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PERTURBED SMOOTHING APPROACH TO

THE LOWER ORDER EXACT PENALTY FUNCTIONS

FOR NONLINEAR INEQUALITY CONSTRAINED OPTIMIZATION

NGUYEN THANH BINH, YANQIN BAI, XIN YAN AND TOUNA YANG

Abstract. In this paper, we propose two new smoothing approximation to the lower order

exact penalty functions for nonlinear optimization problems with inequality constraints.

Error estimations between smoothed penalty function and nonsmooth penalty function

are investigated. By using these new smooth penalty functions, a nonlinear optimiza-

tion problem with inequality constraints is converted into a sequence of minimizations

of continuously differentiable function. Then based on each of the smoothed penalty

functions, we develop an algorithm respectively to finding an approximate optimal solu-

tion of the original constrained optimization problem and prove the convergence of the

proposed algorithms. The effectiveness of the smoothed penalty functions is illustrated

through three examples, which show that the algorithm seems efficient.

1. Introduction

Consider the following nonlinear constrained optimization problem:

(P) : min f (x)

s.t. gi (x) ≤ 0, i ∈ I = {1,2, . . . ,m},

x ∈R
n ,

where f : Rn →R and gi : R
n →R, i ∈ I , are twice continuously differentiable functions.

Let X0 = {x ∈ R
n | gi (x) ≤ 0, i ∈ I } be the feasible set of (P) and we assume that X0 is not

empty.

Penalty function method is a powerful method for solving general nonlinear constrained

optimization problem. It converts the constrained optimization problem to a series of un-

constrained problems, by adding a penalty term to the objective function. By adjusting the
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penalty parameter, the solutions of these unconstrained problems converge to the optimal

solution of the original constrained optimization problem.

Conventional quadratic penalty function method usually requires that the penalty pa-

rameter tends to infinity, which is undesirable in practical computation. To tackle this issue,

the l1 exact penalty function is developed:

ψ1
ρ(x) = f (x)+ρ

m
∑

i=1

max{0, gi (x)}, (1.1)

where ρ > 0 is a penalty parameter. It is proved that there exists a fixed constant ρ0 > 0, for

any ρ > ρ0, any global solution of the exact penalty problem is also a global solution of the

original problem. Therefore, the exact penalty function methods have been widely used for

solving constrained optimization problems (see, e.g., [1, 6, 7, 8, 12, 19]).

Since the traditional l1 exact penalty function is not a smooth function, which prevents

the use of gradient-based method and causes some numerical instability problems in its im-

plementation, when the value of the penalty parameter becomes large[6, 7, 8, 12]. In order

to use existing gradient-based algorithms, such as Newton method, it is necessary to smooth

the exact penalty function. Thus, the smoothing of the exact penalty function attracts much

attention (see, e.g., [3, 5, 9, 11, 14, 20]).

In the literature of [16], a novel exact penalty method was proposed for solving semi-

infinite programming problems, and later, by introducing a new variable, this exact penalty

function method was extended to solve nonlinear mixed discrete programming problems

[17]. Furthermore, exact penalty function method was proposed for solving a class of discrete-

valued optimal control problems [18]. It is shown that if the value of the penalty parameter is

sufficiently large, then any local minimizer of the corresponding unconstrained optimization

problem is a local minimizer of the original problem.

Recently, a class of lower order penalty functions has been investigated in [13] as the

following form

ψk
ρ(x) = f (x)+ρ

m
∑

i=1

max{0, gi (x)}k , (1.2)

where k ∈ (0, 1). Correspondingly, the lower order penalty problem and the original problem

have the same set of global minima when the penalty parameter is sufficiently large. Obvi-

ously, if k = 1 the lower order penalty function ψk
ρ(x) is reduced to the l1 exact penalty func-

tion. However, both the penalty function ψk
ρ(x) (0 < k < 1) and the l1 exact penalty function

are not differentiable at x such that gi (x) = 0 for some i ∈ I . When k =
1
2 , Meng et al. [9]

discussed two smoothing approximations to the lower order penalty function for inequality

constrained optimization. Binh [4] and Wu et al. [13] also proposed the ǫ-smoothing of (1.2),

and obtained a modified exact penalty function under some mild conditions. Wu et al. [14]
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proposed a quadratic smoothing approximation to the l1 exact penalty function. It is shown

that under certain conditions, any global minimizer of the smoothed penalty problem is a

global minimizer of the original problem when the penalty parameter is sufficiently large.

In this study, motivated by the smoothing techniques in [13, 14], we introduce a new

smoothing approximation to the lower order penalty functions. First, we define a new smooth-

ing function pk
ǫ,ρ(t ) : R → R as follows:

pk
ǫ,ρ(t )=



























0 if t ≤ 0,

m2ρ2

6ǫ2
t 3k

+
mρ

4ǫ
t 2k if 0 ≤ t ≤

(

ǫ
mρ

) 1
k

,

t k
−

7ǫ

12mρ
if t ≥

(

ǫ
mρ

)
1
k

,

where 1
2
< k < 1, ǫ> 0 and ρ > 0. By considering this smoothing function, a perturbed smooth

exact penalty function ψk
ǫ,ρ(x) is obtained. Using the perturbed smoothing exact penalty

function, we are able to convert a constrained optimization problem into the minimizations

of a sequence of continuously differentiable functions. Then we propose an algorithm for

solving the corresponding penalty problem and discuss its convergence property. We test

problems to demonstrate the effectiveness of the proposed algorithm and compare the re-

sults obtained with other similar algorithms.

The rest of this paper is organized as follows. In Section 2, we propose a new smooth-

ing method for smoothing the lower order penalty function (1.2) to obtain a first-order con-

tinuously differentiable penalty function, we prove some results for error estimates among

the optimal objective function values of the nonsmooth penalty problem, smoothed penalty

problem and original constrained optimization problem. In Section 3, we propose another

method for smoothing the lower order penalty function (1.2) to obtain a second-order con-

tinuously differentiable penalty function, and some of its fundamental properties are proved.

In Section 4, based on each of the smoothed penalty function, we construct the minimization

algorithm respectively to finding an approximate optimal solution of the constrained opti-

mization problems. In Section 5, some numerical examples are given. Finally, conclusions

are discussed in Section 6.

2. A new first-order perturbed smoothing method

Consider the non-lipschitz function:

pk (t ) =

{

0 if t ≤ 0,

t k if t ≥ 0,
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where 0 < k < 1. Clearly, the function pk (t ) is not differentiable for 0 < k < 1. It was shown

in [4, 11] that the pk (t ) is used to define an exact penalty function for solving constrained

optimization problems. We have the following low order penalty function:

ψk
ρ(x) = f (x)+ρ

m
∑

i=1

pk (gi (x)), (2.1)

and the corresponding penalty problem

(Pρ) : min ψk
ρ(x) s.t. x ∈R

n .

To proceed, we need the following assumption.

