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ON THE BLASCHKE APPROACH OF RULED SURFACE

RASHAD A. ABDEL BAKY

Abstract. In this paper using E. Study map and the Blaschke approach we studied a ruled

surface as a curve on the dual unit sphere. The Blaschke approach proceeds by defining a

sequence of ruled surfaces associated with the ruled surface. The relative positions of these

surfaces and their distribution parameters characterize the local properties of the original surface.

A necessary condition for a ruled surface to be closed is derived. Moreover, an example of

application is investigated in detail.

1. Introduction

As a rigid body moves in space lines embedded in the body trace ruled surfaces.

These lines may be the axes of the joints of spatial mechanisms or manipulators or the

line of action of the end-of-arm tooling of a manipulator. The integral invariants of line

trajectories seeks to characterize the shape of the trajectory ruled surface and relate it

to the motion of body carrying the line that generates it.

Here the presentation of ruled surfaces is based on work by Blaschke and E. Study [2,

5, 9, 11] from the point of view of the theory of invariants of a transitive transformation

group. The fundamental idea is to replace points by lines as fundamental concepts of

geometry. Points are then defined by the totality of straight lines passing through them.

Oriented lines in a Euclidean three-space E3 may be represented by unit vectors with

three components over the ring of dual numbers. A differentiable curve on the dual unit

sphere depending on one-real parameter “t” corresponds to a ruled surface in E3. This

correspondence is one-to-one and allows the geometry of ruled surfaces to be represented

by the geometry of dual spherical curves on a dual unit sphere. It allows a complete

generalization of the mathematical expression for the spherical point geometry to the

spatial line geometry by means of dual number extension, i.e. replacing all ordinary

quantities by the corresponding dual number quantities [5, 7, 11, 12].

Dual spherical motion, expressed with the help of dual unit vectors, is closely anal-

ogous to real shperical motion, expressed with the help of real unit vectors. Therefore,

the properties of elementary real spherical motion can also be carried over by analogy

into the motion of lines in E3.
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References [1, 2, 5, 9, 11, 12] contain the necessary basic concepts about the dual

elements and one-to-one correspondence between ruled surfaces and one-parameter dual

spherical motions.

2. Basic Concepts

If a and a∗ are real numbers, the combination

A = a+ εa∗, (2.1)

is called a dual number. Here ε is the dual unit. Dual numbers are considered as

polynomials in ε, subject to the rules ε 6= 0, ε2 = 0, ε.1 = 1.ε = ε. W. K. Clifford

defined the dual numbers, the set of dual numbers forms a commutative ring having the

numbers εa∗ (a∗ real) as divisors of zero, not a field. No number εa∗ has an inverse in

the algebra. But the other laws of the algebra of dual numbers are the same as the laws

of algebra of complex numbers. For example, two dual numbers A and B = b+ εb∗ are

added componentwise.

A+B = (a+ b) + ε(a∗ + b∗), (2.2)

and they are multiplied by

AB = ab+ ε(a∗b+ ab∗). (2.3)

For the equality of A and B we have

A = B ⇔ a = b, and a∗ = b∗. (2.4)

An oriented line in E3 may be given by two points x and y on it. If µ is any non-zero

constant, the parametric equation of the line is:

y = x + µa, (2.5)

a is a unit vector along the line. The moment of a with respect to the origin is

a∗ = x × a = y × a. (2.6)

This means that a and a∗ are not independent of the choice of the points on the line

and these vectors are not independent of one another; satisfy the following equations:

< a,a >= 1, < a,a∗ >= 0. (2.7)

The six components ai, a
∗

i (i = 1, 2, 3) of the vectors a and a∗ are known to be Plücker

homogeneous line coordinates. These two vectors a and a∗ determine an oriented line

in E3. A point z lies on this line if and only if

z × a = a∗. (2.8)
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The set of oriented lines in E3 is in one-to-one correspondence with pairs of vectors

subject to the conditions (2.7), and so we may expect to represent it as a certain four-

dimensional set in ℜ6 of sixtuples of real numbers; we may take the space D3 of triples

of dual numbers with coordinates:

Xi = xi + εx∗i (i = 1, 2, 3). (2.9)

Each line in E3 may be represented by a dual unit vector

A = a + εa∗; (2.10)

in D3. It is clear that this dual unit vector has the property

< A,A >=< a,a > +2ε < a,a∗ >= 1. (2.11)

Theorem 2.1. (E. Study) The oriented lines in E3 are in one-to-one correspondence

with points of the dual unit sphere < X,X >= 1 in D3 [5].

