# INTERPOLATIONS OF JENSEN'S INEQUALITY 

S. S. DRAGOMIR, C. E. M. PEARCE AND J. PEČARIĆ


#### Abstract

Weighted and unweighted interpolations of general order are given for Jensen's integral inequality. Various upper-bound estimates are made for the differences between the interpolates and some convergence results derived. The results generalise and subsume a body of earlier work and employ streamlined proofs.


## 1. Introduction

A central tool in the applied literature is Jensen's weighted integral inequality, the basic form of which is as follows.

Theorem 1. Let $f, g:[a, b] \rightarrow \mathbb{R}$ be measurable and denote by $I$ the convex hull of the image of $[a, b]$ under $f$. Let $\phi: I \rightarrow R$ be convex and suppose that $g$, fg and $(\phi \circ f) \cdot g$ are all integrable on $[a, b]$. If $g(t) \geq 0$ on $[a, b]$ and $\int_{a}^{b} g(t) d t>0$, then

$$
\begin{equation*}
\phi\left(\frac{\int_{a}^{b} f(t) g(t) d t}{\int_{a}^{b} g(t) d t}\right) \leq \frac{\int_{a}^{b}(\phi \circ f)(t) g(t) d t}{\int_{a}^{b} g(t) d t} . \tag{1.1}
\end{equation*}
$$

A convenient standardisation is suggested by the ubiquitous applications of Jensen's inequality in probability. If we define

$$
p(t):=g(t) / \int_{a}^{b} g(t) d t
$$

then $p$ is nonnegative and satisfies $\int_{a}^{b} p(t) d t=1$ and so may be regarded as a probability density function on $[a, b]$. With this notation, (1.1) takes the simple form

$$
\begin{equation*}
\phi\left(\int_{a}^{b} f(t) p(t) d t\right) \leq \int_{a}^{b}(\phi \circ f)(t) p(t) d t \tag{1.2}
\end{equation*}
$$

Without loss of generality we may work with this simpler canonical form.

[^0]Recently Dragomir and Goh [10] derived an estimate for the difference between the two sides of a multivariate version of (1.1). In our present notation, the univariate case of their estimate is

$$
\begin{align*}
0 \leq & \int_{a}^{b}(\phi \circ f)(t) p(t) d t-\phi\left(\int_{a}^{b} f(t) p(t) d t\right) \\
\leq & \int_{a}^{b}\left(\phi^{\prime} \circ f\right)(t) \cdot f(t) p(t) d t \\
& \quad-\int_{a}^{b}\left(\phi^{\prime} \circ f\right)(t) p(t) d t \cdot \int_{a}^{b} f(t) p(t) d t \tag{1.3}
\end{align*}
$$

provided that all the integrals exist and $\phi$ is differentiable convex on $\mathbb{R}$.
In this paper we give some refinements of these results. For notational convenience, we introduce the $k$-variate linear integral operator

$$
I_{k}\{\cdot\}:=\int_{a}^{b} \ldots \int_{a}^{b}(\cdot) p\left(t_{1}\right) \ldots p\left(t_{k}\right) d t_{1} \ldots d t_{k}
$$

In this notation, (1.2) now becomes

$$
\begin{equation*}
\phi\left(I_{1}\{f(t)\}\right) \leq I_{1}\{(\phi \circ f)(t)\} \tag{1.4}
\end{equation*}
$$

and (1.3) reads

$$
\begin{align*}
0 & \leq I_{1}\{(\phi \circ f)(t)\}-\phi\left(I_{1}\{f(t)\}\right) \\
& \leq I_{1}\left\{\left(\phi^{\prime} \circ f\right)(t) \cdot f(t)\right\}-I_{1}\left\{\left(\phi^{\prime} \circ f\right)(t)\right\} \cdot I_{1}\{f(t)\} \tag{1.5}
\end{align*}
$$

In Section 2 we interpolate (1.4), using both weighted and unweighted (that is, uniformly weighted) forms. The $k$-th order weighted and unweighted interpolates are respectively

$$
\varphi_{k}(u):=I_{k}\left\{\phi\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right)\right\}
$$

and

$$
\varphi_{k}:=I_{k}\left\{\phi\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right\}
$$

Here $u=\left(u_{1}, \ldots, u_{k}\right)$ is a set of probability weights, that is, each $u_{i} \geq 0$ and $\sum_{i=1}^{k} u_{i}=1$, and it is envisaged that $k$ is a fixed positive integer. When we wish to vary the order $k$ the extended notation $u^{(k)}=\left(u_{1, k}, \ldots, u_{k, k}\right)$ will be used.

