RIQUIER PROBLEM IN A BIHARMONIC SPACE

MOUSTAFA K. DAMLAKHI

Abstract. After defining the notion of a biharmonic space Ω which generalizes \mathbb{R}^n , Riemann surfaces and Rimannian manifolds, we discuss the Riquier problem for an open set in Ω provided with the Wiener boundary.

1. Introduction

The Riquier problem in \mathbb{R}^n is to find a biharmonic function b on an open set ω such that b and Δb tend respectively to previously given continuous functions f and g on the Euclidean boundary $\partial \omega$ in \mathbb{R}^n . The connection between the Riquier problem and the Dirichlet problem is easy to understand.

In this note, we discuss this problem in the general context of a biharmonic space. First we define the notion of a biharmonic space $(\omega, H, H^*, \lambda)$ where ω is a locally compact space provided with two harmonic sheaves H and H^* satisfying the three axioms of Brelot [2] and λ is a fixed Radon measure on ω . According to this definition, \mathbb{R}^n for all $n \geq 1$, Riemann surfaces, Riemannian manifolds and domains ω in \mathbb{R}^n with the solutions of certain elliptic differential operators of order 2 as harmonic functions on ω are all examples of biharmonic spaces.

The final section considers the solution to the Riquier problem on a relatively compact domain ω in a biharmonic space, where ω is endowed with the Wiener boundary.

2. Riquier Problem in Riemann Spaces

A locally integrable function b defined on an open set ω in \mathbb{R}^n , $n \geq 2$, is said to be biharmonic if and only if $\Delta^2 b = 0$ in the sense of distributions. It is known that if $\Delta^2 b = 0$, there exists a C^{∞} -function b_1 on ω such that $b = b_1$ a.e.. Consequently we always assume that a biharmonic function is a C^{∞} -function.

We shall say that $Q_y(x) > 0$ is the biharmonic Green potential on ω , with pole y, if $\Delta^2 Q_y = \delta_y$ where δ_y is the Dirac measure. Note that $\Delta Q_y(x) = -G_y(x)$ where $G_y(x) = G^{\omega}(x, y)$ is the symmetric Green function on ω with pole y. It is shown in [1] that the biharmonic Green potentials exist on an arbitrary domain in \mathbb{R}^n , if $n \geq 5$;

Received November 14, 2001; revised July 1, 2002.

²⁰⁰⁰ Mathematics Subject Classification. 31D05, 31B25.

Key words and phrases. Riquier problem, Wiener boundary.

⁹⁹

however if ω is a relatively compact domain in \mathbb{R}^n , $n \geq 2$, then the biharmonic Green potentials exist on ω .

A relatively compact domain ω in \mathbb{R}^n is said to be regular for the Dirichlet problem, if given a finite continuous function f on $\partial \omega$ there exists a harmonic function $H_f^{\omega}(x)$ on ω such that $\lim_{x\to y} H_f^{\omega}(x) = f(y)$ for every $y \in \partial \omega$. The Riquier problem for a relatively compact open set ω in \mathbb{R}^n is the following: Given two finite continuous functions f and g on $\partial \omega$, find a biharmonic function b on ω such that $\lim_{x\to y} b(x) = f(y)$ and $\lim_{x\to y} \Delta b(x) = g(y)$ for every y in $\partial \omega$.

Solution to the Riquier problem. Let ω be a relatively compact domain in \mathbb{R}^n . If ω is regular for the Dirichlet problem and if f and g are two finite continuous functions on $\partial \omega$, then there exists a biharmonic function b on ω such that b tends to f and Δb tends to g on $\partial \omega$.

Proof. Let X be a relatively compact domain in \mathbb{R}^n such that $\overline{\omega} \subset X$. Since ω is regular for the Dirichlet problem, there exists a unique continuous function H_g^{ω} on $\overline{\omega}$ such that $H_g^{\omega} = g$ on $\partial \omega$ and H_g^{ω} is harmonic on ω .

