ON APPLICATIONS OF DIFFERENTIAL SUBORDINATION AND SUPERORDINATION

N. MARIKKANNAN AND C. GANESAMOORTHY

Abstract. In the present investigation we obtain the sufficient conditions for normalized analytic functions f to satisfy

$$q_1 < \frac{f^2}{z^2 f} < q_2,$$

where q_1 and q_2 are univalent functions with $q_1(0) = q_2(0) = 1$. Also we obtain the sandwich results involving Carlson-Shaffer linear operator, Salagean derivative and Ruscheweyh derivative.

1. Introduction

Let A be the class of normalized analytic functions f in the open unit disk $\Delta := \{z \in \mathbb{C} : |z| < 1\}$ satisfying $f(0) = f'(0) - 1 = 0$. For two functions f and g given by

$$f(z) := z + \sum_{n=2}^{\infty} f_n z^n \quad \text{and} \quad g(z) := z + \sum_{n=2}^{\infty} g_n z^n,$$

their Hadamard product or convolution is defined as

$$(f \ast g)(z) := z + \sum_{n=2}^{\infty} f_n g_n z^n.$$

Define the function $\varphi(a, c; z)$ by

$$\varphi(a, c; z) := \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} z^{n+1} \quad (c \neq 0, -1, -2, \ldots; z \in \Delta),$$

where $(\lambda)_n$ is the Pochhammer symbol defined by

$$(\lambda)_n := \begin{cases} 1 & (n = 0) \\ \lambda(\lambda + 1)(\lambda + 2) \cdots (\lambda + n - 1) & (n = 1, 2, 3 \ldots) \end{cases}. $$

Corresponding to the function $\varphi(a, c; z)$ Carlson-Shaffer [5] introduced an operator $L(a, c)$ for $f \in A$ using Hadamard product as follows:

$$L(a, c)f(z) := \varphi(a, c; z) * f(z)$$

Received May 16, 2007; Revised November 5, 2007.

2000 Mathematics Subject Classification. Primary 30C45, secondary 30C80.

Key words and phrases. Differential subordination, superordination, Carlson-Shaffer linear operator, Salagean derivative and Ruscheweyh derivative.
\[z = \sum_{n=1}^{\infty} \left(\frac{a}{c} \right)_n \alpha f_{n+1} z^{n+1}. \]

Note that \(L(a, a)f = f; L(2, 1)f = z f' \) and \(L(\delta + 1, 1)f = D^\delta f \), where \(D^\delta f \) is the Ruscheweyh derivative of order \(\delta \) [6].

Sălăgean derivative operator of order \(m \) [7] for \(f \in \mathcal{A} \), denoted by \(\mathcal{D}^m f \), defined as

\[\mathcal{D}^m f(z) = z + \sum_{n=2}^{\infty} \frac{n^m a_n}{n} z^n. \]

Note that \(\mathcal{D}^0 f = f \) and \(\mathcal{D}^1 f = z f' \).

Let \(\mathcal{H} \) denotes the class of functions analytic in \(\Delta \) and \(\mathcal{H}(a, n) \) denotes the subclass of \(\mathcal{H} \) consisting of functions of the form \(f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \). For two analytic functions \(f, F \in \mathcal{H} \) we say \(F \) is superordinate to \(f \), if \(f \) is subordinate to \(F \). Let \(p, h \in \mathcal{H} \) and let \(\phi(r, s, t; z) : C^3 \times \Delta \rightarrow C \). If \(p \) and \(\phi(p, z p', z^2 p''; z) \) are univalent and if \(p \) satisfies the second order superordination

\[h < \phi(p, z p', z^2 p''; z), \quad (1.1) \]

then \(p \) is the solution of the differential superordination \((1.1)\). An analytic function \(q \) is called subordinant, if \(q < p \) for all \(p \) satisfying \((1.1)\). A univalent subordinant \(\tilde{q} \) that satisfies \(q < \tilde{q} \) for all subordinates \(q \) of \((1.1)\), is said to be best subordinant. Recently Miller and Mocanu [3] obtained conditions on \(h, q \) and \(\phi(r, s, t; z) \) to satisfy the following:

\[h < \phi(p, z p', z^2 p''; z) \Rightarrow q < p. \]

Using the results of Miller and Mocanu [3], Bulboacă have considered certain classes of first order differential superordinations [2] as well as superordination preserving integral operators [1].