The basic result is Theorem 2, which generalises a number of known results. We shall see that the $k$-th order weighted interpolate $\varphi_{k}(u)$ is minimised by the unweighted interpolate $\varphi_{k}$, that is, when each $u_{i}=1 / k$. In Section 3 we give upper bounds for the difference between the first and third terms in (2.1) below. By virtue of the noted minimisation result, our estimates include as a special case an upper bound for the difference
between the first and second terms in (2.1). A convergence theorem is established for the difference with $k \rightarrow \infty$.

In Section 4 we treat the sequence $\left(\varphi_{k}\left(u^{(k)}\right)-\varphi_{k}\right)_{k \geq 1}$. Some results for the sequence $\left(\varphi_{k}-\varphi_{k+1}\right)_{k \geq 1}$ are deduced in Section 5. We conclude in Section 6 with some remarks on applications to Hadamard's inequalities.

Our arguments exploit the standardisation of $p$ being a probability density. Suppose $Y_{1}, \ldots, Y_{k}$ are independent random variables with common density function $p$ and define $X_{1}, \ldots, X_{k}$ by $X_{i}=f\left(Y_{i}\right)(i=1, \ldots, k)$. We shall also write $X, Y$ for a generic pair $X_{i}, Y_{i}$. Then $I_{k}$ is simply the expectation operator with respect to the minimal completed sigma field $\mathbf{F}_{k}$ generated by $Y_{1}, \ldots, Y_{k}$. Denoting the mean of $X_{1}$ by $E\left(X_{1}\right)$, as is customary, we then have $E\left(X_{1}\right)=I_{1}\left\{f\left(t_{1}\right)\right\}$. Since $\mathbf{F}_{1}$ is a sub sigma field of $\mathbf{F}_{k}$, we have also $E\left(X_{1}\right)=I_{k}\left\{f\left(t_{1}\right)\right\}$. We may now express (1.2), (1.5) slightly more succinctly and considerably more evocatively as respectively

$$
\phi(E(X)) \leq E(\phi(X))
$$

and

$$
0 \leq E(\phi(X))-\phi(E(X)) \leq E\left(X \phi^{\prime}(X)\right)-E\left(\phi^{\prime}(X)\right) E(X)
$$

We shall lean heavily on this probabilistic formulation both for compact notation within our proofs and for streamlining the algebra involved in them. The assumptions of Theorem 1 are presumed throughout without further comment and with the standardision that $g$ is replaced by a probability density function $p$. A number of useful bounds arise via the Cauchy-Schwarz inequality. In each such connection we shall assume in addition without further comment that $f^{2}$ is integrable, and introduce

$$
\sigma:=\left[I_{1}\left\{f^{2}(t)\right\}-\left(I_{1}\{f(t)\}\right)^{2}\right]^{1 / 2}
$$

Probabilistically this states that

$$
\sigma^{2}=E\left(X^{2}\right)-[E(X)]^{2}=: \operatorname{var}(X)
$$

the variance of $X$. The basic probabilistic results we shall invoke are that $E\left(U^{2}\right)=\operatorname{var}(U)$ when $E(U)=0$ and that for independent random variables $X_{1}, \ldots, X_{k}$ and constants $u_{1}, \ldots, u_{k}$, we have

$$
\operatorname{var}\left(\sum_{i=1}^{k} u_{i} X_{i}\right)=\sum_{i=1}^{k} u_{i}^{2} \operatorname{var}\left(X_{i}\right)
$$

For notation convenience, it will be convenient to introduce into our discussion the auxiliary random variables

$$
Z_{1}=Z_{1, k}:=\sum_{i=1}^{k} u_{i} X_{i}
$$

and

$$
W_{k}:=\frac{1}{k} \sum_{i=1}^{k} X_{i}
$$

It is immediate that $E\left(Z_{1}\right)=E\left(W_{k}\right)=E(X)$ and that $\varphi_{k}(u)=E\left(\phi\left(Z_{1}\right)\right)$ and $\varphi_{k}=$ $E\left(\phi\left(W_{k}\right)\right)$.

## 2. Basic Results

Our first result relates expectations involving weighted and unweighted interpolates and refines (1.1).

Theorem 2. For each $k \geq 1$ and set of probability weights $u^{(k)}$, we have

$$
\begin{equation*}
\phi\left(I_{1}\{f(t)\}\right) \leq \varphi_{k} \leq \varphi_{k}\left(u^{(k)}\right) \leq I_{1}\{(\phi \circ f)(t)\} \tag{2.1}
\end{equation*}
$$

Proof. In probabilistic terms, the result to be proved is that

$$
\begin{equation*}
\phi(E(X)) \leq E\left(\phi\left(W_{k}\right)\right) \leq E\left(\phi\left(Z_{1}\right)\right) \leq E(\phi(X)) \tag{2.2}
\end{equation*}
$$

By Jensen's integral inequality we have

$$
E\left\{\phi\left(W_{k}\right)\right\} \geq \phi\left(E\left\{\left(W_{k}\right)\right\}\right)=\phi(E(X))
$$

the first inequality in the enunciation.
For fixed $k$ put $X_{i+k}:=X_{i}$ and for $1 \leq j \leq k$ define

$$
Z_{j}:=\sum_{i=1}^{k} u_{i} X_{i+j-1}
$$

which is consistent with the definition of $Z_{1}$. Then $E\left(Z_{j}\right)=E(X)$ and $E\left(\phi\left(Z_{j}\right)\right)=$ $E\left(\phi\left(Z_{1}\right)\right)$.