Let g_1 be a finite continuous function on X with compact support such that $g_1 = -H_g^{\omega}$ on $\overline{\omega}$. Since X is relatively compact, the harmonic Green potential $G^X(x, y)$ is defined on X. Let $u(x) = \int_X G^X(x, y)g_1(y)dy$. Then u(x) is finite continuous on X and on ω , $\Delta u = \Delta(G^X \star g_1) = -\delta \star g_1 = -g_1$, and hence $\Delta^2 u = 0$ on ω . Define on ω , $b = u - H_u^{\omega} + H_f^{\omega}$. Then b is biharmonic on ω such that b tends to f on $\partial \omega$ and Δu tends to $-g_1 = H_g^{\omega} = g$ on $\partial \omega$.

The above problem has a counterpart in a Riemannian manifold. Let R be an oriented Riemannian manifold of dimension ≥ 2 with local parameters $x = (x^1, \ldots, x^n)$ and a C^{∞} -metric tensor g_{ij} such that $g_{ij}x^ix^j$ is positive definite. If g is the determinant of g_{ij} , let us denote the volume element by $dx = g^{\frac{1}{2}}dx^1 \cdots dx^n$; $\Delta = d\delta + \delta d$ denotes the Laplace-Beltrami operator which is also defined as $\Delta f = -div$ grad f. In local coordinates, Δ has an invariant expression $\Delta f = -g^{\frac{1}{2}}\frac{\partial}{\partial x^i}(g^{\frac{1}{2}}g^{ij}\frac{\partial f}{\partial x^j})$ and in the Euclidean case this reduces to $\Delta f = -\sum_{i=1}^n \frac{\partial^2 f}{\partial x^{i2}}$.

A function f is called harmonic (resp. biharmonic) if $\Delta f = 0$ (resp. $\Delta^2 f = 0$). Then we can solve the Riquier problem in R as we did in the Euclidean case \mathbb{R}^n . The result is as follows: Let ω be a relatively compact domain in a Riemannian manifold R as above. Suppose ω is regular for the Dirichlet problem. Then given a pair of finite continuous functions f and g on $\partial \omega$, there exists a unique biharmonic function b on ω such that $\lim_{x \to y} b(x) = f(y)$ and $\lim_{x \to y} \Delta b(x) = g(y)$ for every $y \in \partial \omega$.

However this procedure cannot be carried out in a Riemann surface. The difficulty arises from the fact that the Laplacian is not conformally invariant under a parametric change and hence the definition of a biharmonic function on a Riemann surface as a function b such that $\Delta^2 b = 0$ is not acceptable. To overcome this problem, we shall introduce the biharmonic functions on a Riemann surface using the following lemma (see Anandam [1]). **Lemma 2.1.** Let μ be a Radon measure on a domain ω in a Riemann surface R. Then there exists a superharmonic function s on ω such that the measure associated to s in a local Riesz representation is μ .

Proof. Write $\omega = \bigcup_{n=1}^{\infty} K_n$ where K_n is compact, $K_n \subset \overset{0}{K}_{n+1}$ and each component of $\omega \setminus K_n$ is not relatively compact. For $n \ge 1$, let μ_n be the restriction of μ to $K_{n+1} \setminus K_n$ and let μ_0 be the restriction of μ to K_1 .

Since μ_n has compact support, there exists a superharmonic function s_n on ω with associated measure μ_n in a local Riesz representation. By the approximation theorem of Pfluger [7] p.192, there exists a harmonic function v_n on ω , $n \ge 1$, such that $|s_{n+1} - v_{n+1}| < \frac{1}{2^n}$ on K_n . Set $v_0 = v_1 = 0$. Define $s = \sum_{n=0}^{\infty} (s_n - v_n)$ on ω . Then s is a superharmonic function on ω . For, let K be any compact set in ω ; then $K \subset \overset{0}{K}_m$ for $m \ge 2$. Write $s = \sum_{n=0}^{m} (s_n - v_n) + \sum_{n=m+1}^{\infty} (s_n - v_n) = s_1 + s_2$.

Here s_2 is harmonic on $\overset{0}{K}_m$ and the measure associated with s_1 on K is μ . Thus s is superharmonic on a neighbourhood of K with associated measure μ on K. Since K is an arbitrary compact set in ω , s is superharmonic on ω with μ as its associated measure in a local Riesz representation.

