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THE KKM MAPS AND FIXED POINT THEOREMS

IN CONVEX SPACES

POLLY W. SY AND SEHIE PARK

Abstract. From a general form of the celebrated Knaster–Kuratowski–Mazurkiewicz (simply,

KKM) theorem, we deduce a new form of the Fan–Browder fixed point theorem, an approximate

fixed point theorem, and the Himmelberg fixed point theorem.

In this paper, a generalization of the Knaster-Kuratowski-Mazurkiewicz theorem is

applied to obtain a new non-compact form of the Fan-Browder fixed point theorem.

This is used to obtain an approximate fixed point theorem, which readily implies the

Himmelberg fixed point theorem. Finally, we note that most of the results in this paper

are equivalent to the Brouwer fixed point theorem.

A multimap (or simply, a map) F : X ⊸ Y is a function from a set X into the power

set 2Y of a set Y ; that is, a function with the values F (x) ⊂ Y for x ∈ X and the fibers

F−(y) := {x ∈ X : y ∈ F (x)} for y ∈ Y . For A ⊂ X , let F (A) :=
⋃
{F (x) : x ∈ A}.

For a set D, let 〈D〉 denote the set of nonempty finite subsets of D.

Let X be a subset of a vector space and D a nonempty subset of X . We call (X, D)

a convex space if coD ⊂ X and X has a topology that induces the Euclidean topology

on the convex hulls of any N ∈ 〈D〉; see [8], [9]. If X = D is convex, then X = (X, X)

becomes a convex space in the sense of Lassonde [7]. If X is compact, then the convex

space (X, D) is said to be compact. Every nonempty convex subset X of a topological

vector space is a convex space with respect to any nonempty subset D of X , and the

converse is known to be not true.

The following version of the Knaster-Kuratowski-Mazurkiewicz (simply, KKM) the-

orem for convex spaces is known.

Theorem 1. Let (X, D) be a convex space and F : D ⊸ X a multimap such that

(1) F (z) is open [resp. closed ] for each z ∈ D; and

(2) F is a KKM map (that is, co N ⊂ F (N) for each N ∈ 〈D〉).
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Then {F (z)}z∈D has the finite intersection property. (More precisely, for any N ∈ 〈D〉,
we have co N ∩ [

⋂
z∈N F (z)] 6= ∅.)

The closed version is essentially due to Fan [3] and the open version is motivated from

the works of Kim [6] and Shih-Tan [16], who showed that the original KKM theorem holds

for open valued KKM maps on a simplex. Later, Lassonde [8] showed that the closed

and open versions of Theorem 1 can be derived from each other. More general versions

of Theorem 1 were recently known; for example, see Park ([13]−[15]).

From Theorem 1, we deduce the following new result.

Theorem 2. Let (X, D) be a convex space and P : X ⊸ D a multimap. If there

exist z1, z2, . . . , zn ∈ D and nonempty open [resp. closed ] subsets Gi ⊂ P−(zi) for each

i = 1, 2, . . . , n such that co{z1, z2, . . . , zn} ⊂
⋃n

i=1 Gi, then the map co P : X ⊸ X has a

fixed point x0 ∈ X (more precisely, there exists an N ∈ 〈P (x0)〉 such that x0 ∈ coN ⊂
coP (x0)).

Proof. Let Y := co{z1, z2, . . . , zn} and D′ := {z1, z2, . . . , zn} ⊂ D and consider the

convex space (Y, D′). Define a map F : D′
⊸ Y by F (zi) := Y \Gi for each zi ∈ D′.

Then each F (zi) is closed [resp. open] in Y , and

n⋂

i=1

F (zi) = Y \
n⋃

i=1

Gi = Y \Y = ∅.

Therefore, the family {F (z)}z∈D′ does not have the finite intersection property, and

hence, F is not a KKM map by Theorem 1. Thus, there exists an N ∈ 〈D′〉 such

that coN 6⊂ F (N) =
⋃
{Y \Gi : zi ∈ N}. Hence, there exists an x0 ∈ coN such that

x0 ∈ Gi ⊂ P−(zi) for each zi ∈ N ; that is, N ⊂ P (x0). Therefore, x0 ∈ coN ⊂ coP (x0).

