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DUAL WAVELETS ASSOCIATED WITH

NONUNIFORM MRA

MOHAMMAD YOUNUS BHAT

Abstract. A generalization of Mallat’s classical multiresolution analysis, based on the the-

ory of spectral pairs, was considered in two articles by Gabardo and Nashed. In this set-

ting, the associated translation set is no longer a discrete subgroup of R but a spectrum

associated with a certain one-dimensional spectral pair and the associated dilation is an

even positive integer related to the given spectral pair. In this paper, we construct dual

wavelets which are associated with Nonuniform Multiresolution Analysis. We show that

if the translates of the scaling functions of two multiresolution analyses are biorthogo-

nal, then the associated wavelet families are also biorthogonal. Under mild assumptions

on the scaling functions and the wavelets, we also show that the wavelets generate Riesz

bases.

1. Introduction

Multiresolution analysis (MRA) is an important mathematical tool since it provides a nat-

ural framework for understanding and constructing discrete wavelet systems. A multires-

olution analysis is an increasing family of closed subspaces
{

V j : j ∈Z
}

of L2(R) such that
⋂

j∈ZV j = {0} ,
⋃

j∈ZV j is dense in L2(R) and which satisfies f ∈ V j if and only if f (2·) ∈ V j+1.

Furthermore, there exists an element ϕ ∈ V0 such that the collection of integer translates of

function ϕ,
{

ϕ(·−k) : k ∈Z
}

represents a complete orthonormal system for V0. The function ϕ

is called the scaling function or the father wavelet. The concept of multiresolution analysis has

been extended in various ways in recent years. These concepts are generalized to L2
(

R
d
)

, to

lattices different from Z
d , allowing the subspaces of multiresolution analysis to be generated

by Riesz basis instead of orthonormal basis, admitting a finite number of scaling functions, re-

placing the dilation factor 2 by an integer M ≥ 2 or by an expansive matrix A ∈GLd (R) as long

as A ⊂ AZd . But in all these cases, the translation set is always a group. Recently, Gabardo and

Nashed in [9] defined a multiresolution analysis associated with a translation set {0,r /N }+2Z,

where N ≥ 1 is an integer, 1 ≤ r ≤ 2N −1,r is an odd integer and r, N are relatively prime, a
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discrete set which is not necessarily a group. They call this an NUMRA. As, the case N = 1 re-

duces to the standard definition of MRA with dyadic dilation. NUMRA with multiplicity D, is

called NUMRA-D that generalizes a particular case of a result of Calogero and Garrigos [3] on

biorthogonal MRA’s of multiplicity D in nonstandard setup. A study with respect to NUMRA

has been done by many authors in the references [8, 9, 10, 11, 12, 15, 16, 17].

The concept of biorthogonal wavelets plays an important role in applications. We refer

to [1, 2, 4, 5, 13] for various aspects of this theory on R. For the higher dimensional situation

on R
n , we refer to the articles [4, 5, 6, 7, 14].

In this article we construct dual wavelets which are associated with Nonuniform Mul-

tiresolution Analysis. We show that if ϕ and ËIJ ϕ̃ are the scaling functions of two multiresolu-

tion analyses (MRAs) such that their translates are biorthogonal, then the associated families

of wavelets are also biorthogonal. Under mild decay conditions on the scaling functions and

the wavelets, we also show that the wavelets generate Riesz bases for L2
(

R
)

.

The article is organized as follows. In Section 2, we give a brief introduction about nonuni-

form wavelets on R. In Section 3, we find necessary and sufficient conditions for the translates

of a function to form a Riesz basis for its closed linear span. In the last section, we prove that

the wavelets associated with dual MRAs are biorthogonal and generate Riesz bases for L2(R).

2. Preliminaries

Definition 2.1. A multiresolution analysis (MRA) of L2(R) is a sequence of closed subspaces

{V j : j ∈Z} of L2(R) satisfying the following properties:

(a) V j ⊂V j+1 for all j ∈Z;

(b)
⋃

j∈ZV j is dense in L2(R);

(c)
⋂

j∈ZV j = {0};

(d) f (x)∈V j if and only if f (2x) ∈V j+1 for all j ∈Z;

(e) There is a function ϕ ∈V0, called the scaling function, such that
{

ϕ(x −k) : k ∈Z
}

forms an

orthonormal basis for V0.

According to the standard scheme for construction of MRA-based wavelets, for each j ,

we define a space W j (wavelet space) as the orthogonal complement of V j in V j+1, i.e., V j+1 =

V j ⊕W j , j ∈Z, where W j ⊥V j , j ∈Z. It is not difficult to see that

f (x) ∈W j if and only if f (2x) ∈W j+1, j ∈Z. (2.1)

Moreover, they are mutually orthogonal, and we have the following orthogonal decomposi-

tions:

L2(R) =
⊕

j∈Z

W j =V0 ⊕

(

⊕

j≥0

W j

)

. (2.2)
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For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ 2N − 1 such that r and N are

relatively prime, we define

Λ=

{

0,
r

N

}

+2Z=

{

r k

N
+2n : n ∈Z,k = 0,1

}

. (2.3)

It is easy to verify that Λ is not necessarily a group nor a uniform discrete set, but is the union

of Z and a translate of Z. Moreover, the set Λ is the spectrum for the spectral set Γ=
[

0, 1
2

)

∪
[

N
2 , N+1

2

)

and the pair (Λ,Γ) is called a spectral pair [9, 10].