Notation. If ω is an open set in a Riemann surface R and if μ is a Radon measure on ω , let s be a superharmonic function on ω with associated measure μ constructed as in Lemma 2.1. Note that s is constructed only up to an additive harmonic function on ω . Let us write $Ls = -\mu$ on ω to denote that s is a superharmonic function on ω with μ as its associated measure in a local Riesz represention. Let dx be the surface measure on R and f be a locally dx-integrable function on an open set ω . We write Lu = -f on ω to denote that u is a δ -superharmonic function on ω with associated signed measure λ defined by $d\lambda = f^+ dx - f^- dx$.

With these notations, we shall say a function b defined on an open set ω in R is biharmonic if there exists a harmonic function h on ω such that Lb = -h on ω . Clearly this way of defining a biharmonic function b, if carried out on a Riemannian monifold, coincides with the previous definition of $\Delta^2 b = 0$. Thus, the notion of biharmonic functions can be extended to a Riemann surface without the intervention of the Laplace operator Δ , and the solution to the Riquier problem can be sought in this case also.

This method suggests that biharmonic functions can also be considered in a general locally compact space ω provided with a sheaf of harmonic functions, where the notion of the derivatives does not exist.

3. Riquier Problem in a Harmonic Space

We shall consider now the Riquier problem in a very general set up that englobes the different cases mentioned in the previous section.

Let Ω be a connected locally compact space, with a countable base, but Ω is not compact. Let H and H^* be two sheaves on Ω satisfying the axioms 1, 2, 3 of M. Brelot

[2]. Assume the constants are harmonic in H and H^* . There may or may not exist any potential > 0 in H or H^* . (That is, in the harmonic classification of Rimannian spaces, H and H^* can be hyperbolic or parabolic). But we know that in any domain ω in Ω , there exists an H-potential if and only if $\Omega \setminus \omega$ is not locally polar in the H-sheaf (with a similar result for the H^* -sheaf). We assume three more things on the H-sheaf only:

1. *H* satisfies the local axiom of proportionality. That is, if ω is a relatively compact domain, $y \in \omega$, and if *p* and *q* are two *H*-potentials on ω with harmonic point support *y*, then *p* and *q* are proportional.

2. With the above assumption, in any domain ω such that $\Omega \setminus \omega$ is not locally polar, there always exists a Green *H*-potential G(x, y). We assume that such a function is symmetric.

3. If ω is a domain and if h is an H-harmonic function on ω such that h = 0 on a neighbourhood of a point in ω , then $h \equiv 0$ on ω .

Definition 3.1. Let the above assumptions on Ω , H and H^* be satisfied. Let us fix a Radon measure $\lambda \geq 0$ on ω . Then we call $(\Omega, H, H^*, \lambda)$ a biharmonic space.

It appears that we have to assume too many things to define a biharmonic space $(\Omega, H, H^*, \lambda)$. But the fact that these conditions are satisfied in the following cases is reassuring.

1. $\Omega = \mathbb{R}^n$; $n \ge 1$, with the harmonic sheaves $H = H^*$ defined as usual by means of the Laplacian; λ is the Lebesgue measure.

2. Riemann surfaces and Riemannian manifolds with the local definition of harmonic functions, λ is the surface or the volume measure.

3. Let Ω be a domain in \mathbb{R}^n . Let

$$L = \sum_{i,j} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_i b_i \frac{\partial}{\partial x_i}$$

be an elliptic differential operator of order 2; $a_{ij} = a_{ji}$ are of $C^{2,\lambda}$ class and b_i are of $C^{1,\lambda}$ class (here $C^{k,\lambda}$ denotes the class of functions f which are k-times continuously differentiable with their k-th order partial derivatives being locally Lipschitzien); and the quadratic form $\sum_{i,j} a_{ij}\xi_i\xi_j$ is positive definite for all x in Ω . Then, the class of C^{2-} functions u in Ω satisfying the equation Lu = 0 form a harmonic sheaf H in the sense of Brelot (see Hervé [5]). Let H^* be the harmonic sheaf on Ω defined by a similar elliptic differential operator L^* . Then $(\Omega, H, H^*, \lambda)$ is a biharmonic space, with λ the Lebesgue measure.