In the present investigation we give some application of first order differential subordination and superordination to obtain sufficient conditions for normalized analytic functions \(f \) to satisfy

\[q_1 < \frac{f^2}{z^2 f'} < q_2 \]

where \(q_1 \) and \(q_2 \) are univalent in \(\Delta \). Also applications to Carlson-Shaffer linear operator and Sălăgean derivative are studied.

2. Preliminaries

For the present investigation we need the following definition and results.

Definition 2.1. [3, Definition 2, p.817] Denote by \(\mathcal{D} \), the set of all functions \(f \) that are analytic and univalent in \(\overline{\Delta} \setminus E(f) \), where

\[E(f) := \{ \zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty \} \]
and are such that \(f'(ζ) \neq 0 \) for \(ζ \in ∂Δ \setminus E(f) \).

Theorem 2.1. (cf. Miller and Mocanu [4, Theorem 3.4h, p.132]) Let \(q \) be univalent in \(Δ \) and \(θ \) and \(φ \) be analytic in a domain \(D \) containing \(q(Δ) \) with \(ϕ(w) \neq 0 \), when \(w ∈ q(Δ) \). Set \(Q = zq'φ(q), h = θ(q) + Q \). Suppose that

i) \(Q \) is starlike univalent in \(Δ \) and

ii) \(\Re \{\frac{zh'}{Q}\} > 0 \) for \(z ∈ Δ \).

If \(p \) is analytic in \(Δ \) with \(p(Δ) \subseteq D \) and

\[
θ(p) + zp'φ(p) ≺ θ(q) + zq'φ(q)
\]

then

\(p < q \)

and \(q \) is the best dominant.

Theorem 2.2. [2] Let \(q \) be univalent in \(Δ \) and \(θ \) and \(φ \) be analytic in domain \(D \) containing \(q(Δ) \). Suppose that

i) \(\Re \{\frac{θ(q)}{φ(q)}\} ≥ 0 \) for \(z ∈ Δ \) and

ii) \(g = zq'φ(q) \) is starlike univalent in \(Δ \).

If \(p ∈ \mathcal{H}[q(0), 1] \cap \mathcal{Ω} \) with \(p(Δ) \subseteq D \) and \(θ(p) + zp'φ(p) \) is univalent in \(Δ \), and

\[
θ(q) + zq'φ(q) ≺ θ(p) + zp'φ(p),
\]

then

\(q < p \)

and \(q \) is the best subordinant.

3. Application to Analytic Functions

Theorem 3.1. Let \(0 ≠ \alpha ∈ \mathbb{C} \) and \(\Re \{\frac{1}{\alpha}\} > 0 \). Let \(q \) be convex univalent in \(Δ \) with \(q(0) = 1 \). Let

\[
ψ₁ := \frac{2αf}{z} + \frac{f^2}{z^2 f'} \left[(1 - 2α) - \frac{αzf''}{f'} \right], \quad (3.1)
\]

and \(χ₁ := q + αzq' \). Let \(f ∈ \mathcal{A} \), and \(\frac{f^2}{z^2 f'} ∈ \mathcal{H}[1, 1] \cap \mathcal{Ω} \) and \(ψ₁ \) is univalent in \(Δ \).

i) If \(ψ₁ < χ₁ \) then

\[
\frac{f^2}{z^2 f'} < q
\]

where \(q \) is the best dominant.
(ii) If $\chi_1 \prec \psi_1$ then
\[q \prec \frac{f^2}{z^2 f'} \]
where q is the best subordinant.