Definition 2.2. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ 2N −1 such that r and

N are relatively prime, an associated nonuniform multiresolution analysis is a sequence of

closed subspaces
{

V j : j ∈Z
}

of L2(R) such that the following properties hold:

(a) V j ⊂V j+1 for all j ∈Z;

(b)
⋃

j∈ZV j is dense in L2(R);

(c)
⋂

j∈ZV j = {0};

(d) f (x) ∈V j if and only if f (2N x)∈V j+1 for all j ∈Z;

(e) There exists a function ϕ in V0 such that
{

ϕ(x −λ) :λ ∈Λ
}

, is a complete orthonormal

basis for V0.

It is worth noticing that, when N = 1, one recovers from the definition above the standard

definition of one dimensional multiresolution analysis with dyadic dilation. When, N > 1, the

dilation factor of 2N ensures that 2NΛ⊂Z⊂Λ.

For every j ∈Z, define W j to be the orthogonal complement of V j in V j+1. Then we have

V j+1 =V j ⊕W j and Wℓ ⊥Wℓ′ if ℓ 6= ℓ′. (2.4)

It follows that for j > J ,

V j =VJ ⊕

j−J
⊕

ℓ=0

W j−ℓ , (2.5)

where all these subspaces are orthogonal. By virtue of condition (b) in the Definition 2.2, this

implies

L2(R) =
⊕

j∈Z

W j , (2.6)

a decomposition of L2(R) into mutually orthogonal subspaces.

As in the standard case, one expects the existence of 2N −1 number of functions so that

their translation by elements of Λ and dilations by the integral powers of 2N form an or-

thonormal basis for L2(R).
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Definition 2.3. A set of functions
{

ψ1,ψ1, . . . ,ψ2N−1
}

in L2(R) is said to be a set of basic wavelets

associated with the nonuniform multiresolution analysis
{

V j : j ∈Z
}

if the family of functions
{

ψℓ(x −λ) : 1 ≤ ℓ≤ 2N −1,λ ∈Λ
}

forms an orthonormal basis for W0.

3. Riesz Bases of Translates

Lemma 3.1. Let ϕ,ϕ̃ ∈ L2(R) be given. Then
{

ϕ(x −λ) : λ ∈Λ
}

is biorthogonal to
{

ϕ̃(x −λ) : λ ∈

Λ
}

if and only if
∑

λ∈Λ

ϕ̂(ξ+λ) ˆ̃ϕ(ξ+λ) = 1 a.e ξ ∈R.

Proof. For λ,σ ∈Λ, it follows that
〈

ϕ(x −λ),ϕ̃(x −σ)
〉

= δλ,σ ⇔
〈

ϕ,ϕ̃(x −σ)
〉

=δ0,σ. Moreover,

〈ϕ,ϕ̃(x −σ)〉 =
〈

ϕ̂, ˆ̃ϕ(x −σ)
〉

=

∫

R

ϕ̂(ξ) ˆ̃ϕ(ξ)e−2πiσξdξ

=

∫1/2

0

{

∑

p∈Z

ϕ̂
(

ξ+
p

2

)

ˆ̃ϕ
(

ξ+
p

2

)

eπiσp

}

e−2πiσξdξ,

and using the fact that
{

e−2πiσξ : σ ∈ Λ
}

is an orthonormal basis of L2
[

0, 1
2

)

, we obtain the

desired result. ���

We now provide a sufficient condition for the translates of a function to be linearly inde-

pendent.

Lemma 3.2. Let ϕ ∈ L2(R). Suppose there exists two constants A,B > 0 such that

A ≤
∑

λ∈Λ

∣

∣ϕ̂(ξ+λ)
∣

∣

2
≤ B f or a.e ξ ∈R. (3.1)

Then
{

ϕ(x −λ) : λ ∈Λ
}

is linearly independent.

Proof. For the proof of the Lemma, it is sufficient to find another function say ϕ̃ whose trans-

lates are biorthogonal to ϕ. Let us define the function ϕ̃ by

ˆ̃ϕ(ξ) =
ϕ̂(ξ)

∑

λ∈Λ

∣

∣ϕ̂(ξ+λ)
∣

∣

2
.

By equation (3.1), ϕ̃ is well defined. Now

∑

σ∈Λ

ϕ̂(ξ+σ) ˆ̃ϕ(ξ+σ) =
∑

σ∈Λ

ϕ̂(ξ+σ)
ϕ̂(ξ+σ)

∑

λ∈Λ

∣

∣ϕ̂(ξ+λ+σ)
∣

∣

2
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=

∑

σ∈Λ

∣

∣ϕ̂(ξ+σ)
∣

∣

2

∑

ν∈Λ

∣

∣ϕ̂(ξ+ν)
∣

∣

2

= 1.