This completes our proof.

The following well-known Fan-Browder fixed point theorem is a simple consequence

of Theorem 2.

Theorem 3. Let K be a compact convex space and T : K ⊸ K a map such that

(1) T (x) is a nonempty convex subset of K for each x ∈ K; and

(2) T−(y) is open in K for each y ∈ K.

Then there exists an x0 ∈ K such that x0 ∈ T (x0).

Proof. Since each T (x) is nonempty, K has the open cover {T−(y)}y∈K . Since K

is compact, this cover has a finite subcover {T−(zi)}n
i=1. Let D = {z1, z2, . . . , zn} and

define P : K ⊸ D by P (x) := {z ∈ D : z ∈ T (x)} for each x ∈ K. Then P−(zi) = T−(zi)

is open for each zi ∈ D, and P (x) ⊂ T (x) for each x ∈ K, whence we have coP (x) ⊂ T (x)

by (1). Put Gi := P−(zi) = T−(zi) for each i = 1, 2, . . . , n. Then coP has a fixed point

by Theorem 2.
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Theorem 3 is essentially due to Browder [2] and a reformulation of Fan’s geometric

lemma [3] in the form of a fixed point theorem. Browder [2] applied Theorem 3 to a

systematic treatment of the interconnections between multi-valued fixed point theorems,

minimax theorems, variational inequalities, and monotone extension theorems. For fur-

ther developments on generalizations and applications of Theorem 3, we refer to [11],

[13], and [14].

The following theorem due to Lassonde [8] also follows from Theorem 2.

Theorem 4. Let X be a convex space and T : X ⊸ X a multimap such that

(1) T (x) is convex for each x ∈ X;

(2) T−(y) is closed for each y ∈ X; and

(3) there exists an A ∈ 〈X〉 such that T (x) ∩ A 6= ∅ for each x ∈ X.

Then T has a fixed point.

Proof. Let D := A = {z1, z2, . . . , zn} and P (x) := {z ∈ D : z ∈ T (x)} for each

x ∈ X . Then each P (x) is nonempty by (3) and coP (x) ⊂ T (x) for each x ∈ X by

(1). Moreover, Gi := P−(zi) = T−(zi) is closed for each i, by (2). Further, by (3),

X =
⋃n

i=1 P−(zi) =
⋃n

i=1 Gi. Therefore, coP has a fixed point by Theorem 2.

Note that Kim [6] deduced particular forms of Theorem 4 from the Kakutani fixed

point theorem.

The following examples show that Theorem 2 properly generalize Theorems 3 and 4.

Examples 1. Let X := [0, 10) ⊂ R and T : X ⊸ X be defined by T (x) := (x/2, 10)

for x ∈ X . Then each T (x) is nonempty convex. Moreover, T−(y) = [0, 2y) if y < 5

and T−(y) = [0, 10) if y ≥ 5, and hence T−(y) is open for each y ∈ X . Note that X is

covered by a finite number of T−(y)’s and hence Theorem 2 with X = D works.

2. Let X := [0, 2] ⊂ R and D := {0, 2}. Define P : X ⊸ D by P (x) = {2} if 0 ≤ x ≤
1, P (1) = {0, 2} and P (x) = {0} if 1 < x ≤ 2. Then X = coD = [0, 2] = P−(0) ∪ P−(2)

is the union of closed sets and Theorem 2 works.

For topological spaces X and Y , a multimap F : X ⊸ Y is said to be lower [resp.

upper] semi-continuous if for each open [resp. closed] set B ⊂ Y , the set F−(B) = {x ∈
X : F (x) ∩ B 6= ∅} is open [resp. closed] in X .

From Theorem 2, we obtain the following approximate fixed point theorem.