Proof. Define the function p by
\[p := \frac{f^2}{z^2 f'}. \tag{3.2} \]
A computation using (3.2) shows that
\[\frac{zp'}{p} = \frac{2zf''}{f} - \frac{zf'}{f'} - 2. \tag{3.3} \]
Also we note that an application of (3.3) yields
\[\psi_1 = \frac{2\alpha f}{z} + \frac{f^2}{z^2 f'} \left[(1 - 2\alpha) - \frac{\alpha zf''}{f'} \right] \]
\[= p + \alpha zp', \]
and this can be written as (2.1) when $\theta(w) = w$ and $\phi(w) = \alpha$. Note that $\phi(w) \neq 0$ and θ and ϕ are analytic in \mathbb{C}. Set
\[Q := \alpha zq', \]
\[h := \theta(q) + Q \]
\[= q + \alpha zq'. \]
In light of the hypothesis of Theorem 2.1, we see that Q is starlike and
\[\Re \left\{ \frac{zh'}{Q} \right\} = \Re \left\{ \frac{1}{\alpha} \right\} \geq 0. \]
By an application of Theorem 2.1 we conclude that $p \prec q$ or
\[\frac{f^2}{z^2 f'} \prec q. \]
Note that
\[\Re \left\{ \frac{\theta'(q)}{\phi(q)} \right\} = \Re \left\{ \frac{1}{\alpha} \right\} \geq 0. \]
Hence the result (ii) of Theorem 3.1 follows as a similar application of Theorem 2.2.

By making use of Theorem 3.1 we get the following sandwich type result.

Theorem 3.2. Let $0 \neq \alpha \in \mathbb{C}$ and $\Re \left\{ \frac{1}{\alpha} \right\} > 0$. Let q_i for $i = 1, 2$ be convex univalent in Δ, with $q_i(0) = 1$. Let $\chi_i = q_i + \alpha z q_i'$ for $i = 1, 2$ and ψ_1 as given by (3.1) be univalent in Δ. If $f \in \mathcal{A}$, $\frac{f^2}{z^2 f'} \in \mathcal{H}[1, 1] \cap \mathbb{D}$ and
\[\chi_1 \prec \psi_1 \prec \chi_2 \]
then
\[q_1 < \frac{f^2}{z^2 f'} < q_2 \]
where \(q_1 \) and \(q_2 \) are respectively the best subordinant and best dominant.

Theorem 3.3. Let \(\alpha, \beta \) and \(\gamma \) be complex numbers and \(\gamma \neq 0 \). Let \(q \) be a convex univalent functions in \(\Delta \) with \(q(0) = 1 \) and \(\frac{\gamma z q'}{q} \) is starlike univalent in \(\Delta \). Let
\[
\psi_2 := (\alpha - 2\gamma) + \frac{2\gamma z f'}{f} + \frac{\beta f^2}{z^2 f'} - \frac{\gamma z f''}{f'}
\]
and \(\chi_2 = \alpha + \beta q + \frac{\gamma z q'}{q} \). Let \(f \in \mathcal{A} \) and \(\frac{f^2}{z f'} \in \mathcal{H}[1,1] \cap \mathcal{Q} \) and \(\psi_2 \) is univalent in \(\Delta \).

(i) If \(q \) satisfies
\[
\Re\left\{\frac{\beta q}{\gamma} - \frac{z q'}{q}\right\} > 0 \quad \text{(3.4)}
\]
then
\[
\psi_2 < \chi_2 \Rightarrow \frac{f^2}{z^2 f'} < q
\]
where \(q \) is the best dominant.

(ii) If \(q \) satisfies
\[
\Re\left\{\frac{\beta q}{\gamma}\right\} > 0 \quad \text{(3.5)}
\]
then
\[
\chi_2 < \psi_2 \Rightarrow q < \frac{f^2}{z^2 f'}
\]
where \(q \) is the best subordinant.

