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NEW OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES
FOR DOUBLE INTEGRALS ON TIME SCALES
INVOLVING A COMBINATION OF A-INTEGRAL MEANS

SETH KERMAUSUOR AND EZE RAYMOND NWAEZE

Abstract. In 2014, some Ostrowski type inequalities for functions of a single variable were
obtained in [Y. Jiang, H. Riizgar, W. J. Liu and A. Tuna: Some new generalizations of Os-
trowski type inequalities on time scales involving combination of A-integral means, J.
Nonlinear Sci. Appl., 7 (2014), 311-324]. In this paper, we extend some of the inequalities
obtained in the above paper for double integrals. One of our results generalizes a result
in the article [W. J. Liu, Q. A. Ngd and W. Chen: On new Ostrowski type inequalities for
double integrals on time scales, Dyn. Syst. Appl., 19 (2010), 189-198]. We also apply our
results to the continuous, discrete and quantum time scales to obtain some interesting
inequalities.

1. Introduction

The following result, obtained by Alexander Ostrowski [20] in 1938, provides a bound for

the deviation of a function from its integral mean.

Theorem 1. Let f : [a, b] — R be continuous on [a, b] and differentiable in (a, b) and its deriva-
tive f': (a,b) — R is bounded in (a,b). If| f'(t)| < M for all t € [a, b], then we have

2
[x-23)

1
< Z+7(b—a)2 (b-a)M (1)

1 b
-— ndt
‘f(x) | ro
for all x € |a, b]. The inequality is sharp in the sense that the constant% cannot be replaced by
a smaller one.

Inequality (1) is known in the literature as Ostrowski inequality. This inequality has been stud-
ied and generalized by many researchers over the past years, see [8] and [17] for example. The
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German mathematician Stefan Hilger [9] in 1988 introduced the theory of time scales to unify
the continuous and discrete calculus in a consistent manner. In 2008, Bohner and Mathews

[6] extended Theorem 1 to an arbitrary time scale T as follows:

Theorem 2. Leta,b,s,t€T,a<band f :|a, bl — R be a differentiable function. Then
|f(t)—#fbf(a(s)msﬂsﬁ[hz(t,anhz(t,b) : @)
b—ala b—a

where hy(-,-) is defined by Definition 14 in Section 2 and M = sup |f>(1)| < oo. Inequality (2)
a<t<b
is sharp in the sense that the right-hand side cannot be replaced by a smaller one.

Over the years many authors have studied different generalizations of Theorem 2 for
functions of a single variable (see [13, 17, 18, 19, 23] and the references therein) as well as for
functions of two independent variables (see [10, 11, 15, 16, 21, 22] and the references therein).
Recently, Jiang et al. [12] obtained some new Ostrowski type inequalities on time scales in-
volving a combination of A-integral means. Specifically, they proved the following two results
amongst others.

Theorem 3. Leta,b,x€ T,a< b and f : [a,b] — R be a differentiable function. Then for all

X € [a, b], we have

‘f(x) [—f flomAr+ bif f(a(t))AtH

a+p

hy(x, a) +

p
_a+,B — ——ha(x,b)|, 3)

where M = sup IfA(t)I < 00.

a<t<b

Theorem 4. Leta,b,x€ T,a< b and f :[a,b] — R be a differentiable function such that there
exists constantsy,T € R withy < f2(x) <T forall x € [a, b]. Then for all x € |a, b], we have

[ [ rowar fxfxbf(am)m]

y+T

2(a+p)
-y [
2(a+,6)

‘f(x)—

a+plx

[ a ho (x, a) — ’thz(x,b)”

XxX—a

~hy(x,0) + 'Bxhz(x,b)]- @)

x —
Motivated by the above works, our goal is to extend Theorems 3 and 4 to functions of two
independent variables. Our results generalize some results in the literature as we will point

out later.
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This paper is arranged in the following order: first, we present some time scale essentials in
Section 2. In Section 3, our results are then formulated and proved. Finally, we consider some
applications of our results in Section 4.

2. Preliminaries

In this section, we briefly recall some fundamental facts about the time scale theory. For
further details and proofs we invite the interested reader to Hilger’s Ph.D. thesis [9], the books
(2, 3, 14], and the survey [1].