Assumption 2.1. f (x) satisfies the following coercive condition:

lim
‖x‖→+∞

f (x) =+∞.

Under Assumption 2.1, there exists a box X such that G(P) ⊂ int(X ), where G(P) is the set

of global solutions of (P). Let int(X ) be the interior of the set X .

Consider the following problem:

(P ′) : min f (x)

s.t. gi (x) ≤ 0, i ∈ I ,

x ∈ X ⊂R
n .

Let G(P ′) denote the set of global solutions of (P ′). Then G(P ′) =G(P).

In this paper, we say that the pair (x∗,λ∗) satisfies the second-order sufficiency condition

[[2], page 169] if

∇x L(x∗,λ∗) = 0,

gi (x∗) ≤ 0, i = 1, . . . ,m,

λ∗
≥ 0, i = 1, . . . ,m,

yT
∇

2L(x∗,λ∗)y > 0, for any y ∈V (x∗),

where L(x,λ) = f (x)+
∑m

i=1λi gi (x) and

V (x∗) =

{

y ∈R
n

∣

∣

∣

∣

∣

∇
T gi (x∗)y = 0, i ∈ A(x∗)

∇
T gi (x∗)y ≤ 0, i ∈ B (x∗)

}

,

A(x∗) = {i ∈ I |gi (x∗) = 0, λ∗
i > 0},

B (x∗) = {i ∈ I |gi (x∗) = 0, λ∗
i = 0}.
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Now, we consider following penalty problem:

(P ′
ρ) : min ψk

ρ(x) s.t. x ∈ X .

By Corollary 2.3 in [13] and Theorem 2.1 in [14], we have the following lemma:

Lemma 2.1. Under Assumption 2.1, and for any x∗ ∈ G(P), there exists a µ ∈ R
m
+ such that

the pair (x∗,µ∗) satisfies the second-order sufficiency condition of problem (P). Suppose the set

G(P) is a finite set. Then there exists a ρ0 > 0 such that when ρ > ρ0, G(P) =G(P ′
ρ), where G(P ′

ρ)

is the set of global solutions of (P ′
ρ).

Next, we consider the smoothing penalty function of the lower order penalty function

(2.1). As previously mentioned, for 1
2 < k < 1, ǫ > 0 and ρ > 0, the function pk

ǫ,ρ(t ) is defined

as:

pk
ǫ,ρ(t )=



























0 if t ≤ 0,

m2ρ2

6ǫ2
t 3k

+
mρ

4ǫ
t 2k if 0 ≤ t ≤

(

ǫ
mρ

)
1
k

,

t k
−

7ǫ

12mρ
if t ≥

(

ǫ
mρ

)
1
k

.

Note that, the behavior of pk (t ) and pk
ǫ,ρ(t ) is illustrated in Figure 1. In the following, we

discuss the properties of pk
ǫ,ρ(t ).

Lemma 2.2. For any ǫ> 0, ρ > 0, we have

(i) pk
ǫ,ρ(t ) is continuously differentiable for 1

2 < k < 1 on R, where

[pk
ǫ,ρ(t )]′ =























0 if t ≤ 0,

km2ρ2

2ǫ2
t 3k−1

+
kmρ

2ǫ
t 2k−1 if 0 ≤ t ≤

(

ǫ
mρ

)
1
k

,

k t k−1 if t ≥
(

ǫ
mρ

)
1
k

.

(ii) lim
ǫ→0

pk
ǫ,ρ(t )= pk (t ).

(iii) pk (t )≥ pk
ǫ,ρ(t ), ∀t ∈R.

Proof. (i) We prove that pk
ǫ,ρ(t ) is continuously differentiable, i.e. [pk

ǫ,ρ(t )]′ is continuous. Ac-

tually, we only need to prove that [pk
ǫ,ρ(t )]′ continuous at the separating points: 0 and ( ǫ

mρ
)

1
k .

(1) For t = 0, we have

lim
t→0−

[pk
ǫ,ρ(t )]′ = lim

t→0−
0 = 0, lim

t→0+
[pk

ǫ,ρ(t )]′ = lim
t→0+

[

km2ρ2

2ǫ2
t 3k−1

+
kmρ

2ǫ
t 2k−1

]

= 0,
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which implies that

lim
t→0−

[pk
ǫ,ρ(t )]′ = lim

t→0+
[pk

ǫ,ρ(t )]′ = 0= [pk
ǫ,ρ(0)]′.

Thus, [pk
ǫ,ρ(t )]′ is continuous at t = 0.

(2) For t = ( ǫ
mρ )

1
k , we have

lim
t→

[

( ǫ
mρ

)
1
k

]−
[pk

ǫ,ρ(t )]′ = lim
t→

[

( ǫ
mρ

)
1
k

]−

[

km2ρ2

2ǫ2
t 3k−1

+
kmρ

2ǫ
t 2k−1

]

= k

(

ǫ

mρ

)
k−1

k

,

lim

t→
[

( ǫ
mρ

)
1
k

]+
[pk

ǫ,ρ(t )]′ = lim

t→
[

( ǫ
mρ

)
1
k

]+
k t k−1

= k

(

ǫ

mρ

)
k−1

k

,

which implies that

lim
t→

[

( ǫ
mρ

)
1
k

]−
[pk

ǫ,ρ(t )]′ = lim

t→
[

( ǫ
mρ

)
1
k

]+
[pk

ǫ,ρ(t )]′ = k

(

ǫ

mρ

)
k−1

k

=

[

pk
ǫ,ρ

(

(
ǫ

mρ
)

1
k

)]′

.

Thus, [pk
ǫ,ρ(t )]′ is continuous at t = ( ǫ

mρ )
1
k .

Figure 1: The behavior of pk (t ) and pk
ǫ,ρ(t ).
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(ii) For any t ∈R, by the definition of pk (t ) and pk
ǫ,ρ(t ) we have

pk (t )−pk
ǫ,ρ(t ) =



























0 if t ≤ 0,

t k
−

mρ

4ǫ
t 2k

−
m2ρ2

6ǫ2
t 3k if 0≤ t ≤

(

ǫ
mρ

) 1
k

,

7ǫ

12mρ
if t ≥

(

ǫ
mρ

)
1
k

.

If 0 ≤ t ≤
(

ǫ
mρ

)
1
k

, let u = t k . Then, we have 0 ≤u ≤ ǫ
mρ

. Consider the function:

H (u)= u −
mρ

4ǫ
u2

−
m2ρ2

6ǫ2
u3, 0≤ u ≤

ǫ

mρ
,

and we have

H ′(u)= 1−
mρ

2ǫ
u −

m2ρ2

2ǫ2
u2, 0 ≤ u ≤

ǫ

mρ
.

Obviously, H ′(u) ≥ 0 for 0 ≤u ≤
ǫ

mρ . Moreover, H (0)= 0 and H ( ǫ
mρ ) = 7ǫ

12mρ . Hence, we have

0 ≤ pk (t )−pk
ǫ,ρ(t )≤

7ǫ

12mρ
.

