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NECESSARY AND SUFFICIENT CONDITIONS FOR OSCILLATION OF

SECOND ORDER NEUTRAL DIFFERENCE EQUATIONS

E. THANDAPANI AND K. MAHALINGAM

Abstract. Consider the second order difference equation of the form

∆2(yn−1−pyn−1−k)+qnf(yn−ℓ) = 0, n = 1, 2, 3, . . . (E)

where {qn} is a nonnegative real sequence, f : R → R is continuous such that uf(u) > 0 for

u 6= 0, 0 ≤ p < 1, k and ℓ are positive integers. We establish the necessary and/or sufficient

conditions for the oscillation of all solutions of (E) when
∫

is linear, superlinear or sublinear and

the results reduce to the well known theorems of Hooker and Patula in the special case when

f(u) = uγ , where γ is a odd positive integers.

1. Introduction

Consider the second order neutral difference equation of the form

∆2(yn−1−pyn−1−k)+qnf(yn−ℓ) = 0, n = 1, 2, 3, . . . (E)

subject to the conditions:
(c1) {qn} is a sequence of real numbers such that qn ≥ 0 for all n ≥ 1 and not identically

equal to zero for many values of n;
(c2) f : R → R is continuous and nondecreasing such that uf(u) > 0 for u 6= 0;
(c3) 0 ≤ p < 1, k and ℓ are positive integers.

For any real sequence {φn} defined in −θ ≤ n ≤ 0 where θ = max{k, ℓ}, equation
(E) has a solution {yn} defined for n ≥ 1 and satisfying the initial condition yn = φn

for −θ ≤ n ≤ 0. A solution {yn} of equation (E) is oscillatory if it is neither eventually
positive nor eventually negative and nonoscillatory otherwise.

We shall consider a class of nonlinear function f satisfying certain nonlinear conditions
typified by the Emden-Fowler difference equation

∆2yn−1 + qnyγ
n = 0 (E1)

where γ is a odd positive integers. We say that f satisfies the superlinear condition if

0 <

∫ ∞

c

du

f(u)
;

∫ −c

−∞

du

f(u)
< ∞ for all c > 0 (1)
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and satisfies sublinear condition if

0 <

∫ c

0

du

f(u)
;

∫ 0

−c

du

f(u)
< ∞ for all c > 0. (2)

Conditions (1) and (2) correspond to γ > 1 and 0 < γ < 1 in equation (E1) respectively.

For the equation (E1), there is a necessary and sufficient condition for the oscillation

for all its solutions due to Hooker and Patula [10].

Theorem A. Let qn ≥ 0 for all n ≥ 1 and not identically zero for many values of n.

Then, if γ > 1, all solutions of (E1) are oscillatory if and only if

∞
∑

n=1

nqn = ∞. (3)

Theorem B. Let qn ≥ 0 for all n ≥ 1 and not identically zero for many values of n.

Then, if 0 < γ < 1, all solutions of equation (E1) are oscillatory if and only if

∞
∑

n−1

nγqn = ∞. (4)

For f(u) = u and p ≡ 0, equations (E) reduces to a linear delay difference equation

of the form

∆2yn−1 +qnyn−ℓ = 0. (E3)

Recently Grzegorezyk and Werbowski [4] estabilished a sufficient condition for the oscil-

lation of all solutions of (E3).

Theorem C. Let qn ≥ 0 for all n ≥ 1 and not identically zero for many values of n.

Then every solution of equation (E3) is oscillatory if

lim
n→∞

inf

n−1
∑

s=n−ℓ

(s − ℓ − 1)qs >

(

ℓ

ℓ + 1

)ℓ+1

. (5)

The purpose of this paper is to prove analogous results of Theorems A, B and C for the

neutral difference equation (E). As a general reference on oscillation theory for neutral

difference equations, we refer to the recent monographs by Agarwal [1] and Agarwal and

Wong [4]. Oscillation theory for second order neutral difference equations were discussed

by Thandapani etal. [2, 3, 13], Szafranski and Szmanda [11], Budincevic [5], Grace and

Lalli [6], Zafar and Dahiya [15] and Zhon and Zhang [16]. In the delay difference case,

that is, equation (E) with p ≡ 0, reference should also be made to Györi and Ladas [8].
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Extension of Hooker and Patula oscillation theorems to more general nonlinear difference
equations were given in [9, 12, 14].

2. Some Preliminary Lemmas

In this section we state and prove some lemmas which are useful in establishing the
main results of this paper.