Definition 5. A time scale is an arbitrary nonempty closed subset of the real numbers R.

Throughout this work we assume T is a time scale and T has the topology that is inher-
ited from the standard topology on R. It is also assumed throughout that in T the interval
[a, b] means the set {t € T: a < t < b} for the points a < bin T. Since a time scale may not be
connected, we need the following concept of jump operators.

Definition 6. The forward and backward jump operators o,p : T — T are defined by o(t) =
inf{seT: s>t}and p(¢) =sup{seT: s< ¢}, respectively.

The jump operators o and p allow the classification of points in T as follows.

Definition 7. If o(¢) > t, then we say that ¢ is right-scattered, while if p(#) < ¢, then we say that
t is left-scattered. Points that are right-scattered and left-scattered at the same time are called
isolated. If o(f) = ¢, then ¢ is called right-dense, and if p(t) = t, then ¢ is called left-dense.

Points that are both right-dense and left-dense are called dense.

Definition 8. The graininess function y : T —[0,00) is defined by u(¢) = o(¢) — ¢t for t € T.
The set T¥ is defined as follows: if T has a left-scattered maximum m, then T* = T — {m};

otherwise, TX = T.

If T =R, then u(f) =0, and when T = Z, we have u(f) = 1.

Definition 9. Let f: T — R and ¢ € T¥. Then we define f2(¢) to be the number (provided it
exists) with the property that for any given € > 0 there exists a neighborhood U of ¢ such that

|[fle®) - f&)- AW Io0) -sl|<ela(®~-sl, VseU.

We call f2(¢) the delta derivative of f at t. Moreover, we say that f is delta differentiable (or
in short: differentiable) on T* provided f A(¢) exists for all ¢ € TX. The function f AT S Ris
then called the delta derivative of f on T*.
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Inthecase T =R, fA(t) = dg(tt) .InthecaseT =7, fA(t) =Af(8) = f(t+1)— f(t), which s
the usual forward difference operator. If T = gNo, g > 1 and Ny = Nu{0}, then f2(¢) = %

Theorem 10. Assume f,g: T — R are differentiable at t € T*. Then the product fg:T — R is
differentiable at t with

(fg)" (0 =2 gn) + flo(0)g ().

Definition 11. The function f: T — R is said to be rd-continuous on T provided it is contin-
uous at all right-dense points ¢ € T and its left-sided limits exist at all left-dense points ¢ € T.
The set of all rd-continuous function f: T — R is denoted by C,q(T,R). Also, the set of func-
tions f: T — R that are differentiable and whose derivative is rd-continuous is denoted by
CL(T,R).

It follows from [2, Theorem 1.74] that every rd-continuous function has an anti-derivative.

Definition 12. Let F: T — R be a function. Then F: T — R is called the anti-derivative of f
on T if it satisfies F2(t) = f(¢) for any £ € T*. In this case, the Cauchy integral is defined by

fabf(t)At = F(b)-F(a), a,beT.
Theorem 13. Ifa,b,ce T witha<c<b,aeRand f,g e Cq(T,R), then
@ SPirm+gwiat= [P rmac+ [P gmar.
Q) [Pafmar=afl fart.
Gii) [P fAr=—[2foAL.
@) [P fone=[° fwac+ [P fmar.

W) fff(t)At| < [P1f )AL

wi) [P FgrmAL=(fg)(b) - (fg) @ - [7 FA ()87 (AL

Definition 14. Let k. : T2 — R, k € Ny be defined by ho(t,s) =1, for all s, € T and then
recursively by hy. (£, 8) = fst hi (r,s)At,forall s,teT.

If T =R, then (1, 5) = Y535, forall s, € R. If T = Z, then hy(t,s) = ('°), forall s, r € Z. If
T=g"™", qg>1,then hi(t,s) =
v=0 ZI/L:O un

forall s, t € g"o.

3. Main results

To prove our theorems, we need the following lemmas. The first lemma was first provided

in [7] for the real case and later extended to an arbitrary time scale in [12].
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Lemma 15 ([12]). Leta,b,x,t€ T,a< b, and f : [a, b] — R be a differentiable function. Then

forall x € [a, b], we have

b
fK(x,t)fA(t)At:f(x) ff(a(t)At+—f f(a(t))At] )

a+plx
where

—b(=t),  te(x, b,

a+PB\b—x

a (t—a
K(x, t):{m(ﬁ)» tela,x),

where a, B € R are nonnegative and a and [ are not both zero.

