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GENERALIZED SEQUENCE SPACE F(X,r)

D. GHOSH AND P. D. SRIVASTAVA

Abstract. In this paper, we define and study vector valued sequence space F(X,r). Few
topological properties, inclusion relation, boundedness properties of subset are studied for this
class.

1. Introduction

Rosier [3] has developed the theory of vector valued sequence space relative to scalar
valued sequence space by introducing and studying a composite space A{E}. Barnes
and Roy [1] also studied the boundedness in a topological linear space. Maddox [2]
and Simons [4] used the idea of a sequence of a strictly positive numbers p = (pk)
(not necessarily bounded in general) to generalize the classical spaces ¢, ¢p, o and
strongly summable sequence spaces wg, w, Ws. In the present note, we introduce a
more generalized space using a sequence r = (1) of strictly positive real numbers which
includes the corresponding work of Maddox [2], Simons [4] and Rosier [3].

2. Notions/Terminology

Throughout this paper, we consider X as a locally convex Hausdorff space equipped
with a topology T' generated by the family P of continuous seminorms p, on X given by

pu(z) = st;p{|f(z)| cfeul ze X}

where u” is the polar of u € u(X) and u(X) is the fundamental system of absolutely
convex closed neighborhoods at origin of X. We denote the topological dual of X by
X' which is always equipped with strong topology B(X’, X) generated by the family

p’ = (ppo) of seminorms pgo given by

ppo(f) =sup{|f(2)|: 2 € B, f € X'}

where B is bounded subset of X and B° is the polar of B.
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3. The Space F(X,r)

Let F be a normal Banach space over the field of complex sequences with monotone
norm || ||r and having Schauder basis (e;) where e, = (0,0,...,1,0,...) with 1 in
the k-th place. Further, let » = (ry) be a sequence of positive real numbers such that
0 < 7, < 1. We define

F(X,r) ={z = (z) : xx € X for each k and for every u € u(X), (pi¥(z)) € F}. (3.1)
For x = (z1) € F(X,r), we define

gu() = [|(py" (zx) | - (3.2)

One can easily verify that the space (F(X,r),d,) is a pseudometric space under the
pseudometric d,, given by

dy(z,y) = gu(z —y) where z = (v1), ¥y = (yx) € F(X,r) and u € u(X). (3.3)

Consider the space (F(X,r),Vg,) where the topology induced by Vg, is the supremum
of the topologies induced by all the paranorms g,,, u € u(X). This means that

“a net (z*) converges to x = (zx) in Vg, if and only if

(z*) converges to x = (z) in each g, u € u(X)”. (3.4)

4. In this section, we study some topological properties and obtain some inclusion
relations for the space F(X,r).

Theorem 4.1. F(X,r) is paranormed space under the paranorm g, given by (3.2).
Proof is straightforward, so we omit it.

Theorem 4.2. If X is complete, then (F(X,r),Vg.,) is complete.

The proof is straight forward, so we omit it.

Theorem 4.3. Let 0 < rp < s < 1 for all k and x = (x) € F(X,r). Let
A={k:py(rr) > 1} and B = {k : py(zx) < 1}. Then
() F(X,r) C F(X,s) if w'(4) < oo,
(ii) F(X,s) C F(X,r) if n'(B) < o0,
where n'(A) and n’(B) denote the number of indices in A and B respectively and F(X, s)
is defined accordingly as in Section 3.

Proof. Let n'(A) < co and let ¢ = (21) € F(X,r). Define two sequences (yx) and
(zr) as

_ )Tk ifpu(mk) > 1, _ 0 ifpu(mk) > 1,
Yk = { 0 if py(z) < 1, = zp if pyu(zg) < 1, (4.1)
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(where 6 is the zero element of X).
Clearly from (4.1) it follows that

P (yr) 2 P (ye)  and - pif(zk) < pif(zr) (4.2)
for each k. But we can find an integer nj such that
P (k) < mepl (ye) < MpyF (ye). (4.3)

where M = maxng(k € n'(A)).
Since F' is normal space, so (4.2) and (4.3) imply that z = (z3) € F(X,s). Hence

F(X,r) C F(X,s) (4.4)

If n'(B) < oo, then on the similar lines as used in above. Theorem 4.3 (i) we can prove
that
F(X,s) C F(X,r). (4.5)

This completes the proof.