That is,

lim
ǫ→0

pk
ǫ,ρ(t )= pk (t ).

(iii) For any t ∈R, from (ii), we have

pk (t )−pk
ǫ,ρ(t ) ≥ 0,

which is pk (t )≥ pk
ǫ,ρ(t ).

This completes the proof. ���

Consider the perturbed smooth exact penalty function as follows:

ψk
ǫ,ρ(x) = f (x)+ρ

m
∑

i=1

pk
ǫ,ρ

(

gi (x)
)

, (2.2)

where ǫ > 0, ρ > 0. Clearly, ψk
ǫ,ρ(x) is continuously differentiable at any x ∈ R

n . The corre-

sponding smoothed optimization problem is:

(SPǫ,ρ) : min ψk
ǫ,ρ(x) s.t. x ∈ X .

Lemma 2.3. We have that

0 ≤ψk
ρ(x)−ψk

ǫ,ρ(x) ≤
7ǫ

12
, (2.3)

for any x ∈ X , ǫ> 0 and ρ > 0.

Proof. For any x ∈ X , we have

ψk
ρ(x)−ψk

ǫ,ρ(x) =ρ
m
∑

i=1

(

pk (gi (x))−pk
ǫ,ρ(gi (x))

)

.



44 NGUYEN THANH BINH, YANQIN BAI, XIN YAN AND TOUNA YANG

Note that

pk
(

gi (x)
)

−pk
ǫ,ρ

(

gi (x)
)

=



























0 if gi (x) ≤ 0,

[gi (x)]k
−

m2ρ2

6ǫ2
[gi (x)]3k

−
mρ

4ǫ
[gi (x)]2k if 0 ≤ gi (x) ≤

(

ǫ
mρ

)
1
k

,

7ǫ

12mρ
if gi (x) ≥

(

ǫ
mρ

)
1
k

,

for any i ∈ I .

From the proof of Lemma 2.2, we have

0 ≤

m
∑

i=1

(

pk (gi (x))−pk
ǫ,ρ(gi (x))

)

≤
7ǫ

12ρ
,

which implies that

0 ≤ρ
m
∑

i=1

(

pk (gi (x))−pk
ǫ,ρ(gi (x))

)

≤
7ǫ

12
,

and hence we have

0 ≤ψk
ρ(x)−ψk

ǫ,ρ(x) ≤
7ǫ

12
.

This completes the proof. ���

Lemma 2.3 mean that the gap between ψk
ρ(x) and ψk

ǫ,ρ(x) can be arbitrarily small if the

smoothing parameter ǫ is sufficiently small.

Lemma 2.4. Let x∗ and x∗
ρ ∈ X be the optimal solutions of (P ′) and (P ′

ρ), respectively. If x∗
ρ is a

feasible solution of (P ′), x∗
ρ is an optimal solution of (P ′).

Proof. Under the given conditions, we have

f (x∗
ρ ) =ψk

ρ(x∗
ρ ) ≤ψk

ρ(x∗) = f (x∗),

which is

f (x∗
ρ ) ≤ f (x∗).

Since x∗ is an optimal solution and x∗
ρ is feasible of (P ′), we have

f (x∗
ρ ) ≥ f (x∗).

Therefore, x∗
ρ is an optimal solution of (P ′). ���

Theorem 2.5. Let x∗
ρ and x∗

ǫ,ρ ∈ X be the optimal solutions of (P ′
ρ) and (SPǫ,ρ), respectively, for

some ρ > 0 and ǫ> 0. Then, we have that

0 ≤ψk
ρ(x∗

ρ )−ψk
ǫ,ρ(x∗

ǫ,ρ) ≤
7ǫ

12
. (2.4)
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Proof. From Lemma 2.3, we obtain

0≤ψk
ρ(x∗

ρ )−ψk
ǫ,ρ(x∗

ρ ) ≤ψk
ρ(x∗

ρ )−ψk
ǫ,ρ(x∗

ǫ,ρ)

≤ψk
ρ(x∗

ǫ,ρ)−ψk
ǫ,ρ(x∗

ǫ,ρ)

≤
7ǫ

12
.

Therefore,

0 ≤ψk
ρ(x∗

ρ )−ψk
ǫ,ρ(x∗

ǫ,ρ) ≤
7ǫ

12
.

This completes the proof. ���

Lemma 2.1 and Theorem 2.5 yield the following theorem:

Theorem 2.6. Suppose that x∗ satisfies the assumptions of Lemma 2.1. Let x∗ and x∗
ǫ,ρ ∈ X be

the optimal solutions of (P) and (SPǫ,ρ), respectively. Then there exists ρ0 > 0 such that for any

ρ > ρ0, it holds that

0 ≤ f (x∗)−ψk
ǫ,ρ(x∗

ǫ,ρ) ≤
7ǫ

12
. (2.5)

Proof. From Lemma 2.1, we have that x∗ is an optimal solution of (P ′
ρ). Then from Theorem

2.5, we have

0 ≤ψk
ρ(x∗)−ψk

ǫ,ρ(x∗
ǫ,ρ) ≤

7ǫ

12
.

Note that

ψk
ρ(x∗) = f (x∗)+ρ

m
∑

i=1

pk (gi (x∗)).

Since
∑m

i=1 pk (gi (x∗)) = 0, we have ψk
ρ(x∗) = f (x∗). Thus, we have that

0 ≤ f (x∗)−ψk
ǫ,ρ(x∗

ǫ,ρ) ≤
7ǫ

12
.

This completes the proof. ���

Theorem 2.7. Suppose that x∗
ρ satisfies the conditions in Lemma 2.4 and x∗

ǫ,ρ ∈ X is an optimal

solution of (SPǫ,ρ) for some ρ > 0 and ǫ> 0. If x∗
ǫ,ρ is feasible solution of (P), then we have that

0 ≤ f (x∗
ρ )− f (x∗

ǫ,ρ) ≤
7ǫ

12
. (2.6)

i.e., x∗
ǫ,ρ is an approximate optimal solution of (P).

Proof. By Theorem 2.5, we have

0 ≤ f (x∗
ρ )+ρ

m
∑

i=1

pk (gi (x∗
ρ ))−

(

f (x∗
ǫ,ρ)+ρ

m
∑

i=1

pk
ǫ,ρ(gi (x∗

ǫ,ρ))

)

≤
7ǫ

12
.
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Since x∗
ρ and x∗

ǫ,ρ are feasible solutions of (P), we have

m
∑

i=1

pk (gi (x∗
ρ )) =

m
∑

i=1

pk
ǫ,ρ(gi (x∗

ǫ,ρ)) = 0.

Therefore,

0≤ f (x∗
ρ )− f (x∗

ǫ,ρ)≤
7ǫ

12
.