In what follows, we will let T; and T, denote two arbitrary time scales, with forward jump
orperators 01 and o respectively. For an interval [a, b], [a, b]t, :=[a,bINT;,i=1,2. Fora<b
and c < d, we define the rectangle [a, b]T, x [c,d]T, as follows: [a, blt, x [c,d]T, = {(x,y) : x €
la,b]T,,y € [c,d]T,}. For more on the two-variable time scale calculus, we invite the interested
reader to the papers [4, 5] and the references therein.

The following lemma is the 2-dimensional version of Lemma 15.

Lemma 16. Leta,b,x,se€T,a<b, c,d,y,t€Tr,c<d and f :[a,b] x [c,d] — R be a function

*f(s,0)
Az l’Al N

52
ffP(x,y,, MAztAls

f floi(s), J/)AIS"‘_f floi(s), J/)AIS)

such that the partial derivative exist and is continuous on [a, b] x [c,d]. Then we have

=f(x,y) -
1

S ax+ B

a1+ pBi\x—a

(y Cf f(xUz(t))A2t+

N 1 ( Ao
(az+ B2 a1+ P\ (y—o(x—a) Jc
+a2—ﬁ1 y/bf(a'l(S),O'z(t))A]SAzt)
(y—ob-x)Jc Jx
1 Bray
(az+ﬁz)(a1+ﬁ1)((d Nx—a)

__Pebr f f )
@=pi-xl, J, 1102ttt o

b f f(x,oz(t))Azt)
d—y y

f flo1(s),02(0)A1sAx t

d rx
fff((fl(s),az(t))AlsAzt

forallx €[a,b] and y € [c,d], where P(x, y,s,t) = P1(x, s)P2(y, t) with

a:f%l (b_) SE [xr b];

Pi(x,s) = { “ﬁlﬁl (S_Z) s€la,x),
S
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a t—c
Py(y, 1) = { T2 (B8, teloy),
y —ﬁ i
“2+Ez(d—_)t/)’ re [y, d],
ay, B1, a2, B2 € R nonnegative and a, and f, are not both zero. The same applies to a, and f3;.

af(

Proof. By applying Lemma 15 to the partial maps AISS") for s € [a,b] and f(-, 1) for t € [c,d),

we have

fbfdP (x, ) Pa( t)azf(s't)A tAys
a Jc e 2L AotArs 2051

b d 0% f(s, 1)
= P ) P » A A
~[a 1 S)[\[c 29, 1) AotA1s 2t] 15

[P af(s,y) 1 az [V 0f(s,02(1) Bz [D0f(s,02(1)
—/a Pl(X,S)[ Ars _a2+,62(y cf Ars A2t+d yf Ars Azt)]ms

b
=f Pl(x,S)af(S’y)AlS— ! f f Pi(x,s )MAI AVY 2
a Ays a2+,62y c Ays

1 af (s,02(1)
a2+ﬁ2d y/ f Pl( X, S ) AIS_A] Azt

)

[al ff(Ul(S),Uz(l‘))Als

X—da a

. B
b—x

/ flo(s),02(0)Ars

L P
th_x

1
=f(x,y) - o +,B

1 a
Sryenerd | (f (6,02(0)) -

1
a1+ﬁ1

b
ff(Ul(S),az(t))Als])Azt

1 d
P f CXACES

_“2"‘:32‘1_3/ y +,61 xX—a

f floi(s), Uz(t))Als])Azt

)

d
P f Fx,02() 1)

1

051+,31 X —
1

oc2+,62 y—c

=f(x,y) -

f fx, Uz(t))A2t+

a

1))A1sAxt
((12+,32)(6¥1+,31)(y C)(x af f F(01(5),02(D)A15A

+—1f f f(Ul(S),Uz(l‘))AlsAzt)

: I
D)A1sAxt
(a2+ﬁ2)(a1 +ﬁ1)(d V) (x a f(O'l(S) 02(1))A15A,
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Hence, we have the identity:

2
ff P(x, »S, MAzl’Als

1
a1+,31 X—a

=f(x,y)— f flo1(s), y)A1S+—f flo1(s), y)A1S)

1

Ca +,32 y-c
1 ( a2

+
(a2 + B2) (a1 + B1)

ff(xaz(t))A2t+ P / f(x,Uz(l‘))Azl‘)
d—yly

(J’—C)(X—a)fc fa flo1(8),02(0)A1sAxt

vy rb
grapma) [ oo
1 ,32061 d rx
(062+,32)(a1 +,31)((d Mx— a)f Lf(al(s)’UZ(t))AlsAzt
d rb
%[ f f(Ul(S),Uz(t))AlsAzt), 0
— —0J, )

We are now in a position to state and prove our first theorem. This is an extension of

Theorem 3 to the 2-dimensional case.

Theorem 17. Under the conditions of Lemma 16, we have

‘f(x,y) p +,B1 —a f flo1(s), y)A1s+—f flo1(s), y)A1S)
1
ff(xoz(t))A2t+ b f f(x,az(t))Azt)
“2""62 y-¢ d-yly
1 Somal |
+ 02 (0)A1sAst
(a2+,32)(a1+,B1)((y—c)(x—a) . ), [0k oa(DArshe
==
e riel) Y § f(01(5), 02(1)A15As 1]
1 Pray fdfx
,02(0) A st
(a2+,32)(a1+,31)((d Da—al, ], O 02(hdishe
B2 f f
@ )y J, st

M [(Xl

b1
< hy(x,a) +
(a1 + 1) (@2 + P2) 26 a)+

az P2
— xhz(x,b)][ﬁhz(y,c)+d_

M= sup

a<s<b,c<t<d

0*f (s, 1) | -
AptArs
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Proof. We first observe that,

b 1
[ 1P sias= — [

hy(x, a) +

P, b)] @)
- X

X—a

and similarly,

d
f [Py (y, )|Agt = hz(y,C)+
C

lﬁz e P = ). ©

Hence,

b pd b d
f f |[P(x,,s, t)|A2tA15:f |P1(x, 5)|A15f | P2 (y, 0)|Agt
a C a C

1 a B1 a B2
_ hy(x, ha(x, b) | | —2=ha(y, ha(y,d)|. (10
(a1+,61)(a2+,62)[x—a 2(x a)+b—x 2x )Hy—c 2(y6)+d—y 20 (10)
By applying item (v) of Theorem 13, we have
2 b prd
P(x %S, 6 fis,t AztA1s|st f [P(x,y,s, )| AxtAys. (11)
AptAys a Jc

The desired 1nequa11ty is obtained by using the inequality (11) and the identities in (6) and
(10). O

Remark 18. If we take a; = x—a, 1 =b—-Xx, a» = y—c and f, = d — y, then Theorem 17
reduces to [16, Theorem 2.1].

Theorem 19. Under the conditions of Lemma 16, and suppose there exists constantsy, I' € R

such thaty < aAft(As D) <T forallsela,b] andt € [c,d], then we have the inequality

)

’f( X, y) -

! ff(xaz(t))A2t+
az‘*‘ﬁz y-c
N 1 ( ara
(az+B2)(ar + B\ (y—o)(x—a) Jc
. @z f1
(y-ob-x) Je
1 ( B2
(az+ﬁz)(a1+,61) (d-y)(x—a)
%]y‘[xﬂal(ﬂﬂzm)ANAﬂ) (13)
a v+T [ ay
21+ p1)(az+P2) Lx—a
< I'-y [ a
2(a1 + B1)(az + B2)

(X1+ﬁ1 X—a

2
_yfy EEAGTY t)

f f(o1(5),02(0)A1802¢

vy rb
| reroamnisa) (12

d rx
fff(al(s),(fz(l‘))AlsAzt

p1 az B2
o, @) - b_xhz(x,b)][ﬁhz(y,c)—d_yhz(y,d)”

