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CONSTANT CURVATURE SURFACES IN

A PSEUDO-ISOTROPIC SPACE

MUHITTIN EVREN AYDIN

Abstract. In this study, we deal with the local structure of curves and surfaces immersed

in a pseudo-isotropic space I
3
p that is a particular Cayley-Klein space. We provide the

formulas of curvature, torsion and Frenet trihedron for spacelike and timelike curves,

respectively. The causal character of all admissible surfaces in I
3
p has to be timelike up

to its absolute. We introduce the formulas of Gaussian and mean curvature for timelike

surfaces in I
3
p . As applications, we describe the surfaces of revolution which are the orbits

of a plane curve under a hyperbolic rotation with constant Gaussian and mean curvature.

1. Introduction and preliminaries

Let P
(

R
3
)

be the projective 3-space and (x0 : x1 : x2 : x3) the homogenous coordinates.

By a quadric, we mean a subset of points of P
(

R
3
)

described as zeros of a quadratic form

associated with a non-zero symmetric bilinear form of P
(

R
3
)

.

The Cayley-Klein 3-spaces can be defined in P
(

R
3
)

by an absolute figure, namely a se-

quence of quadrics and subspaces of P
(

R
3
)

, see [13, 16, 27, 30]. We are interested in a par-

ticular Cayley-Klein space, the pseudo-isotropic 3-space I
3
p . Its absolute is composed of the

quadruple
{

ω, f1, f2,F
}

, where ω is the plane at infinity, f1, f2 two real lines in ω, F the inter-

section of f1 and f2. In coordinate form, these arguments are given by

ω : x0 = 0, f1 : x0 = x1 = 0, f2 : x0 = x2 = 0, F (0 : 0 : 0 : 1) .

For further details, see [9, 14, 18, 19, 29].

Our framework is to concern an affine model of I
3
p via the coordinates

(

x = x1

x0
, y = x2

x0
, z = x3

x0

)

, x0 6= 0. The group of pseudo-isotropic motions is a six-parameter group

given by

(

x, y, z
)

7−→
(

x ′, y ′, z ′) :















x ′ = a +qx,

y ′ = b + 1
q y

(

q 6= 0
)

,

z ′ = c +d x +e y + z,

(1.1)
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where a,b,c ,d ,e, q ∈ R. The pseudo-isotropic metric is introduced by the absolute, i.e. d s2 =
d x2 −d y2. Note that this metric can be also viewed as d s2 = d xd y by standing x = (x + y)/2,

y = (x − y)/2.

The investigation of curves and surfaces in 3-spaces is a classical field of study in differ-

ential geometry. In spite of the fact that the cyclides in I
3
p , i.e. algebraic surfaces of order 4,

have been studied for many years; as far as we know, the local structure of curves and surfaces

in I
3
p has not been established.

Indeed, we found motivation for this paper in B. Divjak’s works ([10, 11, 22]), in which the

differential geometry of curves and surfaces in the pseudo-Galilean space is introduced by

generalizing that of the Galilean space. Intending a similar approach for the isotropic geom-

etry, we are interested in the local theory of curves and surfaces in I
3
p . For details of isotropic

geometry, see [1]-[4], [12, 15], [23]-[25], [31].

The fact that the pseudo-isotropic metric is indefinite requires to introduce some basic

notions (e.g. the causal character, the pseudo-angle, etc.) in I
3
p from the semi-Riemannian

geometry (see Section 2). For detailed properties of such a geometry see [6, 17, 26].

In Section 3, we show that each lightlike curve in I
3
p lies in the isotropic plane of the form

x±y = c , c ∈R. As the local structures of the non-lightlike curves, the formulas in I
3
p analogous

to the well-known Frenet’s formulas were given.

It is suprisingly observed in Section 4 that each immersed admissible surface in I
3
p is time-

like. The formulas of the Gaussian and the mean curvatures for timelike surfaces are also

introduced.

As several applications, in Section 5, we study and classify the surfaces of revolution,

imposing some natural curvature conditions.

2. Basics in the sense of pseudo-isotropic geometry

Let
(

x, y, z
)

be the isotropically orthogonal system in I
3
p . For some vector u ∈ I

3
p , let us

consider the projection onto x y−plane given by

u = (u1,u2,u3) 7−→ ũ = (u1,u2,0) ,

usually called top view. The pseudo-isotropic scalar product between two vectors u = (u1,u2,u3),

v = (v1, v2, v3) ∈ I
3
p can be defined as their Lorentzian scalar product in top view, namely

〈u, v〉 =u1v1−u2v2.