Applying Lemma 3.1, it follows that
{

ϕ(x −λ) :λ ∈Λ
}

is linearly independent. This completes

the proof of the Lemma. ���

Lemma 3.3. Suppose that the scaling function ϕ satisfies inequality (3.1). Also let f =
∑

λ∈Λ

hλϕ(x −λ), where f ∈ span
{

ϕ(x −λ) : λ ∈Λ
}

and
{

hλ

}

is a finite sequence. Define the Fourier

transform of h by ĥ(ξ) =
∑

λ∈Λ

hλe−2πiλξ. Then

A

∫1/2

0
|ĥ(ξ)|2dξ≤ ‖ f ‖2

2 ≤B

∫1/2

0
|ĥ(ξ)|2dξ.

Proof. Using Plancherel’s theorem, we have

∫

R

| f (x)|2d x =

∫

R

∣

∣

∣

∣

∣

∑

λ∈Λ

hλϕ(x −λ)

∣

∣

∣

∣

∣

2

d x

=

∫

R

∣

∣

∣

∣

∣

∑

λ∈Λ

hλϕ̂(ξ)e−2πiλξ

∣

∣

∣

∣

∣

2

dξ

=

∫

R

|ϕ̂(ξ)|2
∣

∣

∣

∣

∣

∑

λ∈Λ

hλe−2πiλξ

∣

∣

∣

∣

∣

2

dξ

=

∫

R

|ϕ̂(ξ)|2|ĥ(ξ)|2dξ

=

∫1/2

0

∑

p∈Z

∣

∣

∣ϕ̂
(

ξ+
p

2

)∣

∣

∣

2 ∣

∣ĥ(ξ)
∣

∣

2
dξ.

Hence, using identity (3.1), we get the desired result. ���

Theorem 3.4. Let
{

ϕ(x−λ) :λ ∈Λ
}

be a Riesz basis for its closed linear span. Assume that there

exists a function
{

ϕ̃(x −λ) : λ ∈ Λ
}

which is biorthogonal to
{

ϕ(x −λ) : λ ∈ Λ
}

. Then for every

f ∈ span
{

ϕ(x −λ) : λ∈Λ
}

, we have

f =
∑

λ∈Λ

〈

f ,ϕ̃(x −λ)
〉

ϕ(x −λ); (3.2)

and there exists constants A,B > 0 such that

A‖ f ‖2
2 ≤

∑

λ∈Λ

∣

∣

〈

f , ˆ̃ϕ(ξ−λ)
〉∣

∣

2
≤ B‖ f ‖2

2. (3.3)
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Proof. We first prove (3.2) and (3.3) for any f ∈ span
{

ϕ(x −λ) : λ ∈Λ
}

and then generalize it

to span
{

ϕ(x −λ) : λ ∈ Λ
}

. Assume that f ∈ span
{

ϕ(x −λ) : λ ∈ Λ
}

, then there exists a finite

sequence
{

hλ :λ ∈Λ
}

such that f =
∑

λ∈Λhλϕ(x −λ). Using biorthogonality, we obtain

〈 f ,ϕ̃(x −σ)〉 =

〈

∑

λ∈Λ

hλϕ(x −λ),ϕ̃(x −σ)

〉

=
∑

λ∈Λ

hλ〈ϕ(x −λ),ϕ̃(x −σ)〉

= hλ.

This proves (3.2). In order to prove (3.3), we make use of Lemma 3.3 to get

B−1
‖ f ‖2

2 ≤

∫1/2

0
|ĥ(ξ)|2dξ≤ A−1

‖ f ‖2
2.

Therefore, using the Plancherel formula for Fourier series and the fact that hλ =
〈

f ,ϕ̃(x −λ)
〉

,

we have
∫1/2

0
|ĥ(ξ)|2dξ=

∑

λ∈Λ

|hλ|
2
=

∑

λ∈Λ

∣

∣〈 f ,ϕ̃(x −λ)〉
∣

∣

2
.

This proves (3.3). We now generalize the results to span
{

ϕ(x −λ) : λ∈Λ
}

. Let us first prove

(3.3). For f ∈ span
{

ϕ̃(x −λ) : λ ∈Λ
}

, there exists a sequence { fm : m ∈Z} in span{ϕ̃(x −λ) : λ ∈

Λ} such that ‖ fm − f ‖2 → 0 as m →∞. Thus for each λ∈Λ, we have

〈 fm ,ϕ̃(x −λ)〉→ 〈 f ,ϕ̃(x −λ)〉 as m →∞.