B az
—— (@) + (D) [y_chz(y,c)+

B2
= end)].
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Prsn _
- AytAys

% f(s, 1) F+y's -y

Proof. From the assumption thaty < <T forall (s, 1) € [a, b] x [c,d], it follows that

su (14)
a<s<b?<t<d AptAys
On the other hand,
b pd sz(s,t) 1“+,y b pd
//P(x,y,s,t) AztAls——/ f P(x,y,s )A2tA1s
a Jc AZ A1
sz(s H T+y
P LS, & ———|AstA 15
ff (xys ) AotA1s ) 2E818: (15)
We observe that,
b 1
fpl(x,s)Als [y x,0) - L o)
a ((X1+ﬁ1) xX—a b—-x
and
d 1 a B2
Py(y, ) Aot = —— | ——ho(y,C) — hy(y,d)|.
fc 20 D8t = (s | S (0= T ()|
Hence,

b rd
ffP(x,y,s,t)AztAls
a c
a

- (a1 + B1) (a2 + B2) [JC— a
By applying item (v) of Theorem 13 to (15) and using (14), we have

0*f (s, 1)
Ao tAys

F_Y b prd
< —f f [P(x,¥,s,t)|A2tAys. (17)
2 a [

hy(x,a) —

b a2 B
_xhz(x,b)][mhz(y,c)— _yhz(y,d)]. (16)

d
P(x,y,s,t,)
C

T+y (b rd
Botbys——T P(x,y,s, t)AztAls|
a C

The desired inequality is obtained by using (6), (10), (16) and (17). Oa
Remark 20. Theorem 19 extends Theorem 4 to the 2D case.

Corollary 21. Under the conditions of Lemma 16, and suppose that there exists constantsy, ' €

R such thaty < aAft(As L <T forallsea,b] andt € [c,d], then we have the inequality

1 b 1 d
f(x,y)—mfa f(al(s)yY)Als_Eﬁ [, 02(0)A0t

b rd
+m[a[a flo1(s),02(1)AstA1s

_ 2(b+);_c) (12,0 = ho(x, )| [ oy, ©) - oty )|

-y
m[hZ(x»a)"'hz(x,b)][hz(y,6)+h2(y,d)]_ (18)



286

Proof. The proof follows directly from Theorem 19 by taking a; = x—a,

and fo=d-y.

4. Applications
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=b-x,a,=y—-c

a

In this section, we apply our theorems to the continuous, discrete, and quantum calculus.

Corollary 22. IfweletT,

IENE

g ML

az‘*‘ﬁz y-c

(x+,61xa

=T, =R in Theorem 17, then we have the inequality

f fs, y)ds+—f fs, y)ds
/32

,ndt+

f fx, t)dt

a0

1
+
(a2 + B2) (a1 + P1) ((y o(x—a)

1

ff(s,t)dsdt+7( YT ——

B2

Bray

vy rb
@21 f fs, t)dsdt)

(az+ﬁz)(a1+ﬁ1) (d-y)(x— a)/ f [l ndsdt+ = 0=y f(s )ds )|

- M
~ 4(ay + (a2 + B2)

|[a10e= @)+ 1 (b= 0| [az(y - ) + fatd - )]

forall(x,y) € [a,b] x [c,d], where

Corollary 23. IfweletT,

fley - ﬁ(

a2+,B (

M= sup

a<s<b,c<t<d

azf(s,t)‘<
0tos

=Ty = Z in Theorem 17, then we have the inequality:

)

f(x t+1)+

Z fx, t+1))

ara; —-1x-1

+ +1 t+1
(az+ﬁ2)(a1 +,61)((y—c)(x—a) ,Z”Zaf(s )

1

-1
a1 bl

To-ob-n L LstrLeen)

t=c s=Xx

(az + B2) (a1 + B1)

M

<
~4(ay + P (a2 + B2)

( ﬁZal d-1x-1

+1,t+1
d- ) -a) 22 [0 )

t=ys=a

B2b1 d-1h-1
T Y Zf(s+1,t+1))'

=y s=x

[al(x—a—1)+,61(b—x+l)] [az(y—c—1)+,62(d—y+1) ,

(19)

(20)



NEW OSTROWSKI AND OSTROWSKI-GRUSS TYPE INEQUALITIES 287

forall (x,y)efa,a+1,---,b—1,b} x{c,c+1,---,d—1,d}, where

M= sup fG+Lt+D)—f(s+1L,0)—f(s,t+ 1)+ f(s, )| <oo.