Proof. Define the function \(p \) by
\[
p := \frac{f^2}{z^2 f'} \quad \text{(3.6)}
\]
A simple computation using (3.3) shows that
\[
\psi_2 := (\alpha - 2\gamma) + \frac{2\gamma z f'}{f} + \frac{\beta f^2}{z^2 f'} - \frac{\gamma z f''}{f'}
= \alpha + \beta p + \frac{\gamma z q'}{p}
\]
This can be written as (2.1) when \(\theta(w) := \alpha + \beta w \) and \(\phi(w) := \frac{\gamma}{w} \). Note that \(\theta \) and \(\phi \) are analytic in \(\mathbb{C} \setminus \{0\} \). Set
\[
Q := \frac{\gamma z q'}{q}
\]
\[h := a + \beta q + Q = a + \beta q + \frac{\gamma z q'}{q} \]

In light of hypothesis of Theorem 2.1 we see that \(Q \) is starlike and
\[\Re \left\{ \frac{zh'}{Q} \right\} = \Re \left\{ \frac{\beta q}{\gamma} - \frac{zq'}{q} + (1 + \frac{zq''}{q}) \right\} > 0. \]

By an application of Theorem 2.1 we conclude that
\[\frac{f^2}{z^2 f'} < q. \]

The result (ii) of Theorem (3.3) follows as a similar exercise using Theorem 2.2.

4. Application to Carlson-Shaffer Operator

Theorem 4.1. Let \(0 \neq \alpha \in \mathbb{C} \) and \(\Re(\frac{1}{\alpha}) > 0 \). Let \(q \) be convex univalent in \(\Delta \) with \(q(0) = 1 \). Let
\[\psi_3 := \frac{[L(a,c) f]^2}{zL(a+1,c)f} \left[1 + a(1-a) - \frac{a(a+1)L(a+2,c)f}{L(a+1,c)f} \right] + \frac{2aa}{z}L(a,c)f \]
and \(\chi_3 := q + \alpha z q' \). Let \(f \in \mathcal{A} \) and \(\frac{[L(a,c) f]^3}{zL(a+1,c)f} \in \mathcal{H}[1,1] \cap \mathcal{B} \) and \(\psi_3 \) is univalent in \(\Delta \).

(i) If \(\psi_3 < \chi_3 \) then
\[\frac{[L(a,c) f]^2}{zL(a+1,c)f} < q \]
where \(q \) is the best dominant.

(ii) If \(\chi_3 < \psi_3 \) then
\[q < \frac{[L(a,c) f]^2}{zL(a+1,c)f} \]
where \(q \) is the best subordinant.

Proof. Define the function \(p \) by
\[p := \frac{[L(a,c) f]^2}{zL(a+1,c)f}. \] (4.1)

A simple computation using (4.1) gives
\[\frac{zp'}{p} = 2z(L(a,c) f)'L(a,c) f - 1 - \frac{z(L(a+1,c) f)'}{L(a+1,c) f}. \] (4.2)

By using the identity
\[z(L(a,c) f)' = aL(a+1,c) f - (a-1)L(a,c) f \]
in (4.2) we obtain
\[
\frac{zp'}{p} = (1 - a) + \frac{2aL(a + 1, c)f}{L(a, c)f} - (a + 1) \frac{L(a + 2, c)f}{L(a + 1, c)f}.
\]

Note that
\[
\psi_3 := \frac{(L(a, c)f)^2}{zL(a + 1, c)f} \left[1 + a(1 - a) - \frac{a(a + 1)L(a + 2, c)f}{L(a + 1, c)f} \right] + \frac{2aa}{z} L(a, c)f
\]
and this can be written as (2.1) when \(\theta(w) = w\) and \(\phi(w) = \alpha\). Hence the result (i) follows as an application of Theorem (2.1). The proof of result (ii) of Theorem 4.1 follows as a similar application of Theorem 2.2.

By taking \(a = \delta + 1\) and \(c = 1\) we get the following result involving Ruscheweyh derivative.

Corollary 4.2. Let \(0 \neq \alpha \in \mathbb{C}\) and \(\Re \{\frac{1}{\alpha}\} > 0\). Let \(q\) be convex univalent in \(D\) with \(q(0) = 1\). Let
\[
\psi := \frac{(D^\delta f)^2}{zD^{\delta + 1}f} \left[1 + a(1 - a) - \frac{a(a + 1)L(a + 2, c)f}{L(a + 1, c)f} \right] + \frac{2aa}{z} D^\delta f.
\]
and \(\chi := q + azp'\). Let \(f \in \mathcal{A}\) and \(\frac{(D^\delta f)^2}{zD^{\delta + 1}f} \in \mathcal{H}[1, 1] \cap \mathcal{Q}\) and \(\psi\) is univalent in \(D\).

