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GENERALIZED SEQUENCE SPACE F (X, r)

D. GHOSH AND P. D. SRIVASTAVA

Abstract. In this paper, we define and study vector valued sequence space F (X, r). Few

topological properties, inclusion relation, boundedness properties of subset are studied for this

class.

1. Introduction

Rosier [3] has developed the theory of vector valued sequence space relative to scalar

valued sequence space by introducing and studying a composite space Λ{E}. Barnes

and Roy [1] also studied the boundedness in a topological linear space. Maddox [2]

and Simons [4] used the idea of a sequence of a strictly positive numbers p = (pk)

(not necessarily bounded in general) to generalize the classical spaces c, c0, ℓ∞ and

strongly summable sequence spaces w0, w, w∞. In the present note, we introduce a

more generalized space using a sequence r = (rk) of strictly positive real numbers which

includes the corresponding work of Maddox [2], Simons [4] and Rosier [3].

2. Notions/Terminology

Throughout this paper, we consider X as a locally convex Hausdorff space equipped

with a topology T generated by the family P of continuous seminorms pu on X given by

pu(z) = sup
f

{|f(z)| : f ∈ u0, z ∈ X}

where u0 is the polar of u ∈ u(X) and u(X) is the fundamental system of absolutely

convex closed neighborhoods at origin of X . We denote the topological dual of X by

X ′ which is always equipped with strong topology β(X ′, X) generated by the family

p′ = (pB0) of seminorms pB0 given by

pB0(f) = sup{|f(z)| : z ∈ B, f ∈ X ′}

where B is bounded subset of X and B0 is the polar of B.
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3. The Space F (X, r)

Let F be a normal Banach space over the field of complex sequences with monotone
norm ‖ ‖F and having Schauder basis (ek) where ek = (0, 0, . . . , 1, 0, . . .) with 1 in
the k-th place. Further, let r = (rk) be a sequence of positive real numbers such that
0 < rk ≤ 1. We define

F (X, r) = {x = (xk) : xk ∈ X for each k and for every u ∈ u(X), (prk

u (xk)) ∈ F}. (3.1)

For x = (xk) ∈ F (X, r), we define

gu(x) = ‖(prk

u (xk)‖F . (3.2)

One can easily verify that the space (F (X, r), du) is a pseudometric space under the
pseudometric du given by

du(x, y) = gu(x − y) where x = (xk), y = (yk) ∈ F (X, r) and u ∈ u(X). (3.3)

Consider the space (F (X, r), V gu) where the topology induced by V gu is the supremum
of the topologies induced by all the paranorms gu, u ∈ u(X). This means that

“a net (xµ) converges to x = (xk) in V gu if and only if

(xµ) converges to x = (xk) in each gu, u ∈ u(X)”. (3.4)

4. In this section, we study some topological properties and obtain some inclusion
relations for the space F (X, r).

Theorem 4.1. F (X, r) is paranormed space under the paranorm gu given by (3.2).

Proof is straightforward, so we omit it.

Theorem 4.2. If X is complete, then (F (X, r), V gu) is complete.

The proof is straight forward, so we omit it.

Theorem 4.3. Let 0 < rk ≤ sk ≤ 1 for all k and x = (xk) ∈ F (X, r). Let

A = {k : pu(xk) ≥ 1} and B = {k : pu(xk) < 1}. Then

(i) F (X, r) ⊆ F (X, s) if n′(A) < ∞,

(ii) F (X, s) ⊆ F (X, r) if n′(B) < ∞,

where n′(A) and n′(B) denote the number of indices in A and B respectively and F (X, s)
is defined accordingly as in Section 3.

Proof. Let n′(A) < ∞ and let x = (xk) ∈ F (X, r). Define two sequences (yk) and
(zk) as

yk =

{

xk if pu(xk) ≥ 1,

θ if pu(xk) < 1,
zk =

{

θ if pu(xk) ≥ 1,

xk if pu(xk) < 1,
(4.1)
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(where θ is the zero element of X).

Clearly from (4.1) it follows that

psk

u (yk) ≥ prk

u (yk) and psk

u (zk) ≤ prk

u (zk) (4.2)

for each k. But we can find an integer nk such that

psk

u (yk) ≤ nkprk

u (yk) ≤ Mprk

u (yk). (4.3)

where M = maxnk(k ∈ n′(A)).

Since F is normal space, so (4.2) and (4.3) imply that x = (xk) ∈ F (X, s). Hence

F (X, r) ⊆ F (X, s) (4.4)

If n′(B) < ∞, then on the similar lines as used in above. Theorem 4.3 (i) we can prove

that

F (X, s) ⊆ F (X, r). (4.5)

This completes the proof.

Theorem 4.4. Let 0 < rk ≤ 1 for each k. If
∑∞

k=1 N ξk < ∞, for some integer

N(> 1) (where ξk is the conjugate index of rk i.e. (1/rk) + (1/ξk) = 1 and number

of indices in A = n′(A) < ∞, (see Theorem 4.3), then F (X, r) = F (X), where F (X)

is the vector space of all X-valued sequences x = (xk) such that sequence of scalars

(pu(xk)) ∈ F , for each u ∈ u(X).