Theorem 3.2. Let (Ω, H) be a harmonic space with the sheaf H satisfying the above-mentioned bypotheses. Then, given a Radon measure μ on an open set ω in Ω , there exists an H-superharmonic function s on ω , denoted by $Ls = -\mu$, such that the measure associated with s in a local Riesz representation is μ .

Proof. To prove this theorem, we follow the method given in the proof of Lemma 2.1, just replacing the approximation theorem of Pfluger by Theorem 10 of De la Pradelle [4].

102

Notation. Let ω be an open set in a biharmonic space $(\Omega, H, H^*, \lambda)$. Then given any continuous function f on ω , by Theorem 3.2, there exists a δ -superharmonic function u on ω with respect to the harmonic sheaf H such that the measure associated with u in a local Riesz representation is μ , given by $d\mu = f d\lambda$. We always assume that one such function u is continuous on ω and denote its dependence on f by the notation Lu = -f.

Definition 3.3. Let ω be an open set in a biharmonic space $(\Omega, H, H^*, \lambda)$. Then given an H^* -harmonic function on ω , there exists a δ -superharmonic function b on ω with respect to the harmonic sheaf H with associated signed measure μ given by $d\mu = h^* d\lambda$; that is $Lb = -h^*$ on ω . We say that b is biharmonic on ω .

Theorem 3.4. Let $(\Omega, H, H^*, \lambda)$ be a biharmonic space. Let ω be a relatively compact domain with its boundary $\partial \omega$ regular for the Dirichlet problem in the two harmonic spaces (Ω, H) and (Ω, H^*) . Then given two finite continuous functions f and g on $\partial \omega$, there exists a unique H-biharmonic function b on ω such that $\lim_{x\to y} b(x) = f(y)$ and $\lim_{x\to y} Lb(x) = g(y)$ for every $y \in \partial \omega$.

Proof. Let h^* be the unique H^* -harmonic function on ω tending to -g on $\partial \omega$. Let ω_0 be a relatively compact domain such that $\omega_o \supset \overline{\omega}$. Extend the function h^* as a continuous function g_1 on ω_0 . Let $Lu = -g_1$ on ω_0 . By hypothesis, u is continuous on ω_0 . Let u_1 and f_1 be H-harmonic functions on ω tending to u and f respectively. Let $b(x) = u(x) - u_1(x) + f_1(x)$. Then b is biharmonic on ω , tending to f on $\partial \omega$; moreover on ω , $Lb = Lu = -g_1 = -h^*$ so that Lb tends to g on $\partial \omega$.

4. Riquier Problem with Wiener Boundary

Let R be a Riemannian manifold and ω a relatively compact domain in R. Let $\overline{\omega}$ be the Wiener compactification of ω and let $\partial \omega = \overline{\omega} \setminus \omega$. Suppose f and g are two finite continuous function on $\partial \omega$. Since $\partial \omega$ is resolutive, $h = H^{\partial \omega}_{-f}$ is a bounded harmonic function on ω . If G(x, y) is the Green function on ω , $G \in L^1(\omega)$ and hence if $u(x) = \int_{\omega} G(x, y)h(y)dy$, u(x) is bounded and $\Delta u = -h$; since h is in $C^{\infty}(\omega)$, we can assume u also is in $C^{\infty}(\omega)$.

Recall (Proposition 4.7[6]) that if μ is a measure in ω with $\|\mu\|$ finite, then $\int G(x, y) d\mu(y)$ is a potential on ω . Hence $u(x) = \int_{\omega} G(x, y)h^+(y)dy - \int_{\omega} G(x, y)h^-(y)dy$ is the difference of two potentials and hence harmonizable.

Thus u is a bounded Wiener function on ω and consequently u extends as a continuous function on the Wiener compactification $\overline{\omega}$.

Let $v = H_{g-u}^{\partial \omega}$. Then v is bounded harmonic on ω and b = u + v is a bounded biharmonic function on ω , $\Delta b = -h$, b tending to g and Δb tending to f at the regular points of $\partial \omega$ (see Section 4 Chapter VIII [8]).

Proceeding in the same way, we prove the following theorem in the axiomatic case where the theory of Wiener compatification is due to Constantinescu and Cornea [3].

