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ON THE STUDY OF CONJUGATE SERIES OF A FOURIER

SERIES BY Kλ-SUMMABILITY METHODS

SHYAM LAL AND PREM NARAIN SINGH

Abstract. Vuĉkoviĉ (1965) and Kathal (1969) have studied the Kλ-summability of Fourier

series. In this paper, generalizing an earlier result of Kathal, a theorem on Kλ-summability of

conjugate series of a Fourier series has been established.

1. Introduction

The method Kλ-was first introduced by Karamata (1935), Lotosky (1963) reintro-
duced the special case λ = 1. Only after the paper of Agnew (1957), an intensive study
of these and similar method took place. Vuĉkoviĉ (1965) applied this method for summa-
bility of Fourier series, Kathal (1969) extended Vuĉkoviĉ result. Working in the same
direction Ojha (1982), Tripathi and Lal (1984), Lal (1996), Lal and Pratap (1999) have
studied Kλ-summability of Fourier series under different conditions. But till now noth-
ing seems to have been done so for on the study of conjugte series of a Fourier series by
Kλ-summability method. In an attempt to make an advance study in this direction, in
this paper, a new theorem on Kλ-summability of conjugate series of a Fourier series has
been established under very general conditions.

2. Definitions and Notations

Let us define, for n = 0, 1, 2, 3, . . . , the numbers

[

n
m

]

, for 0 ≤ m ≤ n, by

n−1
∏

v=0

(x + v) =
n
∑

k=0

[

n

m

]

xm (2.1)

where
∏n−1

v=0 (x+ v) = Γ(x+v)
Γx = x(x + 1)(x+ 2) · · · (x+ n− 1)

The numbers

[

n

m

]

are known as the absolute values of Stirling numbers of the first

kind.
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Let {Sn} be the sequence of partial sums of an infinite series
∑

an and let us write.

Sλ
n =

Γλ

Γ(λ + n)

n
∑

m=0

[

n

m

]

λmSm (2.2)

to denote the nth Kλ-mean of order λ > 0. If Sλ
n → S as n→ ∞ where S, If a fixed finite

quantity then the sequence {Sn} or the series
∑

an is said to be summable by Karamata
method Kλ of order λ > 0 to the sum S and we write.

Sλ
n → S(Kλ) as n→ ∞ (2.3)

The method Kλ is regular for λ > 0 and this case will be supposed throught this paper.
Let f(t) be the 2π-periodic and Lebesgue integrable function of t over the interval

(−π, π).
Let the Fourier series of function f(t) be given by

f(t) ∼
1

2
a0 +

∞
∑

n=1

(an cosnt+ bn sinnt) =

∞
∑

n=0

An(t) (2.4)

and then

f(t) ∼
∞
∑

n=1

(an sinnt− bn cosnt) =
∞
∑

n=0

Bn(t) (2.5)

is known as conjugate series of Fourier series (2.4), we write

φ(t) = f(x+ t) + f(x− t) − 2f(x)

ψ(t) = f(x+ t) + f(x− t)

φ(t) =

∫ t

0

|φ(u)|du

ψ(t) =

∫ t

0

|ψ(u)|du

kn(t) =

Γλ

n
∑

m=0

[

n

m

]

2πΓ(λ+m)

λm cos(m+ 1
2 )t

sin( t
2 )

τ = [1/t] = Integral part of 1/t

3. Known Theorem

Vuĉkoviĉ (1965) has establish the following theorem:

Theorem A. If

φ(t) = o

[

1

log(1/t)

]

, as (t→ +0) (3.1)
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then the Fourier series is summable Kλ(λ>0) to the sum f(x) at the point t=x,

Kathal (1969) prove the following theorem:

Theorem B. If

φ(t) =

∫ t

0

|φ(u)|du = o

[

t

log(1/t)

]

, as (t→ +0) (3.2)

then the Fourier series (2.4) is summable Kλ(λ > 0) to the sum f(x) at the point t = x,

4. Main Theorem

Here in this paper, the above theorem has been generalized for conjugate series of a
Fourier series in the following form:

Theorem. Let {pn} be a sequence monotonic decreasing sequence of real constant

such that

pn =

n
∑

v=0

pv → ∞, as n→ ∞

If ψ(t) =

∫ t

0

|ψ(u)|du = o

[

α(1
t )t

Pt

]

, as t→ +0 (4.1)

Provide α(t) is a positive monotonic decreasing function of t, such that

α(n) log n = O(Pn), as n→ ∞

then the conjugate series of Fourier series (2.5) is Kλ summable to

−
1

2π

∫ π

0

ψ(t) cot(
1

2
t)dt

at the every point x where this integral exists in Lebesgue sense.