By Jensen's discrete inequality we have

$$
\phi\left(\frac{1}{k} \sum_{i=1}^{k} Z_{i}\right) \leq \frac{1}{k} \sum_{i=1}^{k} \phi\left(Z_{i}\right)
$$

and since $\sum_{i=1}^{k} Z_{i}=k W_{k}$, we derive

$$
\phi\left(W_{k}\right) \leq \frac{1}{k} \sum_{j=1}^{k} \phi\left(Z_{j}\right) .
$$

Taking expectations provides

$$
\begin{equation*}
E\left\{\phi\left(W_{k}\right)\right\} \leq \frac{1}{k} E\left\{\sum_{j=1}^{k} \phi\left(Z_{j}\right)\right\}=E\left\{\phi\left(Z_{1}\right)\right\} \tag{2.3}
\end{equation*}
$$

This gives the second inequality in the enunciation.

Finally, by Jensen's discrete inequality again, we have

$$
\phi\left(Z_{1}\right) \leq \sum_{i=1}^{k} u_{i} \phi\left(X_{i}\right)
$$

Taking expectations provides the final desired inequality.
If we choose $u_{i, k+1}=1 / k$ for $1 \leq i \leq k$ and $u_{k+1, k+1}=0$, then $\varphi_{k+1}(u)$ becomes $\varphi_{k}$. Thus we have $\varphi_{k+1} \leq \varphi_{k}$ and so $\left(\varphi_{k}\right)_{k \geq 1}$ is a nonincreasing sequence. We have also $\varphi_{1}=E(\phi(X))$, of course.

The choices $f(t):=t$ and $p(t):=1 /(b-a)$ provide the following interpolation of the Hadamard integral inequalities, which we exhibit in extenso.

Corollary 1. Suppose $\phi$ is convex on $[a, b]$ and that $u_{i}(1 \leq i \leq k)$ is a set of probability weights. Then

$$
\begin{align*}
\phi\left(\frac{a+b}{2}\right) & \leq \frac{1}{(b-a)^{k}} \int_{a}^{b} \ldots \int_{a}^{b} \phi\left(\frac{1}{k} \sum_{i=1}^{k} t_{i}\right) d t_{1} \ldots d t_{k} \\
& \leq \frac{1}{(b-a)^{k}} \int_{a}^{b} \ldots \int_{a}^{b} \phi\left(\sum_{i=1}^{k} u_{i} t_{i}\right) d t_{1} \ldots d t_{k} \\
& \leq \frac{1}{b-a} \int_{a}^{b} \phi(t) d t \tag{2.4}
\end{align*}
$$

This subsumes several known results: the first inequality was proved in [11], the second in [8] and the last in [4]. We pick up these threads again in Section 6.

## 3. Bounds for the Difference $\varphi_{k}(u)-\phi\left(I_{1}\{f(t)\}\right)$

Theorem 3. Denote by $\phi_{+}^{\prime}$ the right derivative of $\phi$ on the interior $\stackrel{\circ}{I}$ of $I$. Then

$$
\begin{align*}
0 & \leq \varphi_{k}(u)-\phi\left(I_{1}\{f(t)\}\right) \\
& \leq I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right) \sum_{j=1}^{k} u_{j} f\left(t_{j}\right)\right\}-I_{1}\{f(t)\} \cdot I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right)\right\} . \tag{3.1}
\end{align*}
$$

Proof. We already have the first inequality and wish to prove the second. We may express (3.1) probabilistically as

$$
0 \leq E\left\{\phi Z_{1}\right\}-E(X) \leq E\left\{Z_{1} \phi_{+}^{\prime}\right\}-E(X) \cdot E\left\{\phi_{+}^{\prime}\right\} .
$$

Since $\phi$ is convex on $I$,

$$
\phi(x)-\phi(y) \geq \phi_{+}^{\prime}(y)(x-y) \text { for all } x, y \in \stackrel{\circ}{\mathrm{I}}
$$

and $\phi_{+}^{\prime}(\cdot)$ is nonnegative on $\stackrel{\circ}{\mathrm{I}}$. Taking $x=E(X)$ and $y=Z_{1}$, we deduce that

$$
\phi(E(X))-\phi\left(Z_{1}\right) \geq \phi_{+}^{\prime}\left(Z_{1}\right)\left[E(X)-Z_{1}\right] .
$$