Lemma 1. Let {yn} be an eventually positive solution of equaiton (E) and define

zn = yn − pyn−k. (6)

Then there is a positive integer N ≥ 1 such that zn > 0 and ∆zn > 0 for all n ≥ N .

Proof. Since {yn} is an eventually positive solution of equation (E). We may assume
that yn > 0, yn−k > 0 and yn−ℓ > 0 for all n ≥ N1 for some positive integer N1 depending
on the solution {yn}. Since yf(y) > 0 and qn ≥ 0, for n ≥ N1 equation (E) implies that
∆2zn−1 ≤ 0 and ∆zn−1 is nonincreasing. Hence limn→∞ ∆zn−1 = c. Suppose c < 0.
Then clearly limn→∞ zn = −∞. We claim that {zn} cannot be eventually negative for
n ≥ N1. Suppose it is the case, consider two mutually exclusive cases:
(a) there exists a sequence of positive integers {sj} such that sj → ∞ as j → ∞ and

ysj
= supn<sj

yn or otherwise,
(b) there exists a sequence {mj} of positive integers such that mj → ∞ as j → ∞ and

ymj
= infn≤mj

yn.
In the first case (a), we have

zsj
= ysj

− pysj−k
≥ ysj

(1 − p) > 0

which shows that {zn} cannot be eventually negative. In the case (b), we have

zmj+k
= ymj+k

− pymj
≥ ymj

(1 − p) > 0

which again shows that {zn} cannot be eventually negative. In particular c < 0 is not
possible. Thus we must have c ≥ 0 which implies that {zn} must be eventually positive,
that is, there exists a positive integer N ≥ N1 such that zn > 0 for all n ≥ N . Otherwise,
since limn→∞ ∆zn = c ≥ 0 and {∆zn} is nonincreasing, we must have ∆zn < 0 for all
sufficiently large n. Then there exists a positive integer N2 > N such that ∆zn < ∆zN2

<

0 and we find that {zn} is eventually negative. We therefore have zn > 0, and ∆zn > 0
for all n ≥ N . This completes the proof of the lemma.

Lemma 2. Let zn > 0, ∆zn > 0 and ∆2zn ≤ 0 for all n ≥ N ≥ 1. Then zn ≥
(n − 1)∆zn−1 for all n ≥ N .

Proof. From the equation

zn = zN +

n−1
∑

s=N

∆zs
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we obtain, in view of the nonincreasing nature of {∆zn}, that

zn ≥ zN + (n − N)∆zn−1 ≥ (n − 1)∆zn−1

for all n ≥ N . This completes the proof of the lemma.

3. Main Results

In this section, first we shall establish a necessary and sufficient condition for the

oscillation of all solutions of equation (E) if the nonlinear function f satisfied the su-

perlinear condition (1) and a Lipshitz condition on the given interval; that is there is a

number L such that

|f(x) − f(y)| ≤ L|x − y| for all x, y ∈

[

1

2
,

1

1 − p

]

(7)

Theorem 3. With respect to the difference equation (E), suppose that conditions (1)

and (7) hold. Then all solutions of equation (E) are oscillatory if and only if condition

(3) holds.

Proof. To prove sufficiency, let {yn} be a nonoscillatory solution of equation (E).

Since yf(y) > 0 whenever y 6= 0, we may without loss of generality assume that yn > 0

for all n ≥ n0 ≥ 1 for some positive integer n0, depends on the solution {yn}. Then from

Lemma 1, there is a positive integer N1 ≥ n0 such that

zn > 0, ∆zn > 0 and ∆2zn−1 ≤ 0 (8)

for all n ≥ N1. Since f is nondecreasing and therefore from equation (E) and (6), we

have

∆2zn−1 + qnf(zn−ℓ) ≤ 0 (9)

for all n ≥ N ≥ N1 + ℓ. Define

Wn =
n∆zn−1

f(zn−ℓ)
, n ≥ N.

then, inview of (8), Wn > 0 for n ≥ N and satisfies on account of (9), the Riccati

difference inequality,

∆Wn + nqn ≤
∆zn

f(zn−ℓ)
−

(n + 1)∆zn∆f(zn−ℓ)

f(zn−ℓ)f(zn+1−ℓ)
. (10)

Inview of condition (c2) and from the nature of {∆zn}, we have from (10),

∆Wn + nqn ≤
∆zn−ℓ−1

f(zn−ℓ)
, n ≥ N.
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Summing the last inequality from N to n, we obtain

Wn +

n
∑

s=N

sqs ≤ WN +

n
∑

s=N

∆zs−ℓ−1

f(zs−ℓ)
. (11)

Let r(t) = zn−1−ℓ +∆zn−1−ℓ(t−n), n ≤ t ≤ n+1. Then r(n) = zn−1−ℓ, r(n+1) = zn−ℓ

and r′(t) = ∆zn−1−ℓ, n < t < n + 1. Thus r(t) is continuous and increasing for t ≥ N .

