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SHEFFER POLYNOMIALS AND APPROXIMATION OPERATORS

EMIL C. POPA

Abstract. In this paper we are studying the sequence of linear positive operators (PWSVQ’S))
defined in (2). Using the Bohman-Korovkin uniform convergence criterion we are proving that
the sequence (P7(LQ’S)) converges uniformly to the identity operator.

In addition we give some estimates. Finally we consider two examples (P{45)) and (P{V>5))
defined in (25), (27).

1. Introduction

Let II be the algebra of all polynomials in one variable, with real coefficients and let
Q@ : II — II be a delta operator with basic polynomial set (py,).
Operators L, : C[0,1] — C[0,1], n =0,1,2,... of the form

53 (Dptast -2z (£) 0

k:O

(Lnf)(z

have been studied in [1]-[2], [4]-]8], [10]-[11].

Next we consider a Sheffer set relative to @, namely so(z) = ¢ # 0 and Qs,(z) =
nsp—1(x).

Let S be an invertible shift invariant operator such that Ss,(z) = p,(z).

Definition. (Q, S) belongs to the class W if the following conditions are satisfied

i) pl, >0, 5,(0) >0, so(z) =1, sn( )#0forn=1,2,3,....
iz (?ff)sn—i(o)(Q' pi—2)(1)
sn(1)

where @)’ is the Pincherle derivative of the operator Q.

The identity
" n
o) =3 () rv
k=0

ii) limy,— e =1
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which characterizes the Sheffer polynomials, suggest us to consider the sequence of linear
polynomial operators P : C[0,1] — C0,1] defined by

snl(l) kz: (Z)Pk(x)sn—k(l —a)f (%) (2)

(P& f)(w) =

where (Q,S) e W, f € C[0,1].
For example if Q = DE?, p,(z) = z(x + nB)" %, s,(z) = (z + nB)" we obtain the
Cheney-Sharma operator (1964, see [2])

ur) = 3 () S (1)

k=0

where E—? is the shift operator and D the derivative.
Lemma 1. If (Q,S) € W then P,EQ’S), n=1,2,3,... are positive operators.

Proof. From the identities (see [9])

pot) =23 (" @k 0) ®)
k=0
o) = 3 (1) -2 0

on obtain p,(x) > 0, s,(x) >0, n=1,2,... for every = € [0, 1].
Lemma 2. If p/,(0) > 0 for n =1,2,..., then

0<(Q ?pn—2)(1) <pn(1), n=2,3,...
Proof. According to theorem 9 from [4], and lemma 1 we have

P11 (0) < (@ pua)@) < L)

, x>0, n=2,3,....

For x =1 this gives

0<(Q 2pno)(1) <pn(1) for n=23,...

2. Results

If m is a natural number, let us denote

sutoon) =3 () (5)”
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and let P be the linear operator defined by P = 2Q'~!.
Using the method from [4] or [6] and the identity

n

sule 4= 3 ()retorns)

we obtain

Sy (z,y,n Zk'< > (m, k)P*EYs,_1(z) (5)

where S(m, k) are the Stirling numbers of second kind and EY is the shift operator

(BYf)(x) = f(z +y).

Taking into account that

PEYp,_1(z) = xiﬂ/pn(x +y) (6)
a0 =3 (" sk aOmite) @
k=0
(see [6]) we obtain
PEs,a(e) = = 3 (1 )susOmite ) ®)

=1

Now using the fact that

x
PAE"p-a(a) = —=pala +3) = yQ pu-ala +1)
(see [6]) and
= n-2
Sp—2(x) = ( i )Sn—k—Q(O)pk(x)
k=0
we obtain
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" /n—1 n—-1 z < (n-2
So(x,y,n) = n:chy ( )5n i(0)p; I+y)+7x—+y ( )Sn i(0)pi(z+y)
i=1 1=2

1xy2< 2)sns 0@ +)