By using this correspondence, one can derive the properties of the spatial motion of

a line. Hence, the geometry of ruled surface is represented by the geometry of curves on
the dual unit sphere in D3.

3. The Blaschke Approach

A ruled surface is a surface swept out by a stright line L moving along a curve

z = z(t). The various position of the generating lines L are called the rulings of the
surface. Such a surface, thus, has a parametrization in the ruled form:

M(t, u) = z(t) + ua(t), u ∈ ℜ. (3.1)

Here z = z(t) is called the base curve, a = a(t) is the unit vector giving the direction of

generating line, and t is the motion parameter. The base curve is not unique, since any

curve of the form:
C(t) = z(t) + η(t)a(t), (3.2)

may be used as its base curve, η(t) is a smooth function. If there exists a common
perpendicular to two neighbouring rulings on M = M(t, u), then the foot of the common

perpendicular on the main ruling is called a central point. The locus of the central points

is called the striction curve. In (3.2) if

η(t) = −
< z′,a′ >

‖a′‖2
,

then C(t) is called the striction curve on the ruled surface M(t, u), and it is unique.

Here the derivative with respect to t is denoted by a dash over functional symbol.
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The ruled surface M(t, u) corresponds to the dual spherical curve

A(t) = a(t) + εz(t) × a(t) = a(t) + εa∗(t), (3.3)

in D3. We now define an orthonormal moving frame along this dual curve as follows:

A1 = A(t), A2 =
A′

1

‖A′

1‖
, A3 = A1 × A2. (3.4)

From now on we consider the case without a(t)=constant vector and a∗(t) = 0. In
the case a(t)= constant vector the ruled surface M (t, u) is a cylinder and in the case
a∗(t) = 0 the ruled surface M(t, u) is a cone. The frame in (3.4) is called the Blaschke
frame. The dual unit vectors A1, A2, and A3 corresponds to three concurrent mutually
orthogonal lines in E3. Their point of intersection is the central point on the ruling
A1. A3(t) is the limit position of the common perpendicular to A1(t) and A1(t + dt),
and is called the central tangent of the ruled surface A1 = A(t) at the central point.
The line A2 = A2(t) is called the central normal of A1 = A(t) at the central point.
Moreover, the dual planes which correspond to the subspaces Sp{A1,A2}, Sp{A3,A2},
and Sp{A1,A3}, respectively, are called the tangent plane, asymptotic plane and normal
plane. By construction, the Blaschke formula is

d

dt





A1

A2

A3



 =





0 P 0

−P 0 Q

0 −Q 0









A1

A2

A3



 , (3.5)

where P = p + εp∗ = ‖A′

1‖, Q = q + εq∗ = det(A,A′,A′′)
P 2 are called the Blaschke’s

invariants of the dual curve A1(t). The integrals invariants
∫

Pdt, and
∫

Qdt are the
dual arc-length of the dual curves A1(t) and A3(t), respectively. Since P contains only
first derivatives of the ruled surface A1(t), it is a first order property of the surface, in
particular is its dual speed. Similarly, Q is a second order property of A1(t).

The central point, C(t), satisfies:

C × ai = a∗

i , (i = 1, 2, 3). (3.6)

The tangent of the striction curve may be wirtten as

C ′ = αa1 + βa2 + γa3. (3.7)

Differentiation of the three equations in (3.6) and using (3.5), we have

C′ = q∗a1 + p∗a3. (3.8)

The striction curve C(t) is also striction curve of the ruled surface corresponding to the
dual curve A3(t). This is shown by calculating it directly from

C3(t) = C(t) −
< C ′,a′

3 >

‖a′

3‖
2

. (3.9)
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Since a′

3 = −qa2, it is seen (3.9) that C3(t) = C(t). The two surfaces A1(t) and A3(t)
are closely related, each is the central tangent to the other. The first order of one are
second order properties of the other, and they have the same central normal A2.