From Lemma 2.4, x∗
ρ is actually an optimal solution of (P). Thus, x∗

ǫ,ρ is an approximate opti-

mal solution of (P). This completes the proof. ���

By Theorem 2.7, we conclude that the difference between the objective function values

on an optimal solution of (SPǫ,ρ) and an optimal solution of (P) can be controlled through

the smoothing parameter ǫ, and the optimal solution of (SPǫ,ρ) is an approximate optimal

solution of (P) if x∗
ρ and x∗

ǫ,ρ are feasible.

Now, we assume that the problem (P) is convex. By Proposition 2.1 in [14], the corre-

sponding smooth penalty problem (SPǫ,ρ) for (P) is a convex problem. The following theorem

shows that under some mild conditions, an optimal solution of (SPǫ,ρ) becomes an approxi-

mate optimal solution of (P). First, we recall the definition of KKT point.

Definition 2.8. A feasible solution x∗ of (P) is called a KKT point, if there exists a µ∗ ∈ R
m

such that the pair (x∗,µ∗) satisfies the following conditions

∇ f (x∗)+
m
∑

i=1

µ∗
i ∇gi (x∗) = 0, (2.7)

µ∗
i gi (x∗) = 0, gi (x∗) ≤ 0, µ∗

i ≥ 0, i ∈ I . (2.8)

Theorem 2.9. Suppose the functions f , gi (i ∈ I ) in problem (P) are convex. Let x∗ and x∗
ǫ,ρ ∈ X

be the optimal solutions of (P) and (SPǫ,ρ), respectively. If x∗
ǫ,ρ is feasible of (P), and there exists

a µ∗ ∈R
m such that the pair (x∗

ǫ,ρ,µ∗) satisfies the conditions in Equations (2.7) and (2.8), then

we have that

0≤ f (x∗
ǫ,ρ)− f (x∗)≤

7ǫ

12
. (2.9)

Proof. Since f , gi (i ∈ I ) are continuously differentiable and convex, we see that

f (x∗) ≥ f (x∗
ǫ,ρ)+∇ f (x∗

ǫ,ρ)T (x∗
−x∗

ǫ,ρ), (2.10)

gi (x∗) ≥ gi (x∗
ǫ,ρ)+∇gi (x∗

ǫ,ρ)T (x∗
−x∗

ǫ,ρ), i = 1,2, . . . ,m. (2.11)

By Equations (2.1), (2.7), (2.8), (2.10) and (2.11), we have that

ψk
ρ(x∗) = f (x∗)+ρ

m
∑

i=1

pk (gi (x∗))
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≥ f (x∗
ǫ,ρ)+∇ f (x∗

ǫ,ρ)T (x∗
−x∗

ǫ,ρ)

= f (x∗
ǫ,ρ)−

m
∑

i=1

µ∗
i ∇gi (x∗

ǫ,ρ)T (x∗
−x∗

ǫ,ρ)

≥ f (x∗
ǫ,ρ)−

m
∑

i=1

µ∗
i

[

gi (x∗)− gi (x∗
ǫ,ρ)

]

= f (x∗
ǫ,ρ)−

m
∑

i=1

µ∗
i gi (x∗)

≥ f (x∗
ǫ,ρ).

From Lemma 2.3, we obtain

ψk
ρ(x∗)≤ψk

ǫ,ρ(x∗)+
7ǫ

12
.

It follows that

f (x∗
ǫ,ρ) ≤ψk

ǫ,ρ(x∗)+
7ǫ

12

= f (x∗)+ρ
m
∑

i=1

pk
ǫ,ρ(gi (x∗))+

7ǫ

12

= f (x∗)+
7ǫ

12
. (2.12)

Since x∗
ǫ,ρ is feasible of (P), which is

f (x∗)≤ f (x∗
ǫ,ρ). (2.13)

Combining Equations (2.12) and (2.13), we have

f (x∗) ≤ f (x∗
ǫ,ρ)≤ f (x∗)+

7ǫ

12
,

which is

0 ≤ f (x∗
ǫ,ρ)− f (x∗) ≤

7ǫ

12
.

This completes the proof. ���

Note that, the smooth penalty function ψk
ǫ,ρ(x) is only first-order differentiable. If we

want to use a Newton-type method, a smoothing penalty function must be second-order dif-

ferentiable. In the next section, we present a second-order perturbed smooth penalty func-

tion method.
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3. A new second-order perturbed smoothing method

This section, we propose a method for smoothing the lower order penalty function (1.2)

to obtain a second-order continuously differentiable penalty function. We define the follow-

ing smoothing function:

qk
ǫ,ρ(t ) =



























0 if t ≤ 0,

m2ρ2

2ǫ2
t 3k

−
m3ρ3

5ǫ3
t 4k if 0 ≤ t ≤

(

ǫ
mρ

)
1
k

,

t k
+

3ǫ2

10m2ρ2
t−k

−
ǫ

mρ
if t ≥

(

ǫ
mρ

)
1
k

,

where 1
3
< k < 1, ǫ> 0 and ρ > 0.

Figure 2 shows the behavior of pk (t ) and qk
ǫ,ρ(t ). Clearly, the function qk

ǫ,ρ(t ) has the

following properties.

Figure 2: The behavior of pk (t ) and qk
ǫ,ρ(t ).



PERTURBED SMOOTHING APPROACH TO THE LOWER ORDER EXACT PENALTY FUNCTIONS 49

Lemma 3.1. For any ǫ> 0, ρ > 0, we have

(i) qk
ǫ,ρ(t ) is twice continuously differentiable for 2

3 < k < 1 on R, where

[qk
ǫ,ρ(t )]′ =























0 if t ≤ 0,

3km2ρ2

2ǫ2
t 3k−1

−
4km3ρ3

5ǫ3
t 4k−1 if 0 ≤ t ≤

(

ǫ
mρ

)
1
k

,

k t k−1
−

3kǫ2

10m2ǫ2
t−k−1 if t ≥

(

ǫ
mρ

)
1
k

,

and

[qk
ǫ,ρ(t )]′′ =























0 if t ≤ 0,

3k(3k −1)m2ρ2

2ǫ2
t 3k−2

−
4k(4k −1)m3ρ3

5ǫ3
t 4k−2 if 0≤ t ≤

(

ǫ
mρ

)
1
k

,

k(k −1)t k−2
+

3k(k +1)ǫ2

10m2ǫ2
t−k−2 if t ≥

(

ǫ
mρ

)
1
k

.

(ii) lim
ǫ→0

qk
ǫ,ρ(t )= pk (t ).

(iii) pk (t )≥ qk
ǫ,ρ(t ), ∀t ∈R.

Let

ϕk
ǫ,ρ(x) = f (x)+ρ

m
∑

i=1

qk
ǫ,ρ

(

gi (x)
)

, (3.1)

where ǫ > 0, ρ > 0. Then, ϕk
ǫ,ρ(x) is twice continuously differentiable at any x ∈ R

n . We have

the following smoothed optimization problem:

(P Iǫ,ρ) : min ϕk
ǫ,ρ(x) s.t. x ∈ X .