So the result holds for each fm . Therefore,

∑

λ∈Λ

∣

∣〈 f ,ϕ̃(x −λ)〉
∣

∣

2
=

∑

λ∈Λ

lim
m→∞

∣

∣〈 fm ,ϕ̃(x −λ)〉
∣

∣

2

= lim
m→∞

∑

λ∈Λ

∣

∣〈 fm ,ϕ̃(x −λ)〉
∣

∣

2

≤ B lim
m→∞

‖ fm‖
2
2

= B‖ f ‖2
2.

Thus, the upper bound holds in (3.3). Further, we have

{

∑

λ∈Λ

∣

∣〈 fm ,ϕ̃(x −λ)〉
∣

∣

2

}1/2

≤

{

∑

λ∈Λ

∣

∣〈 fm − f ,ϕ̃(x −λ)〉
∣

∣

2

}1/2

+

{

∑

λ∈Λ

∣

∣〈 f ,ϕ̃(x −λ)〉
∣

∣

2

}1/2

.

As the upper bound in (3.3) holds for fm − f and lower bound for each fm , we get

A1/2
‖ fm‖2 ≤ B 1/2

‖ fm − f ‖2 +

(

∑

λ∈Λ

∣

∣〈 fm ,ϕ̃(x −λ)〉
∣

∣

2

)1/2

,
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from which, it follows that

A‖ f ‖2
2 ≤

∑

λ∈Λ

∣

∣

〈

f ,ϕ̃(x −λ)
〉∣

∣

2
.

This proves (3.3). Similarly, we can prove (3.2) for f ∈ span
{

ϕ(x −λ) : λ∈Λ
}

and the proof of

the theorem is complete. ���

4. Biorthogonal Properties of Nonuniform Wavelets

Let {V j : j ∈Z} and {Ṽ j : j ∈Z} be biorthogonal NUMRA’s with scaling functions ϕ and ϕ̃.

Then there exists integral periodic functions m0 and m̃0 such that ϕ̂(ξ) = m0 (ξ/2N )ϕ̂ (ξ/2N )

and ˆ̃ϕ(ξ) = m̃0 (ξ/2N ) ˆ̃ϕ (ξ/2N ). Suppose there exists integral periodic functions mℓ and m̃ℓ,

1 ≤ ℓ≤ 2N −1 such that

M (ξ)M̃ (ξ) = I , (4.1)

where

M (ξ) =























m0

(

ξ

2N

)

m0

(

ξ

2N
+

1

4N

)

. . . m0

(

ξ

2N
+

2N −1

4N

)

m1

(

ξ

2N

)

m1

(

ξ

2N
+

1

4N

)

. . . m1

(

ξ

2N
+

2N −1

4N

)

...
...

. . .
...

m2N−1

(

ξ

2N

)

m2N−1

(

ξ

2N
+

1

4N

)

. . . m2N−1

(

ξ

2N
+

2N −1

4N

)























and

M̃ (ξ) =























m̃0

(

ξ

2N

)

m̃0

(

ξ

2N
+

1

4N

)

. . . m̃0

(

ξ

2N
+

2N −1

4N

)

m̃1

(

ξ

2N

)

m̃1

(

ξ

2N
+

1

4N

)

. . . m̃1

(

ξ

2N
+

2N −1

4N

)

...
...

. . .
...

m̃2N−1

(

ξ

2N

)

m̃2N−1

(

ξ

2N
+

1

4N

)

. . . m̃2N−1

(

ξ

2N
+

2N −1

4N

)























.

For 1 ≤ ℓ≤ 2N −1, define the associated wavelets as ψℓ and ψ̃ℓ by

ψ̂ℓ(ξ) =mℓ (ξ/2N )ϕ̂ (ξ/2N ) and ˆ̃ψℓ(ξ) = m̃ℓ (ξ/2N ) ˆ̃ϕ (ξ/2N ) .

Definition 4.1. A pair of NUMRA’s {V j : j ∈ Z} and {Ṽ j : j ∈ Z} with scaling functions ϕ and

ϕ̃ respectively are said to be dual to each other if {ϕ(· −λ) : λ ∈ Λ} and {ϕ̃(· −λ) : λ ∈ Λ} are

biorthogonal.

Definition 4.2. Let ϕ and ϕ̃ be scaling functions for dual NUMRA’s. For each j ∈Z, define the

operators P j and P̃ j on L2(R) by

P j f =
∑

λ∈Λ

〈 f ,ϕ̃ j ,λ〉ϕ j ,λ and P̃ j f =
∑

λ∈Λ

〈 f ,ϕ j ,λ〉ϕ̃ j ,λ,
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respectively. Here ϕ j ,λ = δ jϕ(·−λ) and ϕ̃ j ,λ = δ j ϕ̃(·−λ). Same is the case with ψ j ,λ and ψ̃ j ,λ.

It is easy to verify that these operators are uniformly bounded on L2(R) and both the series

are convergent in L2(R).

Remark 4.3. The operators P j and P̃ j satisfy the following properties.

(a) P j f = f if and only if f ∈V j and P̃ j f = f if and only if f ∈ Ṽ j .