(i) If \(\psi < \chi\) then
\[
\frac{(D^\delta f)^2}{zD^{\delta + 1}f} < q
\]
where \(q\) is the best dominant.

(ii) If \(\chi < \psi\) then
\[
q < \frac{(D^\delta f)^2}{zD^{\delta + 1}f}
\]
where \(q\) is the best subordinant.

Theorem 4.3. Let \(\alpha, \beta\) and \(\gamma\) be complex numbers with \(\gamma \neq 0\). Let \(q\) be a convex univalent in \(D\) with \(q(0) = 1\) and \(\frac{\gamma z q'}{q}\) is starlike univalent in \(D\). Let
\[
\psi_4 := \alpha + \gamma(1 - a) + \frac{\beta(L(a, c)f)^2}{zL(a + 1, c)f} + \frac{2ayL(a + 1, c)f}{L(a, c)f} - \frac{\gamma(a + 1)L(a + 2, c)f}{L(a + 1, c)f}
\]
and \(\chi_4 := \alpha + \beta q + \frac{\gamma z q'}{q}\). Let \(f \in \mathcal{A}\) and \(\frac{(L(a, c)f)^2}{z(L(a + 1, c)f)} \in \mathcal{H}[1, 1] \cap \mathcal{Q}\) and \(\psi_4\) is univalent in \(D\).

(i) If \(q\) satisfies (3.4) then
\[
\psi_4 < \chi_4 \Rightarrow \frac{(L(a, c)f)^2}{zL(a + 1, c)f} < q
\]
where \(q\) is the best dominant.
If q satisfies (3.5) then
\[
\chi^4 < \psi^4 \Rightarrow q < \frac{\{L(a, c) f\}^2}{zL(a + 1, c) f}
\]
where q is the best subordinant.

Proof. The proof of the Theorem 4.3 is similar to that of Theorem 4.1, where
\[
\theta(w) = \alpha + \beta w
\]
and
\[
\phi(w) = \frac{\gamma}{w}.
\]
By taking $a = \delta + 1$ and $c = 1$ we get the following result involving Ruscheweyh derivative.

Corollary 4.4. Let α, β and γ be complex numbers with $\gamma \neq 0$. Let q be a convex univalent in Δ with $q(0) = 1$ and $\frac{z f'}{q}$ is starlike univalent in Δ. Let
\[
\psi_5 := \alpha + \gamma(1 - a) + \frac{\beta |D^\delta f|^2}{zD^\delta+1 f} + \frac{2a\gamma D^{\delta+1} f}{D^\delta f} - \frac{\gamma(a + 1)D^{\delta+2} f}{D^\delta+1 f}
\]
and
\[
\chi_5 := \alpha + \beta q + \frac{\gamma z f'}{q}. \text{ Let } f \in \mathcal{A} \text{ and } \frac{|D^\delta f|^2}{zD^\delta+1 f} \in \mathcal{H}[1, 1] \cap \mathcal{H} \text{ and } \psi_5 \text{ is univalent in } \Delta.
\]
(i) If q satisfies (3.4) then
\[
\psi_5 < \chi_5 \Rightarrow \frac{|D^\delta f|^2}{zD^\delta+1 f} < q
\]
where q is the best dominant.

(ii) If q satisfies (3.5) then
\[
\chi_5 < \psi_5 \Rightarrow q < \frac{|D^\delta f|^2}{zD^\delta+1 f}
\]
where q is the best subordinant.