Theorem 5. Let X be a convex subset of a topological vector space and F : X ⊸ X

a lower [resp. upper ] semi-continuous map such that (1) F (x) is nonempty convex for

each x ∈ X and (2) F (X) is totally bounded. Then for every open [resp. closed ] convex

neighborhood V of the origin O of E, there exists a point xV ∈ X such that

F (xV ) ∩ (xV + V ) 6= ∅.
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Proof. Since F (X) is totally bounded, there exists a subset D ∈ 〈X〉 such that

F (X) ⊂ D + V . Then, for any x ∈ X , (F (x) − V ) ∩ D 6= ∅. Define a map P : X ⊸ D

by P (x) := (F (x) − V ) ∩D for x ∈ X . Then each P (x) is nonempty. Note that for each

y ∈ D, we have

P−(y) = {x ∈ X : y ∈ P (x) ∩ D}

= {x ∈ X : y ∈ (F (x) − V ) ∩ D}

= {x ∈ X : F (x) ∩ (y + V ) 6= ∅}.

If F is lower semi-continuous and V is open, then each P−(y) is open. If F is upper

semi-continuous and V is closed, then each P−(y) is closed.

Note that for each x ∈ X , we have a y ∈ D such that x ∈ P−(y). Therefore,

X =
⋃

y∈D P−(y). Hence, by Theorem 2, coP : X ⊸ X has a fixed point xV ∈ X , that

is, xV ∈ coP (xV ) ⊂ (F (xV ) − V ) ∩ X , which readily implies F (xV ) ∩ (xV + V ) 6= ∅.

Fan [4] obtained a slightly different version of Theorem 5 for a lower semi-continuous

multimap F : X ⊸ E, where X is a convex subset of a locally convex Hausdorff topo-

logical vector space E.

Lassonde [8] obtained Theorem 5 for a compact map F : X ⊸ X using a particular

form of Theorem 2. We followed his method in the proof of Theorem 5.

A more general result including Theorem 5 and Theorems of Fan and Lassonde is due

to Park ([12], Theorem 3) (where Hausdorffness is redundant) with a different proof.

From the upper semi-continuous case of Theorem 5, we deduce the well-known Him-

melberg fixed point theorem [5] as follows. We give its proof for completeness.

Theorem 6. Let X be a convex subset of a locally convex Hausdorff topological vector

space E and F : X ⊸ X a compact upper semi-continuous map having nonempty closed

convex values. Then F has a fixed point x0 ∈ X.

Proof. Since E is locally convex, each neighborhood U of O contains a closed convex

neighborhood of O. Therefore, by Theorem 4, there exist xU , yU ∈ X such that yU ∈

F (xU ) and yU ∈ xU +U . Since F (X) is relatively compact in X , we may assume that the

net {yU} converges to some x0 ∈ X . Since E is Hausdorff, the net {xU} also converges

to x0. Because F is upper semi-continuous with closed values, the graph of F is closed

in X × F (X) and hence we have x0 ∈ F (x0). This proves the theorem.

Note that Himmelberg’s original proof is based on the Kakutani fixed point theorem.

Theorem 6 includes historically well-known theorems due to Brouwer, Schauder, Ty-

chonoff, Kakutani, Hukuhara, Bohnenblust and Karlin, Fan and Glicksberg. Moreover,

there have appeared a number of another generalizations of the Himmelberg theorem;

see [11].
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Until now, we deduced all of our results from the KKM theorem, which is known to
be equivalent to the Brouwer fixed point theorem. Therefore, in certain sense, all of our
above results are equivalent to the Brouwer theorem.

Finally, from Theorem 5, we have the following.

Theorem 7. Let X be a convex subset of a topological vector space, and F : X ⊸ X
a multimap such that

(1) F (x) is nonempty convex for each x ∈ X;

(2) F−(y) is open for each y ∈ X; and

(3) F (X) is totally bounded.

Then for any convex neighborhood V of O in E, there exists a point xV ∈ X such that

F (xV ) ∩ (xV + V ) 6= ∅.

Proof. Note that F is simply lower semi-continuous.

Theorem 7 improves Park ([12], Corollary 7), which is closely related to the Ben-El-
Mechaiekh conjecture [1], that is, Theorem 3 would hold if we assume the map T : K ⊸

K is compact instead of the compactness of K. This is not resolved yet and a number
of partial solutions were given in [10].
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