A line is said to be isotropic (resp. non-isotropic) if its point at infinity is (resp. no) the

absolute point F . Moreover, a plane is said to be isotropic (resp. non-isotropic) if its line at

infinity contains (resp. does not) the absolute point F . In the affine model of I3p , the isotropic



CONSTANT CURVATURE SURFACES IN A PSEUDO-ISOTROPIC SPACE 223

lines and planes are parallel to the z−axis. In the non-isotropic planes, the Lorentzian metric

is basically used.

A nonzero vector u is said to be isotropic (resp. non-isotropic) if ũ = 0 (resp. ũ 6= 0). The

zero vector is assumed to be non-isotropic. A non-isotropic vector u ∈ I
3
p is respectively called

spacelike, timelike and lightlike (or null) if 〈u,u〉 > 0 or u = 0, 〈u,u〉< 0 and 〈u,u〉 = 0 (u 6= 0).

The set of all lightlike vectors of I3p is called lightlike cone, i.e.,

Λ=
{

(u1,u2,u3) ∈ I
3
p

∣

∣

∣u2
1 −u2

2 = 0
}

−
{

0 ∈ I
3
p

}

.

Denote T the set of all timelike vectors in I
3
p . For some u ∈T , the set given by

C (u) = {v ∈T : 〈u, v〉 < 0}

is called the timelike cone of I3p containing u.

The pseudo-isotropic angle of two timelike non-isotropic vectors u, v ∈ I
3
p lying in the

same timelike-cone is defined as the Lorentzian angle between ũ and ṽ , i.e.

〈u, v〉=−
√

−〈u,u〉
√

−〈v, v〉coshφ.

Note that all isotropic vectors are isotropically orthonogal to non-isotropic ones. Further, two

non-isotropic vectors u, v in I
3
p are orthonogal if 〈u, v〉 = 0.

3. Spacelike and timelike curves in I
3
p

Let α(s) =
(

x (s) , y (s) , z (s)
)

be a regular curve in I
3
p , i.e. α′ (s) = dα

ds 6= 0 for all s. Then it is

said to be admissible if α(s) has no isotropic osculating plane. An admissible curve α(s) in I
3
p

is said to be spacelike (resp. timelike, lightlike) if α′ (s) is spacelike (resp. timelike, lightlike)

for all s.

An easy computation shows that all lightlike curves lie in the isotropic plane of the form

x ± y = c , c ∈R.

Henceforth, we are only interested in spacelike and timelike admissible curves.

Now let α=α(s) be a spacelike curve in I
3
p parameterized by arc-length s. Then we have

〈

α′,α′〉= x ′2 (s)− y ′2 (s) = 1 (3.1)

for all s. Taking derivative of (3.1) gives

x ′ (s) x ′′ (s)− y ′ (s) y ′′ (s)= 0. (3.2)
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Introduce t (s)=α′ (s) and call it tangent vector of α at s. Because t′ (s)=α′′ (s) is timelike in I
3
p

we can define the following

κ=
√

y ′′2 (s)−x ′′2 (s),

called curvature of α at s. Using (3.2), we get

κ (s)=
y ′′ (s)

x ′ (s)
or κ=

x ′′ (s)

y ′ (s)
,

(

x ′ (s) y ′ (s) 6= 0
)

. (3.3)

Considering (3.1) and (3.2) into (3.3) we find

κ (s)= det
(

α̃′ (s) , α̃′′ (s)
)

. (3.4)

Let the normal vector and torsion of α at s be introduced by, respectively

n(s) =
1

κ (s)
t′ (s) and τ (s)=

det
(

α′ (s) ,α′′ (s) ,α′′′ (s)
)

κ2 (s)
, κ (s) 6= 0. (3.5)

Because b (s) = (0,0,1) is isotropically orthogonal to both t (s) and n(s) , we can take it as the

binormal vector of α at s. From (3.5) we have

n′ (s)=
(

1

κ (s)

)′
(

x ′′ (s) , y ′′ (s) , z ′′ (s)
)

+
1

κ (s)

(

x ′′′ (s) , y ′′′ (s) , z ′′′ (s)
)

. (3.6)