Theorem 4.4. Let 0 < ry, < 1 for each k. If > 72, N& < oo, for some integer
N(> 1) (where & is the conjugate index of ry i.e. (1/rr) + (1/&) = 1 and number
of indices in A = n'(A) < oo, (see Theorem 4.3), then F(X,r) = F(X), where F(X)
is the vector space of all X -valued sequences x = (xy) such that sequence of scalars
(pu(zr)) € F, for each u € u(X).

Proof. Given n’/(A) < co. So by Theorem 4.3
F(X,r) C F(X). (4.6)

Conversely, let © = (x) € F(X) and define two sequences y = (yx) and z = (zx) as in
Theorem 4.3. Since
pu(yr) > 1(k € A) and p,(zx) < 1(k € B), we have

P (i) < pulyr) = pu(zr) (k€ A) (4.7)
and on the same lines as used by Simons [4, Theorem 3, p.427] we have
P (1) < pulzr) (1 + Nlog N) = pu(z)(1 + Nlog N). (4.8)
Since F' is normal space and
Pt (k) = pif (ye) + P (),
so we have x = (zy) € F(X,r). Therefore

F(X) C F(X,r). (4.9)
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Hence from (4.6) and (4.9), we have F(X,r) = F(X).

5. This section deals with the results related to the boundedness properties of subset of
F(X,r).
Let R be a normal subset of F' and u € u(X). We define

[R,u] ={z = (z) € F(X,r): (p;}(z)) € R}.

Theorem 5.1. Let inf rp, > 0 and 0 < 1, < 1. Then following statements are
equivalent:
(i) subset [R,u] of F(X,r) is metrically bounded;
(i) [R,u] is bounded.

Using the same procedure as in Theorem 6 of Simons [4], proof follows.

Remark 5.2. In Theorem 5.1 the condition infry > 0 is not needed while proving
(i) = (i).

Now we investigate the bounded set in F'(X,r) when limy 7, =0. We define
MR, u]|=sup pik (zk)||ex|| 7, where sup is taken over k-th component of = (zy) €[R, u].

Theorem 5.3. Assuming that limg 1, = 0. Then a set [R,u] is bounded in F(X,r)
if and only if
(1) Mg[R,u] < oo for all k > 1,
(ii) Given any e > 0, there exists an integer m such that || > p pik(zk)er|r < €,
for all z = (z1) € [R,u].

Proof of the theorem is omitted as it can be proved using the same procedure as
adopted by Barnes [1, Theorem 2.1].

Theorem 5.4. Assuming that limr, = 0. Then, if [R,u] is bounded, then [R,u] is
totally bounded.

Proof. Since [R,u] is bounded and 7, — 0 (kK — o) so for given (> 0) by Theorem
5.3 (ii)

oo
1> o (ar)erllr < /2.
k>ko
Let X% = Hfil X; = product of X;, where X; = X, 1<i<kyand
Py, : F(X,r) — 2o such that Py, () = (z1,2,...,Tk ), where z = (x) € F(X,r), it
is easy to see that seminorm p, of X induces a pseudometric

ko

du ki (Pro (%), Py () = > Pu(ax — yx) on X
k=1
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where z = (x) and y = (yx) € F(X,r) which is equivalent to a pseudometric dihko
where

dukg(Pko( Pko Zp kfyk OnXkO

Since projection map py, is continuous, so pk,[R,u] is bounded. So Py, [R,u] is totally
bounded. Hence

Do [ R, u] C U S(z%,e/(2mo))
i=1
where mg > maxl<k<k0 llex|l 7, and S(z% e/(2mo)) = {Prao : ;7k(zi,Pkac) <e/(2mgp)}.
2t = (24,25, ...,2,), 1 <i <m. Now let

o ={b:b=(z1,25,...,2,,0,0,...), 1 <i<m}

where 6 is zero element of X. Clearly Dy, is a finite set and Dy, C [R,u]. If x = (z) €
[R,u], then Py x € Py, [R,u]. But pg,[R,u] is totally bounded as shown above, so there
exists

b:(zi,zé,...,ziO,O,O,...)EDkO

for some ¢ such that

dyy 1o (Do, b) Zp xy, — 21) < e/(2my). Now consider

(z,b) < Zpu zp = z)lexllF + || Z P (@) llexllr
k>ko

< mo(E/QmO) +e/2=c¢.

Since x € [R,u| is arbitrary and Dy, is finite, it follows that [R,u] is totally bounded.
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