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RIQUIER PROBLEM IN A BIHARMONIC SPACE

MOUSTAFA K. DAMLAKHI

Abstract. After defining the notion of a biharmonic space Ω which generalizes R
n, Riemann

surfaces and Rimannian manifolds, we discuss the Riquier problem for an open set in Ω provided

with the Wiener boundary.

1. Introduction

The Riquier problem in R
n is to find a biharmonic function b on an open set ω such

that b and ∆b tend respectively to previously given continuous functions f and g on the

Euclidean boundary ∂ω in R
n. The connection between the Riquier problem and the

Dirichlet problem is easy to understand.

In this note, we discuss this problem in the general context of a biharmonic space.

First we define the notion of a biharmonic space (ω, H, H∗, λ) where ω is a locally compact

space provided with two harmonic sheaves H and H∗ satisfying the three axioms of

Brelot [2] and λ is a fixed Radon measure on ω. According to this definition, R
n for all

n ≥ 1, Riemann surfaces, Riemannian manifolds and domains ω in R
n with the solutions

of certain elliptic differential operators of order 2 as harmonic functions on ω are all

examples of biharmonic spaces.

The final section considers the solution to the Riquier problem on a relatively compact

domain ω in a biharmonic space, where ω is endowed with the Wiener boundary.

2. Riquier Problem in Riemann Spaces

A locally integrable function b defined on an open set ω in R
n, n ≥ 2, is said to

be biharmonic if and only if ∆2b = 0 in the sense of distributions. It is known that if

∆2b = 0, there exists a C∞–function b1 on ω such that b = b1 a.e.. Consequently we

always assume that a biharmonic function is a C∞–function.

We shall say that Qy(x) > 0 is the biharmonic Green potential on ω, with pole

y, if ∆2Qy = δy where δy is the Dirac measure. Note that ∆Qy(x) = −Gy(x) where

Gy(x) = Gω(x, y) is the symmetric Green function on ω with pole y. It is shown in

[1] that the biharmonic Green potentials exist on an arbitrary domain in R
n, if n ≥ 5;
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however if ω is a relatively compact domain in R
n, n ≥ 2, then the biharmonic Green

potentials exist on ω.

A relatively compact domain ω in R
n is said to be regular for the Dirichlet problem,

if given a finite continuous function f on ∂ω there exists a harmonic function Hω
f (x)

on ω such that limx→y Hω
f (x) = f(y) for every y ∈ ∂ω. The Riquier problem for a

relatively compact open set ω in R
nis the following: Given two finite continuous functions

f and g on ∂ω, find a biharmonic function b on ω such that limx→y b(x) = f(y) and

limx→y ∆b(x) = g(y) for every y in ∂ω.

Solution to the Riquier problem. Let ω be a relatively compact domain in R
n.

If ω is regular for the Dirichlet problem and if f and g are two finite continuous functions

on ∂ω, then there exists a biharmonic function b on ω such that b tends to f and ∆b

tends to g on ∂ω.

Proof. Let X be a relatively compact domain in R
nsuch that ω ⊂ X . Since ω is

regular for the Dirichlet problem, there exists a unique continuous function Hω
g on ω

such that Hω
g = g on ∂ω and Hω

g is harmonic on ω.

Let g1 be a finite continuous function on X with compact support such that g1 =

−Hω
g on ω. Since X is relatively compact, the harmonic Green potential GX(x, y) is

defined on X . Let u(x) =
∫

X
GX(x, y)g1(y)dy. Then u(x) is finite continuous on X

and on ω, ∆u = ∆(GX ⋆ g1) = −δ ⋆ g1 = −g1, and hence ∆2u = 0 on ω. Define on

ω, b = u − Hω
u + Hω

f . Then b is biharmonic on ω such that b tends to f on ∂ω and ∆u

tends to −g1 = Hω
g = g on ∂ω.

The above problem has a counterpart in a Riemannian manifold. Let R be an oriented

Riemannian manifold of dimension ≥ 2 with local parameters x = (x1, . . . , xn) and a C∞–

metric tensor gij such that gijx
ixj is positive definite. If g is the determinant of gij , let

us denote the volume element by dx = g
1

2 dx1 · · · dxn; ∆ = dδ + δd denotes the Laplace–

Beltrami operator which is also defined as ∆f = −div grad f . In local coordinates,

∆ has an invariant expression ∆f = −g
1

2
∂

∂xi (g
1

2 gij ∂f
∂xj ) and in the Euclidean case this

reduces to ∆f = −
∑n

i=1
∂2f
∂xi2 .