Introduce n′ (s)= (n1 (s) ,n2 (s) ,n3 (s)). Hence we write

n1 (s)=
(

1

κ (s)

)′
x ′′ (s)+

1

κ (s)
x ′′′ (s) . (3.7)

Using (3.4) into (3.7) yields

n1 (s) =−
x ′ (s)

κ2 (s)

(

x ′′ (s) y ′′′ (s)−x ′′′ (s) y ′′ (s)
)

. (3.8)

By taking derivative of (3.2) and then considering into (3.8) we obtain

n1 (s) =κ (s) x ′ (s) . (3.9)

Similar computations gives

n2 (s)= κ (s) y ′ (s) . (3.10)

For the third component of n′, we have

n3 (s)=
(

1

κ (s)

)′
z ′′ (s)+

1

κ (s)
z ′′′ (s) .

It follows from (3.4) that

n3 =
1

κ2

{

−
(

x ′y ′′′−x ′′′y ′)z ′′+
(

x ′y ′′−x ′′y ′)z ′′′} . (3.11)
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By adding and substracting
(

x ′′ (s) y ′′′ (s)− y ′′ (s) x ′′′ (s)
)

z ′ (s) in (3.11) we conclude

n3 (s) =
1

κ2 (s)

{

det
(

α′ (s) ,α′′ (s) ,α′′′ (s)
)

−
(

x ′′ (s) y ′′′ (s)−x ′′′ (s) y ′′ (s)
)

z ′ (s)
}

. (3.12)

Taking derivative of (3.2) and considering into (3.12) implies

n3 (s)= τ (s)+κ (s) z ′ (s) . (3.13)

(3.9), (3.10) and (3.13) conclude that n′ (s) =κ (s)t (s)+τ (s)b (s). Thus we obtain the formulas

analogous to these of Frenet as follows

d

d s









t

n

b









=









0 κ 0

κ 0 τ

0 0 0

















t

n

b









By similar arguments, we can find the Frenet’s formulas for a timelike curve in I
3
p as

d

d s









t

n

b









=









0 κ 0

κ 0 −τ
0 0 0

















t

n

b









where

κ (s) =
√

x ′′2 (s)− y ′′2 (s) =−det
(

α̃′ (s) , α̃′′ (s)
)

and τ=
det

(

α′ (s) ,α′′ (s) ,α′′′ (s)
)

κ2 (s)
.

Example 3.1. Let a spacelike curve of arc-length in I
3
p be given by

α(s)=
1

2

(

s2, s
√

s2 −1− ln
∣

∣

∣s +
√

s2 −1
∣

∣

∣ ,2s
)

(3.14)

for s ∈
(

1, 3π
2

)

. Its curvature and torsion writes κ (s) =−τ (s) = 1p
s2−1

. Notice that such a curve

can be viewed as a general helix because the ratio τ(s)
κ(s)

is a constant. In addition, it is easy to

see that one satisfies the Frenet’s formulas. We plot it as in Figure 1.

Example 3.2. Let us consider a hyperbolic cylindrical curve (see [7]) in I
3
p given by

α(s)= (cosh s, sinh s, z (s)) . (3.15)

We plot it as in Figure 2. This is a timelike curve of arc-length in I
3
p with κ (s) = 1 and

τ (s) = z ′ (s)− z ′′′ (s) . (3.16)

It is clear that one satisfies the Frenet’s formulas. In addition, if α has constant torsion τ0,

then by solving (3.16) we find

z (s)= τ0s +c1e s −c2e−s +c3, c1,c2,c3 ∈R,

which gives the following elemantary result:
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Proposition 3.1. Let α be a hyperbolic cylindrical curve in I
3
p with constant torsion τ0. Then it

is of the form

α(s)=
(

cosh s, sinh s,τ0s +c1e s −c2e−s +c3

)

,

where c1,c2,c3 ∈R.

Figure 1: A spacelike general helix with τ(s)
κ(s) =−1, s ∈ (1,3π/2).

Figure 2: A hyperbolic cylindrical curve with τ0 = 3, s ∈ (−π,π).