(b) lim
j→∞

‖P j f − f ‖2 = 0 and lim
j→−∞

‖P j f ‖2 = 0 for every f ∈ L2(R).

Theorem 4.4. Let ϕ and ϕ̃ be the scaling functions for dual NUMRA’s and ψℓ and ψ̃ℓ,1 ≤ ℓ≤

2N −1 be the associated wavelets satisfying (4.1). Then, we have the following

(a)
{

ψℓ,0,λ :λ ∈Λ
}

is biorthogonal to
{

ψ̃ℓ,0,σ :σ ∈Λ
}

,

(b) 〈ψℓ,0,λ,ϕ̃0,σ〉 = 〈ψ̃ℓ,0,λ,ϕ0,σ〉, for all λ,σ ∈Λ.

Proof. we have

∑

p∈Z

ψ̂ℓ

(

ξ+
p

2

)

ˆ̃ψℓ

(

ξ+
p

2

)

=
∑

p∈Z

{

mℓ

(

ξ

2N
+

p

4N

)

ϕ̂

(

ξ

2N
+

p

4N

)

m̃ℓ

(

ξ

2N
+

p

4N

)

ˆ̃ϕ

(

ξ

2N
+

p

4N

)

}

=

2N−1
∑

s=0

∑

p∈Z

{

mℓ

(

ξ

2N
+

p

2
+

s

4N

)

ϕ̂

(

ξ

2N
+

p

2
+

s

4N

)

m̃ℓ

(

ξ

2N
+

p

2
+

s

4N

)

ˆ̃ϕ

(

ξ

2N
+

p

2
+

s

4N

)

}

=

2N−1
∑

s=0

{

mℓ

(

ξ

2N
+

s

4N

)

m̃ℓ

(

ξ

2N
+

s

4N

)

}

= 1.

Hence, by Lemma 3.1,
{

ψℓ,0,λ : λ ∈Λ
}

is biorthogonal to
{

ψ̃ℓ,0,λ : λ ∈Λ
}

. This proves part (a).

To prove part (b), we have for, λ,σ ∈Λ

〈ψℓ,0,λ,ϕ̃0,σ〉 = 〈ψℓ(x −λ),ϕ̃(x −σ)〉

=

〈

ψ̂ℓ e−2πiλ, ˆ̃ϕe−2πiσ
〉

=

∫

R

mℓ

(

ξ

2N

)

ϕ̂

(

ξ

2N

)

e−2πiλξ m̃0

(

ξ

2N

)

ˆ̃ϕ

(

ξ

2N

)

e2πiσξdξ

=

∫1/2

0

∑

p∈Z

{

mℓ

(

ξ

2N
+

p

4N

)

ϕ̂

(

ξ

2N
+

p

4N

)

×m̃0

(

ξ

2N
+

p

4N

)

ˆ̃ϕ

(

ξ

2N
+

p

4N

)

}

e2πi (σ−λ)dξ

=

∫1/2

0

2N−1
∑

s=0

∑

p∈Z

{

mℓ

(

ξ

2N
+

p

2
+

s

4N

)

ϕ̂

(

ξ

2N
+

p

2
+

s

4N

)
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×m̃0

(

ξ

2N
+

p

2
+

s

4N

)

ˆ̃ϕ

(

ξ

2N
+

p

2
+

s

4N

)

}

e2πi (σ−λ)dξ

=

∫1/2

0

2N−1
∑

s=0

{

mℓ

(

ξ

2N
+

s

4N

)

m̃0

(

ξ

2N
+

s

4N

)

}

e2πi (σ−λ)dξ

= 0.

The dual one can also be shown equal to zero in a similar manner. This proves part (b) and

hence completes the proof of the theorem. ���

Theorem 4.5. Let ϕ and ϕ̃ and ψℓ and ψ̃ℓ,1 ≤ ℓ≤ 2N −1 be as in Theorem 4.4. Let ψ0 =ϕ and

ψ̃0 = ϕ̃. Then for every f ∈ L2(R), we have

P1 f = P0 f +

2N−1
∑

ℓ=1

∑

λ∈Λ

〈 f ,ψ̃ℓ,0,λ〉ψℓ,0,λ (4.2)

and

P̃1 f = P̃0 f +

2N−1
∑

ℓ=1

∑

λ∈Λ

〈 f ,ψℓ,0,λ〉ψ̃ℓ,0,λ. (4.3)

where the series in (4.2) and (4.3) converges in L2(R).

Proof. For the sake of convenience, we will only prove (4.2), as (4.3) is an easy consequence.