a<s<b,c<t<d

Corollary 24. Let T; = qlNO, gi>1and T, = qZNO, go > 1 in Theorem 17. Then we have the

inequality:
1 a1 ﬁ
f(x,y)—al+ﬁ( — ff(qls,y)dqlﬂb ff(qls,y)dql)
. f fx, got)dg, t+ P2 f fx,q20)d t)
a2+.32 y-c PR a—yl), T

1 sl |
»g2l)dg, sdg, t
+(062+,32)(0¢1+,61)((y_c)(x_a) ). flais, qat)dg, sdg

aziﬁlfyfb
To-ow-0l ) f(QlS,ta)dqlsdqzt)

! Paay fdfx
,Got)dg, sdg, t
(062+,32)(061+,61)((d ) (x—a) . flars, q20)dg, sdg

d pb
+%/y / f(ﬂlls,ﬂlzl‘)dqlsdqzt)’

- M [(11(x—Q1a)+/31(671b—X)][062(}/ q20) + P2(god — )’)]
(a1 + 1) (a2 + B2) 1+aq1 1+qg»

21

where

M= sup

a<s<b,c<t<d

flais,g20)— f(qi1s,80)— f(s,g20) + f (s, t)‘<oo
(g1 —1D(g2—-1)st

Corollary 25. IfweletT; =Ty =R in Theorem 19, then we have the inequality:

’f( 22 U +ﬁ
a2+[32 I ff(x,t)dt+ b2 f f(x,t)dt)
b
+(a2+,32)1(a1+,31)((y—cz§(cjcl—a) c /a f(s,t)deH#Z)l_x) Cy/x f(s,t)dsdt)
d rx 4 b
+(a2+'62)1(0‘1+,61)((d_[j/2)((x;—a) ; fa f(s,t)dsdt+% ; f f(s,t)dsdt)
8(a1+£1)(1;2+/32) [al(x—a)+,31(b—x)] [az(y—c)+,62(d—y)] 22)

forall (x,y) €la,b] x[c,d].
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Corollary 26. If we let T =

Ty = Z in Theorem 19, then we have that for all (x,y) € {a,a +
-,b-1,b} x{c,c+1,..

.,d—1,d}, the following inequality holds:

)

|f(X,J/) a j—lB (

X )
_a2+,32(y Ctch(x 1)+ Zf(x,t+1))

' ; ( o lezlf(SJrl D+ azp YZIbZlf(sﬂ t+1))
(@2+ P21+ P\ (y-o)(x—a) (= = G-00-n =%
1 Boay 4l Bafy  d=lbol
Li+ )+ =" — 1,t+1
(062+,32)(061+,61)((d y)(x—a) tzi/szzaf(5+ +1)+ @ y-n t;écf(“' + ))
+T
ST Poes g | @D =rb=x v [axy- o1 - pad -y + ]|

-y
8(a1+,31)(a2+,62) [al(x_a_1)+,31(b—X+l)] [“2(3’_0—1)+,32(d—y+1)],

(23)

Corollary 27. LetT; =

4,°, g1 >1and Ty = qu", g2 > 1 in Theorem 19. Then we have the
inequality

1 b

flx,y- a1+,61 - af flaqs, y)dq1s+ b ff(chs,y)dqls)
f(x,qzt)d r+— ﬁ 2 f(x,qzt)d

az+,32 y—c o o

1 ardq f
! » t d 1 d 2t
((X2 +ﬁ2)(a1 +ﬁ1) ((y_c)(x_a) e Ja f(q13 q2 ) q s P

__ @b y]b
+ (y_c)(b_x) c p f(qls)qzt)dqlsdqzt)

! Baar fx
» t d 1 d 2[‘
(062 + f2)(a +,61)((d ) (x-a) . flq1s,g20)dg, sdg

d prb
+%/ f f(LhS, qzt)ququzt)
y X

_ v+l [al(x—qla)—ﬁl(qlb—x)][az(y—qzc)—ﬂz(qzd—y)”
2(a1 + pr)(az + f2) 1+aq 1+q2

-y [al(x—qla)+ﬁ1(q1b—x)][az(y—qzc)+ﬂz(qzd—y)] 24)
2(061 + B1) (a2 + B2) 1+q1 1+q .
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