4. Timelike surfaces in I
3
p

Let M be a surface immersed in I
3
p without isotropic tangent planes. Then we call such a

surface admissible. Assume that M has a local parameterization in I
3
p as follows:

r : D ⊆R
2 −→ I

3
p , (u1,u2) 7−→

(

x (u1,u2) , y (u1,u2) , z (u1,u2)
)

for smooth real-valued functions x, y, z on a domain D ⊆ R
2. Let g be the induced metric on

M from I
3
p and denote

(

gi j

)

its matrical expression with respect to the basis
{

ru1
,ru2

}

. Then

we have

gi j =
〈

rui
,ru j

〉

, rui
=

∂r

∂ui
, i , j = 1,2.
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It is easy to see that

det
(

gi j

)

=−
(

xu1
yu2

−xu2
yu1

)2
.

Here the admissibility assures det
(

gi j

)

6= 0. In other words, one concludes that admissible

surfaces are all timelike.

The unit normal vector field of M is the isotropic vector ξ= (0,0,1) because it is isotropi-

cally orthogonal to the tangent plane of M at each point.

In order to introduce the second fundamental form of M , we follow the similar way with

Sachs (see [28, p. 155]). Let r (s) be an arc-length curve on M and t its tangent vector. We can

take a side tangential vector σ in the tangent plane of M such that {t,σ} is a positive oriented

base. Therefore we have a decomposition:

r′′ =
d 2r

d s2
=κn = κgσ+κnξ,

where n, κg and κn are the normal vector, geodesic and normal curvatures of r on M , respec-

tively. Put σ= a1ru1
+a2ru2

. Because 〈t,σ〉 = 0 and t = ru1

du1

ds +ru2

du2

ds , we get

a1 = θ

(

g12
du1

d s
+ g22

du2

d s

)

, a2 =−θ
(

g11
du1

d s
+ g12

du2

d s

)

,

where θ = θ (u1,u2) is some nonzero smooth function. Then we achieve

1 = det
(

t̃, σ̃
)

=−
√

∣

∣det
(

gi j

)∣

∣θ

and hence

σ=−
1

√

∣

∣det
(

gi j

)∣

∣

[(

g12
du1

d s
+ g22

du2

d s

)

ru1
−

(

g11
du1

d s
+ g12

du2

d s

)

ru2

]

.

Accordingly, we compute that

κn = det
(

r′,σ,r′′
)

=
1

√

∣

∣det
(

gi j

)∣

∣

det
(

ru1
,ru2

,r′′
)

=
1

√

∣

∣det
(

gi j

)∣

∣

2
∑

i , j=1

det
(

ru1
,ru2

,rui u j

)

(

dui

d s

)(

du j

d s

)

,

which leads to the components of the second fundamental form given by

hi j =
det

(

ru1
,ru2

,rui u j

)

√

∣

∣det
(

gi j

)∣

∣

, rui u j
=

∂2r

∂ui∂u j
, i , j = 1,2.

Thus the Gaussian curvature and the mean curvature of M are respectively defined by

K =
det

(

hi j

)

det
(

gi j

) (4.1)
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and

H =
g11h22 −2g12h12 + g22h11

2det
(

gi j

) . (4.2)

By permutation of the coordinates, two different types of graph surfaces appear up to the

absolute of I3p . For a graph of the function u = u
(

x, y
)

, the formulas (4.1) and (4.2) reduce to

K =−uxx uy y +
(

ux y

)2
, H =

1

2

(

uxx −uy y

)

.

Because the metric on the graph surface induced from I
3
p is g = d x2 −d y2, it always becomes

a flat surface. So, its Laplacian turns to

△=
∂2

∂u2
1

−
∂2

∂u2
2

.

On the other side, the Gaussian and mean curvatures of the graph of u = u
(

y, z
)

are given

by

K =−
uy y uzz −

(

uy z

)2

(uz )4
, H =

(uz )2 uy y −2uy uz uy z +
(

(

uy

)2 −1
)

uzz

2(uz )3
,

where uz 6= 0 due to the admissibility.

5. Constant curvature surfaces of revolution in I
3
p

Da Silva [8] provided via hyperbolic numbers that the pseudo isotropic motion given by

x̄ = qx, ȳ = 1
q y, q 6= 0 is equivalent to the hyperpolic rotation (about z−axis) given by

x̄ = x coshθ+ y sinhθ, ȳ = x sinhθ+ y coshθ, (5.1)

where θ ∈R.