In particular, we will prove it in the weak sense only. For this, let f , g ∈ L2(R). Then, we have

2N−1
∑

ℓ=0

∑

λ∈Λ

〈

f ,ψ̃ℓ,0,λ

〉

〈g ,ψℓ,0,λ〉

=

2N−1
∑

ℓ=0

∑

λ∈Λ

{∫

R

f̂ (ξ) ˆ̃ψℓ(ξ)e2πiλξdξ

}{∫

R

ĝ (ξ)ψ̂ℓ(ξ)e−2πiλξdξ

}

=

2N−1
∑

ℓ=0

∑

λ∈Λ

{

∫1/2

0

∑

p∈Z

f̂
(

ξ+
p

2

)

ˆ̃ψℓ

(

ξ+
p

2

)

e2πiλξdξ

}

×

{

∫1/2

0

∑

q∈Z

ĝ
(

ξ+
q

2

)

ψ̂ℓ

(

ξ+
q

2

)

e−2πiλξdξ

}

=

2N−1
∑

ℓ=0

∫1/2

0

{

∑

p∈Z

f̂
(

ξ+
p

2

)

ˆ̃ψℓ

(

ξ+
p

2

)

}{

∑

q∈Z

ĝ
(

ξ+
q

2

)

ψ̂ℓ

(

ξ+
q

2

)

}

dξ

=

∫1/2

0

2N−1
∑

ℓ=0

{

∑

p∈Z

f̂
(

ξ+
p

2

)

m̃ℓ

(

ξ

2N
+

p

4N

)

ˆ̃ϕ

(

ξ

2N
+

p

4N

)

×
∑

q∈Z

ĝ
(

ξ+
q

2

)

mℓ

(

ξ

2N
+

q

4N

)

ϕ̂

(

ξ

2N
+

q

4N

)

}

dξ

=

∫1/2

0

2N−1
∑

ℓ=0

{

2N−1
∑

r=0

∑

p′∈Z

f̂

(

ξ+
p ′

2
N +

r

2

)

m̃ℓ

(

ξ

2N
+

r

4N
+

p ′

2

)

ˆ̃ϕ

(

ξ

2N
+

r

4N
+

p ′

2

)
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×

2N−1
∑

s=0

∑

q ′∈N0

ĝ

(

ξ+
q ′

2
N +

s

2

)

mℓ

(

ξ

2N
+

s

4N
+

q ′

2

)

ϕ̂

(

ξ

2N
+

s

4N
+

q ′

2

)}

dξ

=

∫1/2

0

2N−1
∑

r=0

∑

p′∈Z

2N−1
∑

s=0

∑

q ′∈N0

{

2N−1
∑

ℓ=0

m̃ℓ

(

ξ

2N
+

r

4N

)

mℓ

(

ξ

2N
+

s

4N

)

}

× f̂

(

ξ+
p ′

2
N +

r

2

)

ˆ̃ϕ

(

ξ

2N
+

r

4N
+

p ′

2

)

ĝ

(

ξ+
q ′

2
N +

s

2

)

ϕ̂

(

ξ

2N
+

s

4N
+

q ′

2

)

dξ

=

∫1/2

0

∑

p′∈Z

∑

q ′∈N0

2N−1
∑

s=0
f̂

(

ξ+
p ′

2
N +

s

2

)

ˆ̃ϕ

(

ξ

2N
+

s

4N
+

p ′

2

)

×ĝ

(

ξ+
q ′

2
N +

s

2

)

ϕ̂

(

ξ

2N
+

s

4N
+

p ′

2

)

dξ

=

2N−1
∑

s=0

∫s+1/2

0

∑

p′∈Z

∑

q ′∈N0

f̂

(

ξ+
p ′

2
N

)

ˆ̃ϕ

(

ξ

2N
+

p ′

2

)

ĝ

(

ξ+
q ′

2
N

)

ϕ̂

(

ξ

2N
+

p ′

2

)

dξ. (4.4)

Moreover, we have

∑

λ∈Λ

〈

f ,ϕ̃1,λ

〉〈

g ,ϕ1,λ

〉

=
∑

λ∈Λ

{

∫

R

f̂ (ξ) ˆ̃ϕ

(

ξ

2N

)

e2πiξ/2N dξ

}

{∫

R

ĝ (ξ)ϕ̂

(

ξ

2N

)

e−2πiξ/2N dξ

}

=

∫1/2

0

∑

p∈Z

f̂
(

ξ+
p

2
N

)

ˆ̃ϕ

(

ξ

2N
+

p

2

)

dξ

∫1/2

0

∑

q∈Z

ĝ
(

ξ+
q

2
N

)

ϕ̂

(

ξ

2N
+

q

2

)

dξ

=

∫1/2

0

∑

p∈Z

f̂
(

ξ+
p

2
N

)

ˆ̃ϕ

(

ξ

2N
+

p

2

)

dξ

∫1/2

0

∑

q∈Z

ĝ
(

ξ+
q

2
N

)

ϕ̂

(

ξ

2N
+

q

2

)

dξ

=

∫1/2

0

∑

p∈Z

∑

q∈Z

f̂
(

ξ+
p

2
N

)

ˆ̃ϕ

(

ξ

2N
+

p

2

)

ĝ
(

ξ+
q

2
N

)

ϕ̂

(

ξ

2N
+

q

2

)

dξ. (4.5)

Combing (4.4) and (4.5), we get the desired result. ���

Theorem 4.6. Let ϕ and ϕ̃ and ψℓ and ψ̃ℓ,1 ≤ ℓ≤ 2N −1 be as in Theorem ??. Then, for every

f ∈ L2(R), we have

f =

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

〈

f ,ψ̃ℓ, j ,λ

〉

ψℓ, j ,λ =

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

〈 f ,ψℓ, j ,λ〉ψ̃ℓ, j ,λ, (4.6)

where the series converges in L2(R).

