0}^i, \theta, \theta, \dots), \ 1 \le i \le m\}$$

where θ is zero element of X. Clearly D_{k_0} is a finite set and $D_{k_0} \subset [R, u]$. If $x = (x_k) \in [R, u]$, then $P_{k_0}x \in P_{k_0}[R, u]$. But $p_{k_0}[R, u]$ is totally bounded as shown above, so there exists

$$b = (z_1^i, z_2^i, \dots, z_{k_0}^i, 0, 0, \dots) \in D_{k_0}$$

for some i such that

$$d'_{u,k_0}(p_{k_0}x,b) = \sum_{k=1}^{k_0} p_u^{r_k}(x_k - z_k^i) < \varepsilon/(2m_0). \quad \text{Now consider}$$
$$d_u(x,b) \le \sum_{k=1}^{k_0} p_u^{r_k}(x_k - z_k^i) \|e_k\|_F + \|\sum_{k>k_0}^{\infty} p_u^{r_k}(x_k)\|e_k\|_F$$
$$< m_0(\varepsilon/2m_0) + \varepsilon/2 = \varepsilon.$$

Since $x \in [R, u]$ is arbitrary and D_{k_0} is finite, it follows that [R, u] is totally bounded.

Acknowledgement

The authors are grateful to the referees for their valuable suggestion and comments which improved the paper.

References

- B. A. Barnes and A. K. Roy, Boundedness in a certain topological linear spaces, Studia. Math. (1969), 146-156.
- [2] I. J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. Oxford. Ser. (2) 18(1967), 345-355.
- [3] R. C. Rosier, Dual spaces of certain vector valued sequence spaces, Pacific. J. Math. 46(1973), 487-501.

D. GHOSH AND P. D. SRIVASTAVA

- [4] S. Simons, The sequence spaces: p and m(p), Proc. London Math. Soc. 15(1965), 422-436.
- [5] A. Wilansky, Modern Methods in Topological Vector Spaces, Mcg-graw Hill International Book Company, 1978.
- [6] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using modulus function, Indian, J. Pure. Appl. Math. 30(1999), 818-826.
- [7] A. Jakimovski and D. C. Russel, Representation of continuous linear functionals on a subspace of a countable cartesian product of Banach spaces, Studia Mathematica 72(1982), 273-384.
- [8] I. E. Leonard, Banach sequence spaces, J. Math. Anal. Appl. 54(1976).
- [9] P. K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekkere, Newyork, 1981.
- [10] J. K. Srivastava, Kothe and Toeplitz duals of certain sequence spaces, Tamkang J. Math. 17(1986).
- [11] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using Orlicz functions, Glasnik Matematicki 34(1999), 301-309.

Department of Mathematics, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.