Let u 7−→
(

u,0, f (u)
)

be a spacelike admissible curve lying in the isotropic xz−plane of I3p

for a smooth function f . Rotating it around z−axis via hyperbolic rotations given by (5.1) we

derive

r (u, v)=
(

u cosh v,u sinhv, f (u)
)

. (5.2)

We call the rotating curve profile curve. If the profile curve is a timelike curve u 7−→
(

0,u, f (u)
)

lying in the isotropic y z−plane of I3p , then rotating it around z−axis yields

r (u, v)=
(

u sinh v,u coshv, f (u)
)

. (5.3)

The surfaces given by (5.2) and (5.3) are called surfaces of revolution in I
3
p . The Gaussian cur-

vature of these surfaces in I
3
p is

K =
f ′ f ′′

u
, (5.4)
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where f ′ (u)= d f
du , etc.

Now we assume that it has nonzero constant Gaussian curvature K0 in I
3
p . Then (5.4) can

be rewritten as

f ′ =
√

c1 +K0u2,c1 ∈R. (5.5)

After integrating (5.5), we obtain

f (u)=
u

2

√

c1 +K0u2 +
c1

2
p

K0

ln

(

2K0u +2
√

K0

√

c1 +K0u2

)

+c2, c2 ∈R

which implies the following result.

Theorem 5.1. Let M be a surface of revolution in I
3
p with nonzero constant Gaussian curvature

K0. Then its profile curve is of the form
(

u,0, f (u)
)

, where

f (u) =
u

2
ψ (u)+

c1

2
p

K0

ln
∣

∣

∣2
√

K0

(

√

K0u +ψ (u)
)∣

∣

∣+c2

for ψ (u)=
√

c1 +K0u2, c1,c2 ∈R.

From (5.4), we immediately have the following.

Corollary 5.1. A surface of revolution is flat in I
3
p if and only if its profile curve is a non-isotropic

line given by (u,0,c1u +c2) , c1,c2 ∈R.

The mean curvature H of a surface of revolution M in I
3
p is

H =
1

2

(

f ′

u
+ f ′′

)

. (5.6)

Assume that M has constant mean curvature H0. After solving (5.6) we deduce

f (u)=
H0

2
u2 +c1 ln |u|+c2, c1,c2 ∈R.

Therefore we have proved the following results.

Theorem 5.2. Let M be a surface of revolution in I
3
p with constant mean curvature H0. Then its

profile curve is of the form
(

u,0, f (u)
)

, where

f (u)=
H0

2
u2 +c1 ln |u|+c2, c1,c2 ∈R.

Corollary 5.2. A surface of revolution is minimal in I
3
p if and only if its profile curve is a non-

isotropic curve given by (u,0,c1 lnu +c2) , c1,c2 ∈R.
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Example 5.1. Let the surfaces of revolution in I
3
p be given by

r (u, v) = (u cosh v,u sinhv,u), (u, v)∈ [1,2]× [0,1]

and

r (u, v) =
(

u cosh v,u sinhv, lnu +u2
)

, (u, v)∈ [1,2]× [−1,1] .

The above first surface is flat and the second is a constant mean curvature surface of revolu-

tion, H = 2. We plot these as in Figure 3 and Figure 4, respectively.

Figure 3: A flat surface of revolution, K = 0.

Figure 4: A constant curvature surface of revolution, H = 2.

6. Surfaces of revolution with H 2 = K in I
3
p

Next we aim to classify the surfaces of revolution given by (5.2) in I
3
p that satisfy H 2 = K

which is the equality sign of the Euler inequality. For more generalizations of the well-known

inequality, see [5, 20, 21].
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By considering (5.4) and (5.6), we have

1

4

(

(

f ′

u

)2

+2
f ′ f ′′

u
+

(

f ′′)2

)

=
f ′ f ′′

u
. (6.1)

We can rewrite (6.1) as
(

f ′

u
− f ′′

)2

= 0,

which implies
f ′

u
− f ′′ = 0.

After solving this, we obtain

f (u)= c1
u2

2
+c2 (6.2)

for c1,c2 ∈ R. By comparing (5.2) with (6.2) we see that the surface of revolution can be given

in explicit form

z =
c1

2

(

x2 − y2
)

+c2, (6.3)

which implies the following result.

Theorem 6.1. The surfaces of revolution given by (5.2) in I
3
p with H 2 = K are only the spheres

of parabolic type.

Example 6.1. Consider the sphere of parabolic type in I
3
p given by (6.3) such that c1 = 2 and

c2 = 0. Then its Gaussian and mean curvatures become H = 2 and K = 4. We plot it as in Figure

5.

Figure 5: A surface of revolution with H 2 = K .
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