Lemma 3.2. For any x ∈ X , ǫ> 0, ρ > 0, we have

0 ≤ψk
ρ(x)−ϕk

ǫ,ρ(x) ≤ ǫ, (3.2)

where ψk
ρ(x) and ϕk

ǫ,ρ(x) are given in (2.1) and (3.1), respectively.

Proof. For any x ∈ X , we have

ψk
ρ(x)−ϕk

ǫ,ρ(x) = ρ
m
∑

i=1

(

pk (gi (x))−qk
ǫ,ρ(gi (x))

)

.

Note that

pk (gi (x))−qk
ǫ,ρ(gi (x))

=



























0 if gi (x) ≤ 0,

0 ≤ [gi (x)]k
−

(

m2ρ2

2ǫ2
[gi (x)]3k

−
m3ρ3

5ǫ3
[gi (x)]4k

)

<
ǫ

mρ
if 0 ≤ gi (x) ≤

(

ǫ
mρ

)
1
k

,

0 ≤
ǫ

mρ
−

3ǫ2

10m2ρ2
[gi (x)]−k

≤
ǫ

mρ
if gi (x) ≥

(

ǫ
mρ

)
1
k

,
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for any i = 1,2, . . . ,m. That is,

0 ≤ pk (gi (x))−qk
ǫ,ρ(gi (x)) ≤

ǫ

mρ
.

Thus,

0 ≤

m
∑

i=1

(

pk (gi (x))−qk
ǫ,ρ(gi (x))

)

≤
ǫ

ρ
,

which implies

0 ≤ ρ
m
∑

i=1

(

pk (gi (x))−qk
ǫ,ρ(gi (x))

)

≤ ǫ.

Therefore,

0 ≤ψk
ρ(x)−ϕk

ǫ,ρ(x) ≤ ǫ.

This completes the proof. ���

Based on the Lemma 3.2, we have the following two theorems.

Theorem 3.3. Let {ǫ j } → 0, ∀ǫ j > 0, and x j be a solution of (P Iǫ j ,ρ) for ρ > 0. Assume that x ′ is

an accumulation point of {x j }. Then, x ′ is an optimal solution of (Pρ).

Proof. Since x j is a solution of (P Iǫ j ,ρ), we have

ϕk
ǫ j ,ρ(x j )≤ϕk

ǫ j ,ρ(x).

By Lemma 3.2, we have

ψk
ρ(x j ) ≤ϕk

ǫ j ,ρ(x j )+ǫ j ,

ϕk
ǫ j ,ρ(x) ≤ψk

ρ(x).

It follows,

ψk
ρ(x j ) ≤ϕk

ǫ j ,ρ(x)+ǫ j

≤ψk
ρ(x)+ǫ j .

Since {ǫ j } → 0 and x ′ is an accumulation point of {x j }, we obtain

ψk
ρ(x ′) ≤ψk

ρ(x).

This completes the proof. ���

Theorem 3.4. For some ρ > 0 and ǫ > 0, let x∗
ρ and x∗

ǫ,ρ ∈ R
n be optimal solutions of (Pρ) and

(P Iǫ,ρ), respectively. Then, we have

0 ≤ψk
ρ(x∗

ρ )−ϕk
ǫ,ρ(x∗

ǫ,ρ) ≤ ǫ. (3.3)

If both x∗
ρ and x∗

ǫ,ρ are feasible of (P), then

f (x∗
ǫ,ρ) ≤ f (x∗

ρ )≤ f (x∗
ǫ,ρ)+ǫ. (3.4)
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Proof. By Lemma 3.2, for ρ > 0 and ǫ> 0, we have that

0 ≤ψk
ρ(x∗

ρ )−ϕk
ǫ,ρ(x∗

ρ )

≤ψk
ρ(x∗

ρ )−ϕk
ǫ,ρ(x∗

ǫ,ρ)

≤ψk
ρ(x∗

ǫ,ρ)−ϕk
ǫ,ρ(x∗

ǫ,ρ)

≤ ǫ.

That is,

0 ≤ψk
ρ(x∗

ρ )−ϕk
ǫ,ρ(x∗

ǫ,ρ) ≤ ǫ

and

0 ≤

{

f (x∗
ρ )+ρ

m
∑

i=1

pk (gi (x∗
ρ ))

}

−

{

f (x∗
ǫ,ρ)+ρ

m
∑

i=1

qk
ǫ,ρ(gi (x∗

ǫ,ρ))

}

≤ ǫ.

Furthermore, if x∗
ρ and x∗

ǫ,ρ are feasible of (P), then

m
∑

i=1

pk (gi (x∗
ρ )) =

m
∑

i=1

qk
ǫ,ρ(gi (x∗

ǫ,ρ)) = 0.

Therefore,

0 ≤ f (x∗
ρ )− f (x∗

ǫ,ρ) ≤ ǫ.

That is,

f (x∗
ǫ,ρ) ≤ f (x∗

ρ ) ≤ f (x∗
ǫ,ρ)+ǫ.

This completes the proof. ���

Theorem 3.5. Suppose the functions f (x), gi (x) (i ∈ I ) are convex. Let x∗ and x∗
ǫ,ρ ∈ X be the

optimal solutions of (P) and (P Iǫ,ρ), respectively. If x∗
ǫ,ρ is feasible of (P), and there exists a

λ∗ ∈ R
m such that the pair (x∗

ǫ,ρ ,λ∗) satisfies the conditions in Equations (2.7) and (2.8), then

we have

f (x∗) ≤ f (x∗
ǫ,ρ)≤ f (x∗)+ǫ. (3.5)

Proof. The proof is similar to the proof of the Theorem 2.9. ���

4. Algorithms for minimization procedure

In this section, by considering the above smoothed penalty functions, we propose algo-

rithms to find an approximate optimal solution of (P), defined as Algorithm 4.2 and Algorithm

4.5.
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Definition 4.1. A point x∗
ǫ ∈X is called ǫ-feasible solution of (P), if it satisfies gi (x∗

ǫ )≤ǫ, ∀i ∈ I .

Algorithm 4.2. Step 1: Given the initial point x0
1 ∈ X and a stoping tolerance ǫ > 0. Chooose

ǫ1 > ǫ, ρ1 > 0, 0 < γ< 1, N > 1, and let j = 1.

Step 2: Star from the point x0
j

and solve the following problem:

(SPǫ j ,ρ j
) : min

x∈Rn
ψk

ǫ j ,ρ j
(x) = f (x)+ρ j

m
∑

i=1

pk
ǫ j ,ρ j

(

gi (x)
)

.

Let x∗
ǫ j ,ρ j

be an optimal solution of (SPǫ j ,ρ j
). Here x∗

ǫ j ,ρ j
is obtained by the BFGS method given

in [10].