We then have

∆zs−ℓ−1

f(zs−ℓ)
=

∫ s+1

s

∆zs−ℓ−1

f(zs−ℓ)
dt =

∫ s+1

s

r′(t)

f(zs−ℓ)
dt <

∫ s+1

s

r′(t)

f(r(t))
dt.

This implies that
n

∑

s=N

∆zs−ℓ−1

f(zs−ℓ)
≤

∫ zn−ℓ

zN−1−ℓ

du

f(u)
. (12)

From (11) and (12) we obtain

n
∑

s=N

sqs ≤ WN +

∫ ∞

zN−ℓ−1

du

f(u)
−

∫ ∞

zn−ℓ−1

du

f(u)
≤ M0, (13)

where M0 depends only on the solution {yn}. Letting n → ∞ in (13) one easily sees that

it is incompatible with the condition (3). This proves the sufficient part of the theorem.

To prove the necessity of condition (3) for the oscillation of all solution of the equation

(E), we shall apply the contraction mapping principle. Consider the Banach space BN of

all bounded real sequences {yn}, n ≥ N with the norm defined as ‖y‖ = supn≥N≥1 |yn|

where the positive integer N to be chosen later. Assume that the condition (3) fails; that

is
∑∞

n−1 nqn < ∞, then there is a nonoscillatory solution {yn} for the equation (E). We

shall show the existence of a solution {yn} of equation (E) such that limn→∞ yn = 1
1−p

.

Let S be a closed bounded subset of BN such that

S =

{

y ∈ BN :
1

2
≤ yn ≤

1

1 − p
, n ≥ N

}

. (14)

Define the operator T : S → BN such that

T yn = 1 + pyn−1−k −

∞
∑

s=n+1

(s − n)qsf(ys−ℓ). (15)

Choose a positive integer N sufficiently large so that L
∑∞

n=N nqn ≤ 1−p
2 . Let y ∈ S,

then from (15) we have

T yn ≥ 1 +
p

2
−

L

1 − p

∞
∑

s=n+1

sqs = 1 +
p

2
−

1

2
≥

1

2
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and

T yn ≤ 1 +
p

1 − p
=

1

1 − p
.

So T S ⊆ S. On the other hand, using (7) in (15), we find for x, y ∈ S,

|T yn − T xn| ≤ p|yn−1−k − xn−1−k| + L

∞
∑

s=n+1

(s − n)qs|ys−ℓ − xs−ℓ|

≤

(

p +
1 − p

2

)

‖y − x‖.

Therefore, ‖T y −T x‖ ≤ (1+p
2 )‖y − x‖, and hence T is a contraction on S. Thus, T has

a unique fixed point in S, which is our desired nonoscillatory solution of (E) such that
limn→∞ yn = 1

1−p
. This completes the proof.

Next we shall prove an analogous result for the oscillation of all solutions of equation
(E) in the sublinear case.

Theorem 4. In addition to the condition (2) assume that

f(uv) ≥ f(u)f(v) if uv > 0 and |v| ≥ M (16)

for large M > 0. Then all solutions of the equation (E) are oscillatory if and only if

∞
∑

n=1

f(n)qn = ∞. (17)

Proof. Let {yn} be a nonoscillatory solution of the equation (E) which can be
assumed to be positive for n ≥ N1 for some positive integer N1 and proceed as in the
proof of Theorem 3, we obtain

∆2zn−1 + qnf(zn−ℓ) ≤ 0, n ≥ N ≥ N1 + ℓ. (18)

From Lemma 2, we have zn−ℓ ≥ (n− ℓ−1)∆zn−1 and so f(zn−ℓ) ≥ f((n− ℓ−1)∆zn−1).
For any λ, 0 < λ < 1 if N is sufficiently large then (n − ℓ − 1) ≥ λn for n ≥ N . Thus,
by (16) we have

f((n − ℓ − 1)∆zn−1) ≥ f(λn∆zn−1) ≥ f(n)f(λ∆zn−1)

for n ≥ N1, from which (18) can be rewritten as follows

∆2zn−1

f(λ∆zn−1)
+ f(n)qn ≤ 0, n ≥ N.