5. Proof of the Theorem

Let Sm(x) denote the nth partial sum of series (2.5) at t = x, Then

Sm(x) =

m
∑

k=1

(ak sin(kx) − bk cos(kx))

=
1

n

m
∑

k=1

(sin(kx))

∫ π

−π

f(t) cos(kt).dt− cos(kx)

∫ π

−π

f(t) sin(kt).dt

= −
1

π

∫ π

−π

f(t)

(

m
∑

k=1

sin k(t− x)

)

dt
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i.e.,

= −
1

π

∫ π

−π

f(t)
sin
(

(m+1)(t−x)
2

)

sin
(

m(t−x)
2

)

sin
(

(t−x)
2

) .dt

= −
1

π

∫ π

−π

f(x+ t)
cos(1

2 t) − cos(m+ 1
2 )t

2 sin(1
2 t)

dt

= −
1

2π

∫ π

0

{f(x+ t) − f(x− t)} cot
1

2
t.dt

= +
1

2π

∫ π

0

{f(x+ t) − f(x− t)}
cos(m+ 1

2 )t

sin 1
2 t

.dt

Hence

Sm(x) −

(

−
1

2π

∫ π

0

ψ(t) cot
1

2
t.dt

)

=

∫ π

0

1

2π
ψ(t)

cos(m+ 1
2 )t

sin(1
2 )t

.dt

Therefore,

Γλ

Γ(λ+ n)

n
∑

m=0

[

n

m

]

λm

{

Sm(x) −

(

−
1

2π

∫ π

0

ψ(t)
cos(1

2 t)

sin(1
2 t)

)}

=
1

2π

∫ π

0

ψ(t)
Γλ

Γ(λ+ n)

n
∑

m=0

[

n

m

]

λm cos(m+ 1
2 )t

sin(1
2 t)

dt

i.e.,

S−λ
n (x) −

(

−
1

2π

∫ π

0

ψ(t) cot
1

2
t.dt

)

=

∫ π

0

ψ(t)Kn(t).dt

=

[{

∫ 1/n

0

+

∫ π

1/n

}

∣

∣

∣
ψ(t)

∥

∥

∥
Kn(t)

∣

∣

∣
.dt

]

= I1 + I2, say (5.1)

Since the conjugate function exists therefore,

Γλ

Γ(λ+ n)

n
∑

m=0

[

n

m

]

λm

2π

∫ 1/n

0

ψ(t) cot
1

2
t.dt = o(1) as n→ ∞

Hence,

Γλ

Γ(λ + n)

n
∑

m=0

[

n

m

]

λm ·
1

2π

∫ 1/n

0

ψ(t)
1

2
t.dt− I1

=
1

2π

∫ 1/n

0

ψ(t)

[

cot
1

2
t−

Γλ

Γλ+ n

n
∑

m=0

[

n

m

]

λm cos
(

m+ 1
2

)

t

sin t
2

]

dt
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=
1

2π

∫ 1/n

0

ψ(t)

[

Γλ

Γλ+ n

n
∑

m=0

[

n

m

]

λm.

(

cos( t
2 ) − cos(m+ 1

2 )t
)

sin t
2

]

.

=
1

2π

∫ 1/n

0

ψ(t)
Γλ

Γλ +m

n
∑

m=0

[

n

m

]

λm

[

m
∑

p=0

2 sin pt

]

dt

=
1

2π

∫ 1/n

0

ψ(t)
Γλ

Γλ +m

n
∑

m=0

[

n

m

]

λmm.dt

i.e.,

≤ O(n)

∫ 1/n

0

|ψ(t)|dt

= O

∫ 1/n

0

|ψ(t)|dt

= O(n).o

(

1

n

α(n)

Pn

)

= .o

(

α(n)

Pn

)

= o(1) as n→ ∞ , by the hypothesis of the theorem.

Therefore I1 = o(1) as n→ ∞ (5.2)

Now by (2.1)

Kn(t) =
Re
{

eit/2 Γ(λeit+n)
Γ(λeit)

}

Γ(λ+ n). sin( t
2 )

= o

∣

∣

∣

∣

∣

∣

Re
{

eit/2 Γ(λeit+n)
Γ(λeit)

}

Γ(λ+ n). sin( t
2 )

∣

∣

∣

∣

∣

∣

= o

[

ReΓ(λeit + n)

Γ(λ+ n) sin( t
2 )

]

+ o

[

lmΓ(λeit + n)

Γ(λ + n)

]

= o

[

Γ(λ cos t+ n)

Γ(λ+ n) sin( t
2 )

]

+ o

[

Γ(λ cos t+ n)

Γ(λ+ n)
·
lmΓ(λeit + n)

Γ(λ cos t+ n)

]

For 1/n < t < π,

Kn(t) =

(

1

Γ(λ+ n) sin( 1
2n )

)

= o(1) as n→ ∞

Lastly, let us consider I2
since ψ(t) is bounded for 1/n < t < π,
therefore,

I2 = o(1)

∫ π

1/n

|ψ(t)|.dt = o(1), as n→ ∞ (5.3)
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From (5.1), (5.2) and (5.3) we get,

S−λ
n (x) −

(

−
1

2π

∫ π

0

ψ(t) cot
t

2
.dt

)

= o(1) as n→ ∞,

This is completes proof of theorem.

6. Corollaries

Following corollaries can be derived from our theorem:

Corollary 6.1. If ψ(t) =
∫ t

0
|ψ(u)|du = o(t), as t → +0 then the conjugate series of

Fourier series i.e. (2.5) is Kλ-summable to,

−
1

2π

∫ π

0

ψ(t) cot

(

1

2
t

)

dt

Corollary 6.2. If ψ(t) = o
(

t
log 1

t

)

, as t → +0 then the conjugate series of Fourier

series i.e. (2.5) is Kλ-summable to.

−
1

2π

∫ π

0

ψ(t) cot

(

1

2
t

)

dt
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