A function f is called harmonic (resp. biharmonic) if ∆f = 0 (resp. ∆2f = 0). Then

we can solve the Riquier problem in R as we did in the Euclidean case R
n. The result is

as follows: Let ω be a relatively compact domain in a Riemannian manifold R as above.

Suppose ω is regular for the Dirichlet problem. Then given a pair of finite continuous

functions f and g on ∂ω, there exists a unique biharmonic function b on ω such that

limx→y b(x) = f(y) and limx→y ∆b(x) = g(y) for every y ∈ ∂ω.

However this procedure cannot be carried out in a Riemann surface. The difficulty

arises from the fact that the Laplacian is not conformally invariant under a parametric

change and hence the definition of a biharmonic function on a Riemann surface as a

function b such that ∆2b = 0 is not acceptable. To overcome this problem, we shall

introduce the biharmonic functions on a Riemann surface using the following lemma (see

Anandam [1]).
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Lemma 2.1. Let µ be a Radon measure on a domain ω in a Riemann surface R.

Then there exists a superharmonic function s on ω such that the measure associated to

s in a local Riesz representation is µ.

Proof. Write ω = ∪∞

n=1Kn where Kn is compact, Kn ⊂
0

Kn+1 and each component

of ω\Kn is not relatively compact. For n ≥ 1, let µn be the restriction of µ to Kn+1 \Kn

and let µ0 be the restriction of µ to K1.

Since µn has compact support, there exists a superharmonic function sn on ω with

associated measure µn in a local Riesz representation. By the approximation theorem

of Pfluger [7] p.192, there exists a harmonic function vn on ω, n ≥ 1, such that |sn+1 −

vn+1| < 1
2n on Kn. Set v0 = v1 = 0. Define s =

∑
∞

n=0(sn − vn) on ω. Then s is a

superharmonic function on ω. For, let K be any compact set in ω; then K ⊂
0

Km for

m ≥ 2. Write s =
∑m

n=0(sn − vn) +
∑

∞

n=m+1(sn − vn) = s1 + s2.

Here s2 is harmonic on
0

Km and the measure associated with s1 on K is µ. Thus s

is superharmonic on a neighbourhood of K with associated measure µ on K. Since K is

an arbitrary compact set in ω, s is superharmonic on ω with µ as its assoicated measure

in a local Riesz representation.

Notation. If ω is an open set in a Riemann surface R and if µ is a Radon measure

on ω, let s be a superharmonic function on ω with associated measure µ constructed as

in Lemma 2.1. Note that s is constructed only up to an additive harmonic function on

ω. Let us write Ls = −µ on ω to denote that s is a superharmonic function on ω with

µ as its associated measure in a local Riesz represention. Let dx be the surface measure

on R and f be a locally dx–integrable function on an open set ω. We write Lu = −f on

ω to denote that u is a δ–superharmonic function on ω with associated signed measure

λ defined by dλ = f+dx − f−dx.

With these notations, we shall say a function b defined on an open set ω in R is

biharmonic if there exists a harmonic function h on ω such that Lb = −h on ω. Clearly

this way of defining a biharmonic function b, if carried out on a Riemannian monifold,

coincides with the previous definition of ∆2b = 0. Thus, the notion of biharmonic

functions can be extended to a Riemann surface without the intervention of the Laplace

operator ∆, and the solution to the Riquier problem can be sought in this case also.

This method suggests that biharmonic functions can also be considered in a general

locally compact space ω provided with a sheaf of harmonic functions, where the notion

of the derivatives does not exist.

3. Riquier Problem in a Harmonic Space

We shall consider now the Riquier problem in a very general set up that englobes the

different cases mentioned in the previous section.

Let Ω be a connected locally compact space, with a countable base, but Ω is not

compact. Let H and H∗ be two sheaves on Ω satisfying the axioms 1, 2, 3 of M. Brelot
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[2]. Assume the constants are harmonic in H and H∗. There may or may not exist any
potential > 0 in H or H∗. (That is, in the harmonic classification of Rimannian spaces,
H and H∗ can be hyperbolic or parabolic). But we know that in any domain ω in Ω,
there exists an H–potential if and only if Ω \ ω is not locally polar in the H–sheaf (with
a similar result for the H∗–sheaf). We assume three more things on the H–sheaf only:

1. H satisfies the local axiom of proportionality. That is, if ω is a relatively compact
domain, y ∈ ω, and if p and q are two H–potentials on ω with harmonic point support
y, then p and q are proportional.