Proof. Using Remark 4.3 and Theorem 4.5, proof of Theorem 4.6 follows. ���

Theorem 4.7. Let ϕ and ϕ̃ be the scaling functions for dual NUMRA’s and ψℓ and ψ̃ℓ,1 ≤ ℓ≤

2N − 1 be the associated wavelets satisfying the matrix condition (4.1). Then, the collection
{

ψℓ, j ,λ : 1 ≤ ℓ≤ 2N −1, j ∈Z,λ ∈Λ
}

and
{

ψ̃ℓ, j ,λ : 1 ≤ ℓ≤ 2N −1, j ∈Z,λ ∈Λ
}

are biorthogonal.

Moreover, if

|ϕ̂(ξ)| ≤C (1+|ξ|)−
1
2−ǫ, | ˆ̃ϕ(ξ)| ≤C (1+|ξ|)−

1
2 −ǫ, |ψ̂ℓ(ξ)| ≤C |ξ| and | ˆ̃ψ(ξ)| ≤C |ξ|, (4.7)



DUAL WAVELETS ASSOCIATED WITH NONUNIFORM MRA 129

for some constant C > 0, ǫ> 0 and for a.e. ξ ∈ R, then
{

ψℓ, j ,λ : 1 ≤ ℓ≤ 2N −1, j ∈Z,λ ∈Λ
}

and
{

ψ̃ℓ, j ,λ : 1 ≤ ℓ≤ 2N −1, j ∈Z,λ∈Λ
}

form Riesz bases for L2(R).

Proof. First we show that
{

ψℓ, j ,λ : 1 ≤ ℓ≤ 2N −1, j ∈ Z,λ ∈Λ
}

and
{

ψ̃ℓ, j ,λ : 1 ≤ ℓ≤ 2N −1, j ∈

Z,λ ∈Λ
}

are biorthogonal to each other. For this, we will show that for each ℓ, 1 ≤ ℓ≤ 2N −1

and j ∈Z,

〈ψℓ, j ,λ,ψ̃ℓ, j ,σ〉 =δλ,σ. (4.8)

We have in fact already proved (4.8) for j = 0. For j 6= 0, we have

〈ψℓ, j ,λ,ψ̃ℓ, j ,σ〉 = 〈P− jψℓ,0,λ,P− j ψ̃ℓ,0,σ〉 = 〈ψℓ,0,λ,ψ̃ℓ,0,σ〉 = δλ,σ.

For fixed λ,σ ∈Λ and j , j ′ ∈Z with j < j ′, we claim that

〈ψℓ, j ,λ,ψ̃ℓ′, j ′,σ〉 = 0. (4.9)

As ψℓ,0,λ ∈ V1, hence ψℓ, j ,λ = P− jψℓ,0,λ ∈ V j+1 ⊆ V j ′ . Therefore, it is enough to show that

ψ̃ℓ′, j ′,σ is orthogonal to every element of V j ′ . Let f ∈ V j ′ . Since
{

ϕ j ′,λ : λ ∈Λ
}

is a Riesz basis

for V j ′ , hence there exists an l 2-sequence
{

dλ : λ ∈ Λ
}

such that f =
∑

λ∈Λ dλϕ j ′,λ in L2(R).

Using part (b) of Lemma 4.1, we have

〈ψ̃ℓ′, j ′,σ,ϕ j ′,λ〉 = 〈P− j ′ψ̃ℓ′,0,σ,P− j ′ϕ0,λ〉 = 0.

Therefore,

〈ψ̃ℓ′ , j ′,σ, f 〉 =
〈

ψ̃ℓ′, j ′,σ,
∑

λ∈Λ

dλϕ j ′,λ

〉

=
∑

λ∈Λ

dλ〈ψ̃ℓ′ , j ′,σ,ϕ j ′,λ〉 = 0.