Step 3: If x∗
ǫ j ,ρ j

is an ǫ-feasible of (P), then the algorithm stop. Otherwise, letρ j+1 = Nρ j , ǫ j+1 =

γǫ j , x0
j+1

= x∗
ǫ j ,ρ j

and j = j +1. Then, go to Step 2.

Remark 4.3. In the Algorithm 4.2 shows that the sequence {ǫ j } converges to 0 and the se-

quence {ρ j } converges to +∞, as j →+∞.

Theorem 4.4. For 1
2 < k < 1, suppose that for any ǫ ∈ (0,ǫ1], ρ ∈ [ρ1,+∞), the set

argmin
x∈Rn

ψk
ǫ,ρ(x) 6= ;. (4.1)

Let {x∗
ǫ j ,ρ j

} be the sequence generated by Algorithm 4.2. If the sequence {ψk
ǫ j ,ρ j

(x∗
ǫ j ,ρ j

)} is bounded,

and Assumption 2.1 holds, then {x∗
ǫ j ,ρ j

} is bounded and the limit point of {x∗
ǫ j ,ρ j

} is a solution

of (P).

Proof. First, we prove that {x∗
ǫ j ,ρ j

} is bounded. Note that

ψk
ǫ j ,ρ j

(x∗
ǫ j ,ρ j

) = f (x∗
ǫ j ,ρ j

)+ρ j

m
∑

i=1

pk
ǫ j ,ρ j

(gi (x∗
ǫ j ,ρ j

)), j = 0,1, . . . , (4.2)

and by the definition of pk
ǫ,ρ(t ), we have

ρ j

m
∑

i=1

pk
ǫ j ,ρ j

(gi (x∗
ǫ j ,ρ j

)) ≥ 0. (4.3)

Suppose on the contrary that the sequence {x∗
ǫ j ,ρ j

} is unbounded. Without any loss of gen-

erality ‖x∗
ǫ j ,ρ j

‖ → +∞ as j → +∞. Then, lim
j→+∞

f (x∗
ǫ j ,ρ j

) = +∞ by Assumption 2.1, and from

Equations (4.2) and (4.3), we have

ψk
ǫ j ,ρ j

(x∗
ǫ j ,ρ j

) ≥ f (x∗
ǫ j ,ρ j

) →+∞, j = 0,1, . . . ,

which contradicts with the sequence {ψk
ǫ j ,ρ j

(x∗
ǫ j ,ρ j

)} being bounded. Thus, {x∗
ǫ j ,ρ j

} is bounded.
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Next, we prove that the limit point of {x∗
ǫ j ,ρ j

} is the solution of (P). Let x∗ be a limit point

of {x∗
ǫ j ,ρ j

}. Then, there exists the subset J ⊂N such that x∗
ǫ j ,ρ j

→ x∗, j ∈ J , where N is the set of

natural numbers. We have to show that x∗ is an optimal solution of (P). Thus, it is sufficient

to show x∗ ∈ X0, and f (x∗) ≤ infx∈X0
f (x).

(i) Suppose x∗ ∉ X0. Then, there exist θ0 > 0 and the subset J ′ ⊂ J , such that gi ′(x∗
ǫ j ,ρ j

) ≥ θ0

for any j ∈ J ′ and some i ′ ∈ I .

If
(

ǫ j

mρ j

)
1
k
> gi ′(x∗

ǫ j ,ρ j
) ≥ θ0, from the definition of pk

ǫ,ρ(t ) and x∗
ǫ j ,ρ j

is the optimal solution

according j -th values of the parameters ǫ j ,ρ j for any x ∈ X0, we have

f (x∗
ǫ j ,ρ j

)+
m2ρ3

j
θ3k

0

6ǫ2
j

+
mρ2

j
θ2k

0

4ǫ j
≤ψk

ǫ j ,ρ j
(x∗

ǫ j ,ρ j
)

≤ψk
ǫ j ,ρ j

(x) = f (x),

which contradicts with ρ j →+∞ and ǫ j → 0.

If gi ′(x∗
ǫ j ,ρ j

) ≥ θ0 ≥

(

ǫ j

mρ j

) 1
k

or gi ′(x∗
ǫ j ,ρ j

) ≥
(

ǫ j

mρ j

) 1
k
≥ θ0, from the definition of pk

ǫ,ρ(t ) and

x∗
ǫ j ,ρ j

is the optimal solution according j -th values of the parameters ǫ j ,ρ j for any x ∈ X0, we

have

f (x∗
ǫ j ,ρ j

)+ρ jθ
k
0 −

7ǫ j

12m
≤ψk

ǫ j ,ρ j
(x∗

ǫ j ,ρ j
)

≤ψk
ǫ j ,ρ j

(x) = f (x),

which contradicts with ρ j →+∞ and ǫ j → 0.

Thus, x∗ ∈ X0.

(ii) For any x ∈ X0, it holds that

f (x∗
ǫ j ,ρ j

) ≤ψk
ǫ j ,ρ j

(x∗
ǫ j ,ρ j

) ≤ψk
ǫ j ,ρ j

(x) = f (x),

thus f (x∗)≤ infx∈X0
f (x) holds.

This completes the proof. ���

Algorithm 4.5. Step 1: Given the initial point x0
1 ∈ X and ǫ> 0. Choose ǫ1 > ǫ, ρ1 > 0, 0 < γ<

1, N > 1, and let j = 1.

Step 2: Star from the point x0
j

and solve the following problem:

(P Iǫ j ,ρ j
) : min

x∈Rn
ϕk
ǫ j ,ρ j

(x) = f (x)+ρ j

m
∑

i=1

qk
ǫ j ,ρ j

(

gi (x)
)

.

Let x∗
ǫ j ,ρ j

be the optimal solution obtained.

Step 3: If x∗
ǫ j ,ρ j

is an ǫ-feasible of (P), then stops and x∗
ǫ j ,ρ j

is an approximate optimal solution

of (P). Otherwise, let ρ j+1 = Nρ j , ǫ j+1 = γǫ j , x0
j+1

= x∗
ǫ j ,ρ j

and j = j +1. Then, go to Step 2.



54 NGUYEN THANH BINH, YANQIN BAI, XIN YAN AND TOUNA YANG

Theorem 4.6. For 1
3 < k < 1, suppose that the set

argmin
x∈Rn

ϕk
ǫ,ρ(x) 6= ; (4.4)

for any ǫ ∈ (0,ǫ1] and ρ ∈ [ρ1,+∞). Let {x ′
j
} be the sequence generated by Algorithm 4.5. If the

sequence {ϕk
ǫ j ,ρ j

(x ′
j
)} is bounded, and Assumption 2.1 holds, then {x ′

j
} is bounded and the limit

point of {x ′
j
} is a solution of (P).

Proof. The proof is similar to the proof of the Theorem 4.4. ���

5. Numerical examples

In this section, we apply our algorithms to test problems. The proposed algorithm is im-

plemented in MATLAB R2011A (version, Manufacturer, City, US State if applicable, Country).