2. With the above assumption, in any domain ω such that Ω \ ω is not locally polar,
there always exists a Green H–potential G(x, y). We assume that such a function is
symmetric.

3. If ω is a domain and if h is an H–harmonic function on ω such that h = 0 on a
neighbourhood of a point in ω, then h ≡ 0 on ω.

Definition 3.1. Let the above assumptions on Ω, H and H∗ be satisfied. Let us fix
a Radon measure λ ≥ 0 on ω. Then we call (Ω, H, H∗, λ) a biharmonic space.

It appears that we have to assume too many things to define a biharmonic space
(Ω, H, H∗, λ). But the fact that these conditions are satisfied in the following cases is
reassuring.

1. Ω = R
n; n ≥ 1, with the harmonic sheaves H = H∗ defined as usual by means of

the Laplacian; λ is the Lebesgue measure.
2. Riemann surfaces and Riemannian manifolds with the local definition of harmonic

functions, λ is the surface or the volume measure.
3. Let Ω be a domain in R

n. Let

L =
∑
i,j

aij

∂2

∂xi∂xj

+
∑

i

bi

∂

∂xi

be an elliptic differential operator of order 2; aij = aji are of C2,λ class and bi are of
C1,λ class (here Ck,λ denotes the class of functions f which are k–times continuously
differentiable with their k-th order partial derivatives benig locally Lipschitzien); and
the quadratic form

∑
i,j aijξiξj is positive definite for all x in Ω. Then, the class of C2–

functions u in Ω satisfying the equation Lu = 0 form a harmonic sheaf H in the sense of
Brelot (see Hervé [5]). Let H∗ be the harmonic sheaf on Ω defined by a similar elliptic
differential operator L∗. Then (Ω, H, H∗, λ) is a biharmonic space, with λ the Lebesgue
measure.

Theorem 3.2. Let (Ω, H) be a harmonic space with the sheaf H satisfying the

above–mentioned bypotheses. Then, given a Radon measure µ on an open set ω in Ω,

there exists an H–superharmonic function s on ω, denoted by Ls = −µ, such that the

measure associated with s in a local Riesz representation is µ.

Proof. To prove this theorem, we follow the method given in the proof of Lemma
2.1, just replacing the approximation theorem of Pfluger by Theorem 10 of De la Pradelle
[4].
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Notation. Let ω be an open set in a biharmonic space (Ω, H, H∗, λ). Then given any
continuous function f on ω, by Theorem 3.2, there exists a δ–superharmonic function u

on ω with respect to the harmonic sheaf H such that the measure associated with u in
a local Riesz representation is µ, given by dµ = fdλ. We always assume that one such
function u is continuous on ω and denote its dependence on f by the notation Lu = −f .

Definition 3.3. Let ω be an open set in a biharmonic space (Ω, H, H∗, λ). Then
given an H∗–harmonic function on ω, there exists a δ–superharmonic function b on ω with
respect to the harmonic sheaf H with associated signed measure µ given by dµ = h∗dλ;
that is Lb = −h∗ on ω. We say that b is biharmonic on ω.

Theorem 3.4. Let (Ω, H, H∗, λ) be a biharmonic space. Let ω be a relatively compact

domain with its boundary ∂ω regular for the Dirichlet problem in the two harmonic

spaces (Ω, H) and (Ω, H∗). Then given two finite continuous functions f and g on ∂ω,

there exists a unique H–biharmonic function b on ω such that limx→y b(x) = f(y) and

limx→y Lb(x) = g(y) for every y ∈ ∂ω.

Proof. Let h∗ be the unique H∗–harmonic function on ω tending to −g on ∂ω.
Let ω0 be a relatively compact domain such that ωo ⊃ ω. Extend the function h∗ as a
continuous function g1 on ω0. Let Lu = −g1 on ω0. By hypothesis, u is continuous on
ω0. Let u1 and f1 be H–harmonic functions on ω tending to u and f respectively. Let
b(x) = u(x) − u1(x) + f1(x). Then b is biharmonic on ω, tending to f on ∂ω; moreover
on ω, Lb = Lu = −g1 = −h∗ so that Lb tends to g on ∂ω.