The distribution parameters of the ruled surfaces A1(t), A2(t), and A3(t), respec-
tively, are [5, 11]:

λ1 =
p∗

p
, λ2 =

pp∗ + qq∗

p2 + q2
, λ3 =

q∗

q
. (3.10)

Kinematic Interpretation

The Blaschke invariants P , and Q provide a kinematic interpretation of the moving
Blaschke frame. To carry out this, we define the dual vector

D = d + εd∗ = QA1 + PA3, (3.11)

known as the Darboux vector of the moving Blaschke frame. This vector allows to collect
the Baschke formula by:

A′

i = D × Ai, (i = 1, 2, 3). (3.12)

According to the Darboux vector, at any instant t, the dual angular velocity vector of
the Blaschke frame with respect to itself has a component Q about A1 and P about A3.
‖D‖ =

√

P 2 +Q2 = Ω = ω + εω∗ is the angular speed of A1(t) about D;

ω =
√

p2 + q2 and, ω∗ =
pp∗ + qq∗
√

p2 + q2
. (3.13)

are the rotational angular speed and translational angular speed of A1(t), respectively.
The pitch of A1(t) along D is (ω∗/ω) which is equal to the distribution parameter of
A2(t).

We now define the dual unit vector

U(t) = u(t) + εu∗(t) =
D

‖D‖
=
QA1 + PA3
√

Q2 + P 2
. (3.14)

Therefore U is the instantaneous screw axis (I.S.A. for short) of the motion of A1 in the
Blaschke frame. From equation (3.14), the I.S.A. is parallel to the tangent plane of the
ruled surface A1 = A(t), and is orthogonal to the central normal A2. Let Ψ = ψ + εψ∗

be the dual angel between the I.S.A. and the ruled surface A1 = A(t), then we have
that:

U = cosΨA1 + sin ΨA3, (3.15)

where

cotΨ =
Q

P
. (3.16)

The trigonometric function in (3.16) of Ψ can be expanded as:

cotΨ = cotψ − εψ∗(1 + cot2 ψ) =
Q

P
=
q + εq∗

p+ εp∗
. (3.17)
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From this equation, we get:

ψ∗ =
p∗q − q∗p

p2 + q2
, (3.18)

is the minimal distance from the I.S.A. to the ruled surface A1(t). This distance is
measured along the central normal A2, and is seen to be the combination of the invariants
of ruled surface A = A1(t).

Now, we shall act as we have done in the last. The I.S.A. of the Blaschke frame
belonging to the ruled surface U = U(t), generally, generates a ruled surface U1 = U(t)
which admits the dual frame;

U1 = U(t), U2 =
U ′

1

‖U ′

1‖
, U3 = U1 × U2, (3.19)

as the Blaschke frame. Thus, the calculations give that:





U1

U2

U3



 =





cosΨ 0 sinΨ

− sin Ψ 0 cosΨ

0 −1 0









A1

A2

A3



 . (3.20)

The variations of this frame are analogous to (3.5) and is given by:

d

dt





U1

U2

U3



 =





0 P̃ 0

−P̃ 0 Q̃

0 −Q̃ 0









U1

U2

U3



 , (3.21)

where P̃ , Q̃ are, respectively, the invariants of U = U1(t). (3.21) can also be written in
the form

U ′

i = D̃ × U i, (i = 1, 2, 3) (3.22)

where D̃ is the Darboux vector of the frame {U1,U2,U3}, i.e.