We now show that these two collections form Riesz bases for L2(R). Linear independence is

clear from the fact that these collections are biorthogonal to each other. So, we have to check

the frame inequalities i.e., there must exist constants A, Ã,B , B̃ > 0 such that

A‖ f ‖2
2 ≤

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

∣

∣〈 f ,ψℓ, j ,λ〉
∣

∣

2
≤ B‖ f ‖2

2, for all f ∈ L2(R), (4.10)

and

Ã‖ f ‖2
2 ≤

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

∣

∣〈 f ,ψ̃ℓ, j ,λ〉
∣

∣

2
≤ B̃‖ f ‖2

2, for all f ∈ L2(R). (4.11)

Let us first check the existence of the upper bounds in (4.10) and (4.11). For this, we have

∑

λ∈Λ

∣

∣〈 f ,ψ̃ℓ, j ,λ〉
∣

∣

2
=

∑

λ∈Λ

∣

∣

∣

∣

∫

R

f̂ (ξ)(2N )− j /2 ψ̂ℓ

(

(2N )− jξ
)

e2πiλ(2N)− j ξdξ

∣

∣

∣

∣

2

= (2N )− j
∑

λ∈Λ

∣

∣

∣

∣

∣

∫1/2

0

∑

p∈Z

f̂
(

ξ+ (2N ) j p

2

)

ψ̂ℓ

(

(2N )− jξ+
p

2

)

e2πiλ(2N)− j ξdξ

∣

∣

∣

∣

∣

2
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=

∫1/2

0

∣

∣

∣

∣

∣

∑

p∈Z

f̂
(

ξ+ (2N ) j p

2

)

ψ̂ℓ

(

(2N )− jξ+
p

2

)

∣

∣

∣

∣

∣

2

dξ

=

∫1/2

0

{

∑

p∈Z

∣

∣

∣ f̂
(

ξ+ (2N ) j p

2

)∣

∣

∣

2 ∣

∣

∣ψ̂ℓ

(

(2N )− jξ+
p

2

)∣

∣

∣

2δ
}

×

{

∑

q∈Z

∣

∣

∣ψ̂ℓ

(

(2N )− jξ+
q

2

)∣

∣

∣

2(1−δ)
}

dξ

=

∫

R

∣

∣ f̂ (ξ)
∣

∣

2
|ψ̂ℓ

(

(2N )− jξ
)

|
2δ

∑

q∈Z

∣

∣

∣ψ̂ℓ

(

(2N )− jξ+
q

2

)∣

∣

∣

2(1−δ)
dξ.

By our assumption (4.7), we have |ψ̂ℓ(ξ)| ≤C
(

1+|(2N )−1ξ|
)−1/2−ǫ

and thereforeit follows that
∑

q∈Z |ψ̂ℓ

(

(2N )− jξ+q/2
)

|
2(1−δ) is uniformly bounded if δ < 2ǫ(1+2ǫ)−1. Thus, there exists a

constant C > 0 such that

∑

λ∈Λ

∣

∣〈 f ,ψ̃ℓ, j ,λ〉
∣

∣

2
≤ C

∫

R

| f̂ (ξ)|2
∑

j∈Z

|ψ̂ℓ

(

(2N )− jξ
)

|
2δdξ

≤ C sup

{

∑

j∈Z

|ψ̂ℓ

(

(2N )− jξ
)

|
2δ : ξ ∈ [1,2N ]

}

‖ f ‖2
2.

Moreover for ξ ∈ [1,2N ], we have

0
∑

j=−∞

|ψ̂ℓ

(

(2N )− jξ
)

|
2δ

≤

0
∑

j=−∞

C 2δ

(

1+|(2N ) j−1ξ|
)δ(1+2ǫ)

≤

0
∑

j=−∞

C 2δ

(2N )( j−1)δ(1+2ǫ)

≤ C 2δ qδ(1+2ǫ)

1− (2N )−δ(1+2ǫ)
.

Furthermore,

∞
∑

j=1

|ψ̂ℓ

(

(2N )− jξ
)

|
2δ

≤

∞
∑

j=1

(

C (2N )− j
|ξ|

)2δ
≤C 2δ

∞
∑

j=1

(2N )(− j+1)2δ
=C 2δ 1

1− (2N )−2δ
.

Therefore, it follows that sup
{
∑

j∈Z |ψ̂ℓ

(

(2N )− jξ
)

|
2δ : ξ ∈ [1,2N ]

}

is finite. Hence, there exist

B > 0 such that of (4.10) holds. Similarly, we can show for dual one also. The existence of lower

bounds for both the cases can be shown in similar fashion. Using Theorem 4.6, it follows that

if f ∈ L2(R), then (4.6) holds. Thus, we have

‖ f ‖2
2 = 〈 f , f 〉

=

〈

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

〈 f ,ψ̃ℓ, j ,λ〉ψℓ, j ,λ, f

〉

=

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

〈 f ,ψ̃ℓ, j ,λ〉〈ψℓ, j ,λ, f 〉
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≤

(

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

∣

∣〈 f ,ψ̃ℓ, j ,λ〉
∣

∣

2

)1/2 (

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

∣

∣〈 f ,ψℓ, j ,λ〉
∣

∣

2

)1/2

≤ (B̃ )1/2
‖ f ‖2

(

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

∣

∣〈 f ,ψℓ, j ,λ〉
∣

∣

2

)1/2

.

Hence,
1

B̃
‖ f ‖2

2 ≤

2N−1
∑

ℓ=1

∑

j∈Z

∑

λ∈Λ

∣

∣〈 f ,ψℓ, j ,λ〉
∣

∣

2
.

Same is the case for dual one. This completes the proof. ���
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