1=

Hence

(P9 eq)(x) = eo (10)
Sn—i 0 i 1
(P9 1)) = T o On L), (1)
(@) )(z) — 12?:1 (?:f)snfi(o)pi(l)z n—1>iy (?:g)snfi(o)pi(l)x
(En 2)(@) n sn(1) * n sn(1)
n—1 Dico (ifz)sn—i(o)(Q B pi_Q)(l)x(l —2) (12)
n sn(1)
where ex(z) = 2%, k=0,1,2,....
Let us denote
D oY L)
" sn(1)
s T (D) On)
" sn(1)
. sn—1(0)p1(1) + 321, (?:;)Snfi(o)pi(l)
" sn(1)
1 Eins ()3 (0@ pi2) (1)
" sn(1)
Therefore
(P@Sey)(z) = anz (13)
(PQS)ey)(a) = bpa? + %cnz +(z—2?) (bn _n — 1dn) (14)

Taking into account that

<7Z_22) - <7Z_11> < (TZ) Q.8 ew

and using lemma 2, we obtain

d, < > ia(373) sn—0)pi(1)

S (s ) S (s Op(1)
- sn(1)

_ < =2\i—1 <
T
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whence
lim a, = lim b, = 1.
Now using %(7:22) < (%) for i =2,3,...,n, we have
0<c, < nsn1(0)p1(1) + 357, (?)Sn—i(o)pi(l) _ Dict (?)Sn—i(o)pi(l) <1
sn(1) sn(1)
Hence

1
lim (—cn) =0.
n—oo n

Theorem 1. If (Q,S) € W and f € C|0,1], then
lim || f =P f|| =0
n—oo
where || f|| = max;epo,y | f(t)]-
Proof. According to the Bohman-Korovkin theorem it is sufficient to show that
lim |ep — P9%e|| =0, k=0,1,2.
n—oo
In our case, from (10), (13), (14)

lleo — P{%eoll = 0

lex = P@Ser] = o = ayal = 1~ a
and lim,, . |le1 — P,(LQ’S)eIH =0.
Finally
1 n—1
lea — PL@ey|| = H(l —bp)z? — —cpr — (v — 2?%) (bn - dn) H
n n
1 1 n—1
<(1- bn —Cn N bn - dn
= )+ n’ * 4 ( n )
wherelfiglg%.
Therefore

lim |leg — P{@Sey| =0
n—oo

Theorem 2. Let (P,(IQ’S)), (Q,S) € W be the sequence of linear positive operators
defined in (2). If f € C?[0,1], ms = mingepoq) f” (%), My = max,epo,17 [ (x), then for
xz €[0,1]

1

S0 (2) < (PO F)(2) = flans) < 3 M6, () (16)
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where 6, = (P,(LQ’S)eg)(x) —aZz?.

Proof. If h € C|[0,1] is convex on I, ¢1, ¢1,...,¢, are non-negative numbers with
co+c1+ -+ ¢, =1, then for every system of points xg, 1, ..., z, from [0, 1]

h (Z Ck$k> < Z ckh(xk).
k=0 k=0

Let us consider

o= 55 (1 ) eledsa vl - o)

S|

x being arbitrary in [0,1]. Then

chxk = (P@%e))(x) = anx
k=0

and hence

h(anz) < (PY&9h)(x) (17)
Now we observe that:

1 1
hi(z) = 3 r? = f(x);  ho(z) = f(z) — §mfx2

are convex on [0, 1].
Hence

hi(an) < (P25hy)(2)

ha(ana) < (P{**)hs)(x)
and

Now using (17)
1 1
My — flar) < SM(P@Sen)(r) — (P4 f)(x)

Flane) — gmgade® < (PO f)(x) — 2my (PO es)(a)

Finally
1

5 [(PiPea) (@) — ana®] < (PRI f)(@) - flan) < %Mf[(PéQ’S)ez)(w) —apa?]
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Theorem 3. Let (Q,S5) € W, f € C[0,1] and denote by w(f;d) the modulus of
continuity of the function f. If x € [0,1], then

|f (@) — (P2 f)(@)] < 2w(f; /An) (18)
If = P9 f|| < 2w(f;v/By) (19)

where

1 -1
A, = (bn—2an+1)z2+—cn:c+(:c7x2) <bn L dn>
n n

11 —1
Bn(ananJrl)Jr—anr—(bnn—dn)
n 4 n

Proof. If L : C[0,1] — C[0,1] is a linear positive operator, then (see for instance
theorem 4.2 and 4.5 from [3])

F(@) — (Lu)(@)] < 20(: /(L9 (@) (20)
If =LA < int (148Dl }u(f.6) (21)

where § > 0, Q;(t,x) = Q;(t) = |t — z|’.
We have

1 ~1
(PP (2) = (1 — 2an + bp)x® + —cpz + (z — 22) <bn L dn)
n n

We observe that

n

1-2a,,4by = 5, (0)+(n—2) 5,1 (0)p1 (1 Z[(" 22)+(?)—2(7;_11ﬂsn_i(o)pi(nzo

forn=2,3,....
Therefore

(P )(x) >0 for xe€[0,1]
and

|f(2) = (PO f)(@)] < 20(f; v/ An)-

For m = 2 in (19) we obtain

If = PL29) f|| < 2w(f; /Bn).