5. Application to Sălăgean Derivative Operator

Theorem 5.1. Let $0 \neq \alpha \in \mathbb{C}$ and $\Re \left\{ \frac{1}{\alpha} \right\} > 0$. Let q be convex univalent in Δ with $q(0) = 1$. Let
\[
\psi_6 := 2\alpha \frac{\mathcal{D}^m f}{z} + \frac{|\mathcal{D}^m f|^2}{z\mathcal{D}^{m+1} f} \left[1 - \alpha - \frac{\alpha \mathcal{D}^{m+2} f}{z\mathcal{D}^{m+1} f} \right]
\]
and
\[
\chi_6 := q + \alpha z q'. \text{ Let } f \in \mathcal{A} \text{ and } \frac{|\mathcal{D}^m f|^2}{z\mathcal{D}^{m+1} f} \in \mathcal{H}[1, 1] \cap \mathcal{H} \text{ and } \psi_6 \text{ is univalent in } \Delta.
\]
(i) If $\psi_6 < \chi_6$ then
\[
\frac{|\mathcal{D}^m f|^2}{z\mathcal{D}^{m+1} f} < q
\]
where q is the best dominant.

(ii) If $\chi_6 < \psi_6$ then
\[
q < \frac{|\mathcal{D}^m f|^2}{z\mathcal{D}^{m+1} f}
\]
where q is the best subordinant.
Proof. Define the function p by

$$p := \left(\frac{D_m f}{z D_m^{m+1} f}\right)^2.$$ \hspace{1cm} (5.1)

A simple computation using (5.1) shows that

$$zp' = 2z(D_m f)' - 1 - z(D_m^{m+1} f)'.$$ \hspace{1cm} (5.2)

Using the identity

$$z(D_m f)' = D_m^{m+1} f,$$

in (5.2) we obtain

$$zp' = 2D_m^{m+1} f - 1 - D_m^{m+1} f.$$ \hspace{1cm} (5.3)

Note that

$$\psi_6 := 2\alpha \frac{D_m f}{z} + \left(\frac{D_m f}{z D_m^{m+1} f}\right)^2 \left[1 - \frac{\alpha D_m^{m+1} f}{D_m^{m+1} f}\right]$$

and this can be written as (2.1) when $\theta(w) := w$ and $\phi(w) := \alpha$. Now the result (i) follows as an application of Theorem 2.1. A similar exercise using Theorem (2.2) will give the result (ii).

Theorem 5.2. Let α, β and γ be complex numbers and $\gamma \neq 0$. Let q be a convex univalent in Δ with $q(0) = 1$ and $\frac{z q'}{q}$ is starlike univalent in Δ. Let

$$\psi_7 := \alpha - \gamma + \frac{2\gamma D_m^{m-1} f}{z D_m^{m+1} f} - \frac{\gamma D_m^{m+2} f}{z D_m^{m+1} f} + \beta \frac{D_m^2 f}{z D_m f},$$

and $\chi_7 := \alpha + \beta q + \frac{z q'}{q}$. Let $f \in \mathcal{A}$ and $\frac{|D_m f|^2}{z D_m^{m+1} f} \in \mathcal{H}(1,1) \cap \mathcal{D}$ and ψ_7 is univalent in Δ. Let

(i) If q satisfies (3.4), then

$$\psi_7 < \chi_7 \Rightarrow \frac{|D_m f|^2}{z D_m^{m+1} f} < q$$

where q is the best dominant.

(ii) If q satisfies (3.5), then

$$\chi_7 < \psi_7 \Rightarrow \frac{|D_m f|^2}{z D_m^{m+1} f} < q$$

where q is the best subordinant.

Proof. The proof follows as an application of Theorem 2.1 and Theorem 2.2 with $\theta(w) = \alpha + \beta w$ and $\phi(w) = \frac{\tau}{w}$.

Sandwich results for the Theorems 3.3–5.2 can be obtained by a similar exercise as we have obtained the sandwich result (Theorem 3.2) of Theorem 3.1, however we omit the details of the proof.
References

Department of Mathematics, Government Arts College, Paramakudi 623 707, India.
E-mail: natarajan.marikkannan@gmail.com

Department of Mathematics, Alagappa University, Karaikudi, India.
E-mail: ganesamoorthyc@yahoo.com