For λ∆zn ≤ t ≤ λ∆zn−1 we have f(t) ≤ f(λ∆zn−1) and so

λf(n)qn ≤ −

∫ λ∆zn

λ∆zn−1

dt

f(t)
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for n ≥ N . Summing the last inequality from N to n, we obtain

λ

n
∑

s=N

f(s)qs ≤

∫ λ∆zN−1

λ∆zn

dt

f(t)
<

∫ λ∆zN−1

0

dt

f(t)
< ∞

which is incompatible with the condition (17). This proves the sufficiency part of the

theorem.

To prove that condition (17) is also necessary for the oscillation of all solutions of

equation (E), we assume that the condition (17) fails and proceed to establish the exis-

tence of a nonoscillatory solution. In this case we choose N sufficiently large such that
∑∞

n=N qnf(n) < λ
(1−p)

4 , where 0 < λ < 1. Let θ = max(k, ℓ) > 0 and N(θ, N) =

{N − θ, N − θ + 1, . . . , N}. Consider the sequence {φn} defined by φs = λ(s − N + θ)

for s ∈ N(θ, N). Here φs ≥ 0, ∆φs = λ for all s ∈ N(θ, N), φN = λθ > 0 and

φN−k = λ(θ − k) ≥ 0. For such a given initial sequence {φn}, the difference equation

(E) has a solution {yn(φn)} which we shall denote by {yn} for short and yn = φn for all

n ∈ N(θ, N). We shall prove that this solution is nonoscillatory. In fact ∆yN = ∆φN = λ

and we shall show that ∆yn ≥ λ
2 for all n ≥ N ∈ N(N, j − 1) = {N, N + 1, . . . , j − 1}.

Then yn > 0 for all n ∈ N(N, j). However from the equation (E), ∆2zn−1 ≤ 0 for all

n ∈ N(N, j) and therefore from (6) we find ∆2yn−1 ≤ 0 for all n ∈ N(N, j). Then, for all

n ∈ N(N + 1, j), it follows that

yn−ℓ ≤ yN + (n − ℓ − 1)∆yN ≤ n.

Now from equation (E) and the above inequality, we obtain

∆zj = ∆zN −

j
∑

s=N+1

qsf(ys−ℓ)

≥ λ(1 − p) −

j
∑

s=N+1

qsf(s)

≥ λ(1 − p) −
λ(1 − p)

2

=
λ(1 − p)

2
.

Since ∆zj+k = ∆yj+k − p∆yj and ∆yj is nonincreasing we have (1 − p)∆yj ≥ λ
2 (1 − p)

and therefore ∆yj ≥ λ
2 . Now by induction ∆yn ≥ λ

2 for all n ∈ N. This completes the

proof.

Finally we shall prove an analogous result for the oscillation of all solutions of equation

(E) in the linear case, that is,

f(u)

u
≥ M > 0 for u 6= 0. (19)
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Theorem 5. In addition to the condition (19) assume that

lim
n→∞

inf

n−1
∑

s=n−ℓ

(s − ℓ − 1)qs >
1

M

(

ℓ

ℓ + 1

)ℓ+1

. (20)

Then every solution of the equation (E) is oscillatory.

Proof. Let {yn} be a nonoscillatory solution of the equation (E) which can be
assumed to be positive for n ≥ N1 for some positive integer N1 and proceed as in the

proof of Theorem 3, we obtain the inequality (18). Using condition (19) in (18). We
have

∆2zn−1 + Mqnzn−ℓ ≤ 0, n ≥ N. (21)

From Lemma 2, we have

zn−ℓ ≥ (n − ℓ − 1)∆zn−ℓ−1, n ≥ N. (22)

Combining (21) and (22), we obtain

∆2zn−1 + M(n − ℓ − 1)qn∆zn−ℓ−1 ≤ 0. (23)

Let xn −∆zn−1. Then {xn} is eventually positive and from (23), satisfies the inequality

∆xn + M(n − ℓ − 1)qnxn−ℓ ≤ 0, n ≥ N. (24)

In view of condition (20), inequality (24) has no positive solutions, a contradiction. This

completes the proof.

Remark 1. The results in this paper are presented in a form which is essentially

new. The results obtained in this paper improves some of the results obtained in [2, 3,
13, 15].
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