4. Riquier Problem with Wiener Boundary

Let R be a Riemannian manifold and ω a relatively compact domain in R. Let
ω be the Wiener compactification of ω and let ∂ω = ω \ ω. Suppose f and g are
two finite continuous function on ∂ω. Since ∂ω is resolutive, h = H∂ω

−f is a bounded
harmonic function on ω. If G(x, y) is the Green function on ω, G ∈ L1(ω) and hence if
u(x) =

∫
ω

G(x, y)h(y)dy, u(x) is bounded and ∆u = −h; since h is in C∞(ω), we can
assume u also is in C∞(ω).

Recall (Proposition 4.7[6]) that if µ is a measure in ω with ‖µ‖ finite, then
∫

G(x, y)
dµ(y) is a potential on ω. Hence u(x) =

∫
ω

G(x, y)h+(y)dy −
∫

ω
G(x, y)h−(y)dy is the

difference of two potentials and hence harmonizable.
Thus u is a bounded Wiener function on ω and consequently u extends as a continuous

function on the Wiener compactification ω.
Let v = H∂ω

g−u. Then v is bounded harmonic on ω and b = u + v is a bounded
biharmonic function on ω, ∆b = −h, b tending to g and ∆b tending to f at the regular
points of ∂ω (see Section 4 Chapter VIII [8]).

Proceeding in the same way, we prove the following theorem in the axiomatic case
where the theory of Wiener compatification is due to Constantinescu and Cornea [3].

Theorem 4.1. Let (Ω, H, H∗, λ) be a biharmonic space. Let ω be a relatively compact

domain in Ω. Let Γ and Γ∗ be the Wiener harmonic boundaries of ω in (ω, H) and (ω, H∗)
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respectively. Then if g and f∗ are finite continuous on Γ and Γ∗ respectively, there exists

a unique biharmonic function b on ω such that b and Lb are bounded, b tends to g on Γ
and Lb tends to f∗ on Γ∗.

Proof. Extend f∗ and g as finite continuous functions on the Wiener boundaries ∂ω∗

and ∂ω respectively. Let h∗ = H∂ω∗

−f∗ on ω∗. Let ω1 be an H–regular domain containing
ωc, the closure of ω in Ω. By the assumption on the continuity of the biharmonic

functions, there exists a finite continuous function u on ω1 such that Lu = −1; that is
if Gω1

(x, y) is the symmetric H–Green kernel on ω1, u(x) =
∫

ω1

Gω1
(x, y)dλ(y) is finite

continuous on ω1. Since u is finite continuous on ω1 ⊃ ωc, u is bounded on ωc.
Hence, for x ∈ ω,

∫
ω

Gω(x, y)dλ(y) ≤

∫
ω

Gω1
(x, y)dλ(y) ≤

∫
ω1

Gω1
(x, y)dλ(y) = u(x).

Consequently, since h∗ is bounded on ω and since Gω(x, y) is symmetric by hy-
pothesis,

∫
ω

Gω(x, y)h+∗(y)dλ(y) and
∫

ω
Gω(x, y)h−∗(y)dλ(y) are well defined bounded

H∗–potentials on ω; hence v(x) =
∫

ω
Gω(x, y)h∗(y)dλ(y) is the difference of two bounded

potentials and hence harmonizable; also v benig biharmonic, is continuous. Thus v is a
bounded Wiener function on ω and hence v extends continuously on the Wiener com-

pactification ω.
Since g is a finite continuous function on ∂ω, there exists a bounded H–harmonic h1

on ω tending to g − v on Γ. Let b = v + h1 on ω. Then b is a bounded biharmonic
function on ω such that b tends to g on Γ and Lb = −h∗ tends to f∗ on Γ∗.

For the uniqueness of b, notice that if u is bounded on ω and if Lu is bounded on ω∗

such that u and Lu tend to 0 on Γ and Γ∗ respectively, then u ≡ 0. For, Lu is bounded
H∗–harmonic on ω and tends to 0 on Γ∗ and hence Lu ≡ 0; this means that u is bounded

H–harmonic on ω and tends to 0 on Γ and hence u ≡ 0.
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