Theorem 4.1. Let $(\Omega, H, H^*, \lambda)$ be a biharmonic space. Let ω be a relatively compact domain in Ω . Let Γ and Γ^* be the Wiener harmonic boundaries of ω in (ω, H) and (ω, H^*)

respectively. Then if g and f^* are finite continuous on Γ and Γ^* respectively, there exists a unique biharmonic function b on ω such that b and Lb are bounded, b tends to g on Γ and Lb tends to f^* on Γ^* .

Proof. Extend f^* and g as finite continuous functions on the Wiener boundaries $\partial \omega^*$ and $\partial \omega$ respectively. Let $h^* = H^{\partial \omega^*}_{-f^*}$ on ω^* . Let ω_1 be an H-regular domain containing ω_c , the closure of ω in Ω . By the assumption on the continuity of the biharmonic functions, there exists a finite continuous function u on ω_1 such that Lu = -1; that is if $G_{\omega_1}(x, y)$ is the symmetric H-Green kernel on ω_1 , $u(x) = \int_{\omega_1} G_{\omega_1}(x, y) d\lambda(y)$ is finite continuous on ω_1 . Since u is finite continuous on $\omega_1 \supset \omega_c$, u is bounded on ω_c .

Hence, for $x \in \omega$,

$$\int_{\omega} G_{\omega}(x,y) d\lambda(y) \leq \int_{\omega} G_{\omega_1}(x,y) d\lambda(y) \leq \int_{\omega_1} G_{\omega_1}(x,y) d\lambda(y) = u(x).$$

Consequently, since h^* is bounded on ω and since $G_{\omega}(x, y)$ is symmetric by hypothesis, $\int_{\omega} G_{\omega}(x, y)h^{+*}(y)d\lambda(y)$ and $\int_{\omega} G_{\omega}(x, y)h^{-*}(y)d\lambda(y)$ are well defined bounded H^* -potentials on ω ; hence $v(x) = \int_{\omega} G_{\omega}(x, y)h^*(y)d\lambda(y)$ is the difference of two bounded potentials and hence harmonizable; also v being biharmonic, is continuous. Thus v is a bounded Wiener function on ω and hence v extends continuously on the Wiener compactification $\overline{\omega}$.

Since g is a finite continuous function on $\partial \omega$, there exists a bounded H-harmonic h_1 on ω tending to g - v on Γ . Let $b = v + h_1$ on ω . Then b is a bounded biharmonic function on ω such that b tends to g on Γ and $Lb = -h^*$ tends to f^* on Γ^* .

For the uniqueness of b, notice that if u is bounded on ω and if Lu is bounded on ω^* such that u and Lu tend to 0 on Γ and Γ^* respectively, then $u \equiv 0$. For, Lu is bounded H^* -harmonic on ω and tends to 0 on Γ^* and hence $Lu \equiv 0$; this means that u is bounded H-harmonic on ω and tends to 0 on Γ and hence $u \equiv 0$.

Acknowledgement

The author thanks the College of Science Research Center, King Saud University, for the grant MATH/1420/20.

References

- V. Anandam, Biharmonic classification of harmonic spaces, Revue Roumaine Math. Pures et Appliquées 45(2000), 383-395.
- [2] M. Brelot, Axiomatique des fonctions harmoniques, Les Presses de l'Université de Montréal, 1966.
- [3] C. Constantinescu and A. Cornea, Compactification of harmonic spaces, Nagoya Math. J. 25(1965), 1-57.
- [4] A. De la Pradelle, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier 17(1967), 383-399.

- [5] R. M. Hervé, Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12(1962), 415-571.
- [6] F. Y. Maeda, Dirichlet integrals on harmonic spaces, L. N. Maths. 803, Springer-Verlag, 1980.
- [7] A. Pfluger, Theorie der Riemannsher Flächen, Springer-Verlag, 1957.
- [8] L. Sario, M. Nakai, C. Wang and L. Chung, *Classification theory of Riemannian manifolds*, L. N. Maths. **605**, Springer-Verlag, 1977.

Department of Mathematics, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.

E-mail: damlakhi@ksu.edu.sa