Proof. Given n′(A) < ∞. So by Theorem 4.3

F (X, r) ⊆ F (X). (4.6)

Conversely, let x = (xk) ∈ F (X) and define two sequences y = (yk) and z = (zk) as in

Theorem 4.3. Since

pu(yk) ≥ 1(k ∈ A) and pu(zk) < 1(k ∈ B), we have

prk

u (yk) ≤ pu(yk) = pu(xk) (k ∈ A) (4.7)

and on the same lines as used by Simons [4, Theorem 3, p.427] we have

prk

u (zk) ≤ pu(zk)(1 + N log N) = pu(xk)(1 + N log N). (4.8)

Since F is normal space and

prk

u (xk) = prk

u (yk) + prk

u (zk),

so we have x = (xk) ∈ F (X, r). Therefore

F (X) ⊆ F (X, r). (4.9)
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Hence from (4.6) and (4.9), we have F (X, r) = F (X).

5. This section deals with the results related to the boundedness properties of subset of

F (X, r).

Let R be a normal subset of F and u ∈ u(X). We define

[R, u] = {x = (xk) ∈ F (X, r) : (prk

u (xk)) ∈ R}.

Theorem 5.1. Let inf rk > 0 and 0 < rk ≤ 1. Then following statements are

equivalent:

(i) subset [R, u] of F (X, r) is metrically bounded;

(ii) [R, u] is bounded.

Using the same procedure as in Theorem 6 of Simons [4], proof follows.

Remark 5.2. In Theorem 5.1 the condition inf rk > 0 is not needed while proving

(ii) ⇒ (i).

Now we investigate the bounded set in F (X, r) when limk rk =0. We define

Mk[R, u]=sup prk

u (xk)‖ek‖F , where sup is taken over k-th component of x=(xk)∈ [R, u].

Theorem 5.3. Assuming that limk rk = 0. Then a set [R, u] is bounded in F (X, r)

if and only if

(i) Mk[R, u] < ∞ for all k ≥ 1,

(ii) Given any ε > 0, there exists an integer m such that ‖
∑∞

k=m prk

u (xk)ek‖F < ε,

for all x = (xk) ∈ [R, u].

Proof of the theorem is omitted as it can be proved using the same procedure as

adopted by Barnes [1, Theorem 2.1].

Theorem 5.4. Assuming that lim rk = 0. Then, if [R, u] is bounded, then [R, u] is

totally bounded.

Proof. Since [R, u] is bounded and rk → 0 (k → ∞) so for given ε(> 0) by Theorem

5.3 (ii)

‖

∞
∑

k>k0

prk

u (xk)ek‖F < ε/2.

Let Xk0 =
∏k0

i=1 Xi = product of Xi, where Xi = X , 1 ≤ i ≤ k0 and

Pk0
: F (X, r) → xk0 such that Pk0

(x) = (x1, x2, . . . , xk0
), where x = (xk) ∈ F (X, r), it

is easy to see that seminorm pu of X induces a pseudometric

du,k(Pk0
(x), Pk0

(y)) =

k0
∑

k=1

Pu(xk − yk) on Xk0
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where x = (xk) and y = (yk) ∈ F (X, r) which is equivalent to a pseudometric d′u,k0

where

d′u,k0
(Pk0

(x), Pk0
(y) =

k0
∑

k=1

prk

u (xk − yk) on Xk0 .

Since projection map pk0
is continuous, so pk0

[R, u] is bounded. So Pk0
[R, u] is totally

bounded. Hence

pk0
[R, u] ⊂

m
⋃

i=1

S(zi, ε/(2m0))

where m0 > maxi≤k≤k0
‖ek‖F , and S(zi, ε/(2m0)) = {Pkx0 : d′u,k(zi, Pkx) < ε/(2m0)}.

zi = (zi
1, z

i
2, . . . , z

i
k0

), 1 ≤ i ≤ m. Now let

Dk0
= {b : b = (zi

1, z
i
2, . . . , z

i
k0

, θ, θ, . . .), 1 ≤ i ≤ m}

where θ is zero element of X . Clearly Dk0
is a finite set and Dk0

⊂ [R, u]. If x = (xk) ∈

[R, u], then Pk0
x ∈ Pk0

[R, u]. But pk0
[R, u] is totally bounded as shown above, so there

exists

b = (zi
1, z

i
2, . . . , z

i
k0

, 0, 0, . . .) ∈ Dk0

for some i such that

d′u,k0
(pk0

x, b) =

k0
∑

k=1

prk

u (xk − zi
k) < ε/(2m0). Now consider

du(x, b) ≤

k0
∑

k=1

prk

u (xk − zi
k)‖ek‖F + ‖

∞
∑

k>k0

prk

u (xk)‖ek‖F

< m0(ε/2m0) + ε/2 = ε.

Since x ∈ [R, u] is arbitrary and Dk0
is finite, it follows that [R, u] is totally bounded.
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