D̃ = Q̃U1 + P̃U3. (3.23)

From (3.15) and (3.21), we obtain that:

U ′

1 = Ψ′U2 = P̃U2. (3.24)

From (3.24), we get the relationship

P̃ = Ψ′. (3.25)

Similarly, we have

Q̃ =
√

P 2 +Q2. (3.26)

Comparing (3.11) with (3.23) we observe that the relative velocity of the those Blaschke

frames is
D̃ − D = −Ψ′A2. (3.27)
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Using the Blaschke formula (3.5), the dual curvature function K(t) = k(t) + εk∗(t), and
the dual torsion function T (t) = τ(t) + ετ∗(t) of A = A1(t) are obtained as

K(t) = k(t) + εk∗(t) =
< (A′ × A′′), (A′ × A′′) >

(< A′,A′ >)2
=

√

1 +
Q2

P 2
. (3.28)

T (t) = τ(t) + ετ∗(t) =
< A′, (A′′ × A′′′) >

< (A′ × A′′), (A′ × A′′) >
= −

dΨ

dt
. (3.29)

If T (t) = τ(t)+ετ∗(t) = 0, i.e. ψ and ψ∗ are constants, then the line U is fixed to the
second order and the line A moves about it with pitch λ2. Thus locally the ruled surface
A = A1(t) is traced during a screw motion of pitch λ2 about the I.S.A., by the line A

located at distance ψ∗ and angel ψ relative to the I.S.A.. The I.S.A. is called the axis of
curvature of the ruled surface A = A1(t), it is analogous to the center of curvature of a
curve.

As for the ruled surfaces A1(t) and A3(t), the ruled surfaces U1(t) and U3(t) have
the same striction curve and is given by:

C̃(t) = C(t) + ψ∗a2(t). (3.30)

Since U(t) does not have a component in the A2 – direction. Then the Blaschke frame
while moves along the striction curve on the ruled surface A = A1(t), the I.S.A. generates
a right helicoid in E3. Thus, in general the ruled surface generated by the instantaneous
screw axis of the Blaschke frame is a right helicoid whose striction line coincides conti-
nously with A2.

Now assume that U(t) is a simple closed curve, i.e. U(t) = U(t+ 2π). In analogy to
the geometry of closed space curves [3.7], and ruled surface [10]. The following theorem
can be given:

Theorem 3.1. The necessary condition for the I.S.A. generates a closed ruled surface

is given by
∫ t

t0

Tdt =

∫ t

t0

−

(

dΨ

dt

)

dt = 2πn, n ∈ Z. (3.31)

This last equation says that the integral depends only on the integer n. This integral

give us that

Ψ(t) = Ψ(t0) − 2πn. (3.32)

Example. Since during the motion of A1, U is rigidly linked to the Blaschke
frame {A1,A2,A3}, we may choose a dual point X(X1, X2, X3) in coordinate system
{A1,A2,A3} such that whose coordinates

X1 = cosΘ sinΦ, X2 = sinΘ sin Φ, X3 = cosΦ, (3.33)

where Θ = θ+ εθ∗ and Φ = ϕ+ εϕ∗. According to the Taylor’s series expansion we may
write equation (3.33) in the forms:

x1 = cos θ sinφ, x2 = sin θ cosφ, x3 = cosφ, (3.34)
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and
x∗1 = φ∗ cos θ cosφ− θ∗ sin θ sinφ,

x∗2 = φ∗ sin θ cosφ+ θ∗ cos θ sinφ,

x∗3 = −φ∗ sinφ.











(3.35)

Let y denote the position vector of an arbitrary point Y (y1, y2, y3) of the line X, then

x∗ = y × x, (3.36)

or
(x∗1, x

∗

2, x
∗

3) = (y2x3 − y3x2, y3x1 − y1x3, y1x2 − y2x1).

Substituting equations (3.34), and (3.35) into (3.36) we have

y2 cosφ− y3 sin θ sinφ = φ∗ cos θ cosφ− θ∗ sin θ sinφ,

−y1 cosφ+ y3 cos θ sinφ = φ∗ sin θ cosφ+ θ∗ cos θ sinφ,

(y1 sin θ − y2 cos θ + φ∗) sinφ = 0.