3. Examples

Let us consider the following examples
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I. The Abel operator A = DE~% is a delta operator with basic polynomials

(e%

P = (e + na)*!

and we consider that
a=a(m) >0, lim na(n)=0

n—oo

Let (s%) be the Sheffer set

s =(zx+n—1a)", soz)=1

namely As, =ns,_1,n=1,2,3,....
We have

i) [p2](0) = (na)" 1 >0, $,(0) = (n — 1)"a™ >0, s2(1) = (1 +n— 1la)™ # 0.
ii) According to theorem 9 (from [4]) we have

Pro1(1) oy (Q2pa_5)(1) o
From (22)
ILm a(n) = ILm na(n) = Inn?a(n) = 0.
Hence _
i) o (I4+n—Ta)"!

li = lim ——— =1
s pe(1) s (1+na)n-1

and using (p)’(0) = 1 we have

(Q*py2)(1)

-1
n—o0 pa(1)

Now

From (23), (24) we obtain

li =1.
Now using (15) we observe that
/=2 1

[e3
STL

namely lim,, o d, = 1.
Therefore (A, S) € W and the sequence of linear polinomial operator

PAS) - C0,1] — C0,1]
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defined by
(P f)(z) = ——e—— 1 zn: "o(@+ka) Tt (1—z+n =k — La)"Ff (5) (25)
" (L+n—1la)" &= \k n
with a = a(n) > 0, Inn3a(n) = 0, verify

dim |If — P9 f|| =0,

for every C]0, 1], where
[fIl = max |f(#)].

te[0,1]
I1. Backward difference operator
v=Llu-p
o«
where a = a(n) > 0, lim, . a(n) = 0, with the basic sequence
po(z) =xz(z+a) - (z+n—1la), polz)=1. (26)

Let (s&) be a Sheffer set relative to V defined by

si(x)=z(z+a) - (z+n—-20)(z+n—lat+n), so(z)=1
We have

) EY(0) = (n— D™ > 0, ,(0) > 0, n = 1,2,...,s2(1) £0:
ii) We observe that

(V7™ o)1) + (n = 2)(V'"*py 5)(1)

<d,<1, n=34,...

sa(1)
But
(V' 2pn_o)(1) = (1 4+ 2a)(1 +3) -+ (1 + n — 1o,
(V722 _)(1) = (1 +2a)(1 +3a)--- (1 +7n — 2a),
whence
LR+ ) Lt Tatn-2
im = lim — =1
n—co s2(1) n—oo (1+a)(1+n—la+mn)
and
lim d, = 1.

n—00



126 EMIL C. POPA

Therefore (V,.S) € W and the sequence of linear polinomial operators
PS5 0,1] — C[0,1]
defined by .
(PO )0) = s 2 wnalma)f (7)) (27)

1+n—1a+nkzo n

where

l—z+n—k—-la+n—k)

_ (ML @+ i) TS (1 — i)
a2, @) = (k) (1+a)(1+2a) (1+7—20a)

a=a(n) >0, lim,_. a(n) =0, verify
lim ||f = PV9f| =0, forevery feC0,1].
n—oo

Finally we observe that P,(LD’I)

ator and [ the identity

(PP f)(@) = (Bufa) = 3 <Z> oy < : >

k=0

is the Bernstein operator where D is the derivative oper-

Operators such as P9 had been studied by Brass H. [1], Cheney E. W., Sharma A.
[2], Manole C. [6], Moldovan Gr. [7], Miihlbach G. [8], Stancu D. D. [10], [11]

n

(P21 f)(z) = Ll) > (Z)pk(w)pnk(l —a)f <§)

Pn( k=0
For this operators condition ii) of definition becomes

(@7 2)()

=1
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