In each example, we let ǫ = 10−6 is expected to get an ǫ-solution of (P) with both Algorithm

4.2 and Algorithm 4.5, j be the number of iterations, x∗
ǫ j ,ρ j

be the optimal solution of the j -th

iteration, f (x∗
ǫ j ,ρ j

) be the objective value at x∗
ǫ j ,ρ j

, gi (x∗
ǫ j ,ρ j

), i ∈ I is a constrain value at x∗
ǫ j ,ρ j

,

and the numerical results are presented in the tables following.

Example 5.1. Consider the following problem ([9], Example 4.5)

(P5.1) : min f (x) = 10x2 +2x3 +x4 +3x5 +4x6

s.t. g1(x) = x1 +x2 −10 = 0,

g2(x) =−x1 +x3 +x4 +x5 = 0,

g3(x) =−x2 −x3 +x5 +x6 = 0,

g4(x) = 10x1 −2x3 +3x4 −2x5 −16 ≤ 0,

g5(x) = x1 +4x3 +x5 −10 ≤ 0,

0 ≤ x1 ≤ 12,

0 ≤ x2 ≤ 18,

0 ≤ x3 ≤ 5,

0 ≤ x4 ≤ 12,

0 ≤ x5 ≤ 1,

0 ≤ x6 ≤ 16.

For k =
3
4 , let x0

1 = (2, 1, 2, 2, 1, 2), ρ1 = 100, N = 3, ǫ1 = 0.2, γ = 0.1. The results of

Algorithm 4.2 for solving (P5.1) are shown in Table 1 and Table 2.

For k =
2
3

, let x0
1 = (2, 1, 2, 1, 1, 2), ρ1 = 100, N = 3, ǫ1 = 0.4, γ = 0.1. The results of

Algorithm 4.2 for solving (P5.1) are shown in Table 3 and Table 4.
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Table 1: Results of Algorithm 4.2 with x0
1 = (2, 1, 2, 2, 1, 2) for (P5.1).

j ρ j f (x∗ǫ j ,ρ j
) x∗ǫ j ,ρ j

1 100 117.029887 (1.697078, 8.302923, 0.217670, 0.481162, 0.998241, 7.522358)

2 300 117.000000 (1.715453, 8.284547, 0.260178, 0.455275, 1.000000, 7.544725)

Table 2: Results of Algorithm 4.2 with x0
1 = (2, 1, 2, 2, 1, 2) for (P5.1).

j ǫ j g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

) g3(x∗ǫ j ,ρ j
) g4(x∗ǫ j ,ρ j

) g5(x∗ǫ j ,ρ j
)

1 0.2 -0.000000 -0.000004 -0.000006 -0.017559 -6.433999

2 0.02 -0.000000 -0.000000 -0.000000 -0.000000 -6.243834

Table 3: Results of Algorithm 4.2 with x0
1 = (2, 1, 2, 1, 1, 2) for (P5.1).

j ρ j f (x∗ǫ j ,ρ j
) x∗ǫ j ,ρ j

1 100 117.145419 (1.618015, 8.381985, 0.036170, 0.581211, 1.000640, 7.417524)

2 300 117.000523 (1.691308, 8.308692, 0.197503, 0.493808, 0.999996, 7.506199)

Table 4: Results of Algorithm 4.2 with x0
1 = (2, 1, 2, 1, 1, 2) for (P5.1).

j ǫ j g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

) g3(x∗ǫ j ,ρ j
) g4(x∗ǫ j ,ρ j

) g5(x∗ǫ j ,ρ j
)

1 0.4 -0.000001 -0.000006 -0.000008 -0.149835 -7.236664

2 0.04 -0.000000 -0.000000 -0.000000 -0.000495 -6.518683

Table 5: Results of Algorithm 4.5 with x0
1 = (1, 2, 1, 0, 1, 0) for (P5.1).

j ρ j f (x∗ǫ j ,ρ j
) x∗ǫ j ,ρ j

1 1000 116.885478 (1.863857, 8.129143, 0.644751, 0.217036, 1.000069, 7.771825)

2 3000 116.961945 (1.627743, 8.369924, 0.031724, 0.595345, 1.000007, 7.400974)

3 9000 117.004035 (1.834835, 8.164391, 0.573505, 0.261764, 0.999341, 7.738332)

For k = 2
3

, let x0
1 = (1, 2, 1, 0, 1, 0), ρ1 = 1000, N = 3, ǫ1 = 0.01, γ = 0.1. The results of

Algorithm 4.5 for solving (P5.1) are shown in Table 5 and Table 6.

The results in Tables 1-6 show that, the convergence of both Algorithm 4.2 and Algorithm

4.5, and the objective function values are almost the same. By Tables 1 and 2, we obtain an
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Table 6: Results of Algorithm 4.5 with x0
1 = (1, 2, 1, 0, 1, 0) for (P5.1).

j ǫ j g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

) g3(x∗ǫ j ,ρ j
) g4(x∗ǫ j ,ρ j

) g5(x∗ǫ j ,ρ j
)

1 0.01 -0.007000 -0.002000 -0.002000 0.000036 -4.557069

2 0.001 -0.002333 -0.000667 -0.000667 0.000004 -7.245353

3 0.0001 -0.000774 -0.000224 -0.000223 -0.012054 -4.871804

approximate optimal solution is

x∗
= (1.715453, 8.284547, 0.260178, 0.455275, 1.000000, 7.544725)

after 2 iterations with objective function value f (x∗) = 117.000000. In [9], the obtained ap-

proximate optimal solution is

x∗
= (1.805996, 8.194004, 0.497669, 0.308327, 1.000000, 7.691673)

with objective function value f (x∗) = 117.010399. Numerical results obtained by both of our

algorithms are slightly better than the results in [9].

Example 5.2. Consider the following problem ([9], Example 4.2)

(P5.2) : min f (x) = x2
1 +x2

2 +2x2
3 +x2

4 −5x1 −5x2 −21x3 +7x4

s.t. g1(x) = 2x2
1 +x2

2 +x2
3 +2x1 +x2 +x4 −5 ≤ 0,

g2(x) = x2
1 +x2

2 +x2
3 +x2

4 +x1 −x2 +x3 −x4 −8 ≤ 0,

g3(x) = x2
1 +2x2

2 +x2
3 +2x2

4 −x1 −x4 −10 ≤ 0.

For k = 2
3

, let x0
1 = (4, 4, 4, 4), ρ1 = 8, N = 6, ǫ1 = 0.1, γ = 0.05. The results of Algorithm

4.2 for solving (P5.2) are shown in Table 7.