(3.37)

Let
S = {X;< X,U >= cosΦ = constant, ‖X‖ = 1}, (3.38)

be the circle on the dual unit sphere K rigidly connected with {A1,A2,A3}. Let X

be a point of S, then equations of (3.37) have only two real parameters θ∗ and θ. So if
we choose θ∗ = hθ, h denoting to the pitch of the screw motion, then equations (3.37)
represents a ruled surface in E3.

We now determine the invariants P , and Q of this ruled surface. The derivatives of
X = X(θ) in (3.33) are given by:

x′ =





− sin θ sinφ

cos θ sinφ

0



 , x′′ =





− cos θ sinφ

− sin θ sinφ

0



 ,

x∗
′′

=





−φ∗ sin θ cosφ− h sin θ sinφ− θ∗ cos θ sinφ

φ∗ cos θ cosφ+ h cos θ sinφ− θ∗ sin θ sinφ

0



 ,

x∗
′′

=





−φ∗ cos θ − 2h cos θ sinϕ+ θ∗ sin θ sinφ

−φ∗ sin θ cosφ− 2h sin θ sinϕ− θ∗ cos θ sinφ

0



 .







































(3.39)

The Blaschke invarints are now become

P = p+ εp∗ = sinφ{1 + ε(φ∗ cotφ+ h)},

Q = q + εq∗ = cosφ+ ε(−φ∗ sinϕ+ h cosφ).

}

(3.40)

By using the real and dual parts of equations (3.40), then (3.10) becomes

λ1 = φ∗ cotφ+ h, λ2 = h, λ3 = (−φ∗ tanφ+ h). (3.41)
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From equaitons (3.37) we have the following cases (φ∗ 6= 0):
Case 1: If 0 < φ < π/2, then we have

y2 = (y3 − θ∗) sin θ tanφ+ φ∗ cos θ,

y1 = (y3 − θ∗) cos θ tanφ− φ∗ sin θ,

y1 sin θ + y2 cos θ = 0.











(3.42)

Or
y2
1

φ∗2
+

y2
2

φ∗2
−

Y 2
3

φ∗2 cot2 φ
= 1, (3.43)

where Y3 = y3 − θ∗. Equation (3.43) represent a one parameter family of one-sheeted
hyperboloids. The intersection of each hyperboloid and the corresponding plane y3 = θ∗

is the circle y2
1 + y2

2 = φ∗2. Therefore the envelope of the locus of all lines X in E3 is a
right circular cylinder.

Hence the following theorem is proved:

Theorem 3.2. During the one-parameter screw motion the locus of the line X in

E3, which make a cute angel φ with the I.S.A. of the motion, is a one-parameter family

of one sheeted hyperboloids whose envelope is the right circular cylinder y2
1 + y2

2 = φ∗2.

Case 2: If φ = 0 (or π), then equation (3.37) reduces to

y2 = φ∗ cos θ, y1 = −φ∗ sin θ,

or eliminating the parameter θ we obtain

y2
1 + y2

2 = φ∗2, (3.44)

which is a one-parameter family of right circular cylinder whose axid is the I.S.A. of the
motion.

Hence the following theorem is proved:

Theorem 3.3. During the one-parameter screw motion, the locus of the line X in

E3, which is parallel to the I.S.A. of the motion, is a right circular cylinder whose axis

is the I.S.A. of the motion.

Case 3. If φ = π/2, then equation (3.37) reduces to

y3 = θ∗, y1 sin θ − y2 cos θ + φ∗ = 0, (3.45)

which is a one-parameter family of lines given by the intersection of the planes y3 = θ∗,
and the hyperboliods

(y1 +
φ∗

sin θ
)2 = y2

2 cot2 θ, (3.46)

in this case it is easily seen from (3.41) that the distribution parameter λ1 is constant.
Hence the following theorem is proved:



116 RASHAD A. ABDEL BAKY

Theorem 3.4. During the one-parameter screw motions the locus of the line X in

E3, which is orthogonal to the I.S.A. of the motion, is a ruled surface having constant

distribution parameter. This ruled surface is the intersection of the planes y3 = θ∗, and

the hyperboliods (3.46).
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