Table 7: Results of Algorithm 4.2 with x0
1 = (4, 4, 4, 4) for (P5.2)

j ρ j ǫ j x∗ǫ j ,ρ j
f (x∗ǫ j ,ρ j

) g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

) g3(x∗ǫ j ,ρ j
)

1 8 0.1 (0.057466, 1.068184, -43.932900 0.010075 0.002288 -0.708469

1.934446, -1.062742)

2 48 0.005 (0.169403, 0.836072, -44.233835 -0.000000 -0.000000 -1.880657

2.008446, -0.965146)

For k = 3
4

, let x0
1 = (5, 5, 5, 5), ρ1 = 8, N = 6, ǫ1 = 0.1, γ = 0.01. The results of Algorithm

4.2 for solving (P5.2) are shown in Table 8.
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Table 8: Results of Algorithm 4.2 with x0
1 = (5, 5, 5, 5) for (P5.2).

j ρ j ǫ j x∗ǫ j ,ρ j
f (x∗ǫ j ,ρ j

) g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

) g3(x∗ǫ j ,ρ j
)

1 8 0.1 (0.128519, 0.787242, -44.497657 -0.026616 0.156996 -1.828351

2.058425, -0.960793)

2 48 0.001 (0.168480, 0.843691, -44.233372 -0.000021 -0.000035 -1.846516

2.005069, -0.969559)

Table 9: Results of Algorithm 4.5 with x0
1 = (0, 0, 0, 0) for (P5.2).

j ρ j ǫ j x∗ǫ j ,ρ j
f (x∗ǫ j ,ρ j

) g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

) g3(x∗ǫ j ,ρ j
)

1 10 0.04 (0.135083, 0.866135, -44.328665 0.013015 0.047622 -1.670410

2.016392, -0.975808)

2 30 0.004 (0.169560, 0.835531, -44.233861 0.000006 0.000010 -1.883115

2.008636, -0.964877)

3 90 0.0004 (0.169560, 0.835531, -44.233837 0.000000 0.000000 -1.883126

2.008634, -0.964876)

For k = 1
2

, let x0
1 = (0, 0, 0, 0), ρ1 = 10, N = 3, ǫ1 = 0.04, γ= 0.1. The results of Algorithm

4.5 for solving (P5.2) are shown in Table 9.

The results in Tables 7-9 show that, the convergence of both Algorithm 4.2 and Algo-

rithm 4.5, and the objective function values are almost the same. By Table 7, we obtain

an approximate optimal solution x∗ = (0.169403, 0.836072, 2.008446, − 0.965146) after 2

iterations with objective function value f (x∗) = −44.233835. In [4], the obtained approxi-

mate optimal solution is x∗ = (0.170446, 0.834248, 2.008753, −0.964559) with function value

f (x∗) = −44.233627. In the paper [9], the obtained approximate optimal solution is x∗ =

(0.169234, 0.835656, 2.008690, −0.964901) with function value f (x∗) =−44.233582. Numer-

ical results obtained by both of our algorithms are slightly better than the results in [4, 9].

Moreover, in [9] the approximate solution is found with 4 and 13 iterations in the Algorithms

I and II, respectively. So, can be seen that both of our algorithms find the solutions with the

lower iteration numbers than in [9].

Example 5.3. Consider the following problem ([14], Example 3.2)

(P5.3) : min f (x) =−x1 −x2

s.t. g1(x) =−2x4
1 +8x3

1 −8x2
1 +x1 −2 ≤ 0,

g2(x) =−4x4
1 +32x3

1 −88x2
1 +96x1 +x2 −36 ≤ 0,
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0 ≤ x1 ≤ 3,

0 ≤ x2 ≤ 4.

For k =
3
4 , let x0

1 = (1, 3), ρ1 = 6, N = 8, ǫ1 = 0.2, γ = 0.1. The results of Algorithm 4.2 for

solving (P5.3) are shown in Table 10.

Table 10: Results of Algorithm 4.2 with x0
1 = (1, 3) for (P5.3).

j ρ j ǫ j x∗ǫ j ,ρ j
f (x∗ǫ j ,ρ j

) g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

)

1 6 0.2 (2.112082, 3.900138) -6.012220 0.000003 0.000006

2 48 0.02 (2.112086, 3.900125) -6.012210 -0.000001 -0.000001

For k =
2
3 , let x0

1 = (0, 2), ρ1 = 6, N = 4, ǫ1 = 0.01, γ= 0.1. The results of Algorithm 4.2 for

solving (P5.3) are shown in Table 11.

Table 11: Results of Algorithm 4.2 with x0
1 = (0, 2) for (P5.3).

j ρ j ǫ j x∗ǫ j ,ρ j
f (x∗ǫ j ,ρ j

) g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

)

1 6 0.01 (2.112036, 3.900287) -6.012323 0.000054 0.000073

2 24 0.001 (2.112126, 3.899981) -6.012108 -0.000046 -0.000072

For k =
3
4

, let x0
1 = (1, 1), ρ1 = 10, N = 5, ǫ1 = 0.05, γ = 0.1. The results of Algorithm 4.5

for solving (P5.3) are shown in Table 12.

Table 12: Results of Algorithm 4.5 with x0
1 = (1, 1) for (P5.3).

j ρ j ǫ j x∗ǫ j ,ρ j
f (x∗ǫ j ,ρ j

) g1(x∗ǫ j ,ρ j
) g2(x∗ǫ j ,ρ j

)

1 10 0.05 (2.112084, 3.900131) -6.012215 0.000001 0.000002

2 50 0.005 (2.112163, 3.899988) -6.012152 -0.000087 -0.000000

The results in Tables 10-12 show that, the convergence of both Algorithm 4.2 and Algo-

rithm 4.5, and the objective function values are almost the same. By Table 10, we obtain an

approximate optimal solution x∗ = (2.112086, 3.900125) after 2 iterations with objective func-

tion value f (x∗) = −6.012210. In [14], the obtained global solution is x∗ = (2.3295, 3.1784)

with objective function value f (x∗) = −5.5080. In the paper [15], the obtained approximate

optimal solution is x∗ = (2.112103, 3.900086) with objective function value f (x∗) =−6.012190.

Numerical results obtained by both of our algorithms are much better than the results in [14]
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and find the correct solutions as in [15]. Further, it can be seen that the approximate solutions

obtained by our algorithms with the lower iteration numbers in comparison with the [14].

6. Conclusions

In this paper, two new smoothing approaches for the lower order penalty functions are

proposed. Both of the perturbed smoothing approaches present lower errors among smoothed

penalty problems, nonsmooth nonlinear penalty problems and original constrained opti-

mization problems. By using these perturbed smooth penalty functions, we developed al-

gorithms to solve nonlinear constrained optimization problems and obtained satisfactory re-

sults.

Our perturbed smoothing techniques provide good approximations to the nonsmooth

function. In fact, both of perturbed smoothing techniques can be used for non-lipschitz

max{x, 0}k , 0 < k < 1, and nonsmooth max{x, 0} functions by controlling the parameter k .

According to the numerical results given in Section 5, we show that the Algorithm 4.2

and Algorithm 4.5 are effective for both medium scale and large constrained optimization

problems. Moreover, these algorithms have a good convergence for a global solution or an

approximate global solution of the original constrained optimization problem.
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