Taking expectations yields

$$
\begin{equation*}
E\left\{\phi\left(Z_{1}\right)\right\}-\phi\left(E\left(Z_{1}\right)\right) \leq E\left\{Z_{1} \phi_{+}^{\prime}\left(Z_{1}\right)\right\}-E\left\{Z_{1}\right\} \cdot E\left\{\phi_{+}^{\prime}\left(Z_{1}\right)\right\} \tag{3.2}
\end{equation*}
$$

whence we have the desired result.
When each $u_{i}=1 / k$, we may exploit symmetry in $j$ of the summand in (3.1) to simplify the conclusion of the last theorem to

$$
\begin{aligned}
0 & \leq \varphi_{k}(u)-\phi\left(I_{1}\{f(t)\}\right) \\
& \leq I_{k}\left\{f\left(t_{1}\right) \phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right\}-I_{1}\{f(t)\} \cdot I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right\}
\end{aligned}
$$

The previous theorem may be extended as follows.
Theorem 4. For $k \geq 1$ we have

$$
\begin{align*}
0 & \leq I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right) \sum_{j=1}^{k} u_{j} f\left(t_{j}\right)\right\}-I_{1}\{f(t)\} \cdot I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right)\right\} \\
& \leq \sigma \sqrt{\sum_{j=1}^{k} u_{j}^{2}}\left[I_{k}\left\{\left[\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right)\right]^{2}\right\}\right]^{1 / 2} \tag{3.3}
\end{align*}
$$

Proof. Since $E(X)=E\left(Z_{1}\right)$, the middle term in (3.3) can be cast probabilistically as

$$
E\left\{\phi_{+}^{\prime}\left(Z_{1}\right) \times\left[Z_{1}-E\left(Z_{1}\right)\right]\right\}
$$

which by the Cauchy-Schwarz inequality is less than or equal to

$$
\left\{E\left\{\left[\phi_{+}^{\prime}\left(Z_{1}\right)\right]^{2}\right\}\right\}^{1 / 2}\left\{E\left\{\left[Z_{1}-E\left\{Z_{1}\right\}\right]^{2}\right\}\right\}^{1 / 2}
$$

Further $E\left[Z_{1}-E\left(Z_{1}\right)\right]=0$, so we have

$$
E\left\{\left[Z_{1}-E\left(Z_{1}\right)\right]^{2}\right\}=\operatorname{var}\left(Z_{1}\right)=\sum_{i=1}^{k} u_{i}^{2} \operatorname{var}\left(X_{i}\right)=\sigma^{2} \sum_{i=1}^{k} u_{i}^{2}
$$

and the desired result follows.

As with the previous theorem, (3.3) simplifies when $u_{i}=1 / k$ for each $i$, becoming

$$
\begin{aligned}
0 & \leq I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right) f\left(t_{1}\right)\right\}-I_{1}\left\{f(t\} \cdot I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right\}\right. \\
& \leq \sigma k^{-1 / 2}\left[I_{k}\left\{\left[\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right]^{2}\right\}\right]^{1 / 2} .
\end{aligned}
$$

for all $k \geq 1$.
Corollary 2. Suppose that

$$
\begin{equation*}
M:=\sup _{x \in I}\left|\phi_{+}^{\prime}(x)\right|<\infty \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{k} u_{j, k}^{2} \rightarrow 0 \text { as } k \rightarrow \infty \tag{3.5}
\end{equation*}
$$

Then

$$
\varphi_{k}\left(u^{(k)}\right) \rightarrow \phi\left(I_{1}\{f(t)\}\right) \text { as } k \rightarrow \infty
$$

We note that the second assumption is automatically satisfied in the particular case $u_{j, k}=1 / k$ for $1 \leq j \leq k$.

The conclusion of the corollary may be expressed probabilistically as

$$
E\left\{Z_{1, k}\right\} \rightarrow \phi(E(X)) \text { as } k \rightarrow \infty
$$

## 4. Bounds for $\varphi_{k}(u)-\varphi_{k}$

The difference between the outermost terms in (2.1) can be used to provide a crude upper bound for $\varphi_{k}(u)-\varphi_{k}$. Here we provide tighter bounds.

Theorem 5. For $k \geq 1$ we have

$$
\begin{aligned}
0 & \leq \varphi_{k}(u)-\varphi_{k} \\
& \leq I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right) \sum_{j=1}^{k} u_{j} f\left(t_{j}\right)\right\}-I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right) \frac{1}{k} \sum_{j=1}^{k} f\left(t_{j}\right)\right\}
\end{aligned}
$$

Proof. By the convexity of $\phi$

$$
\phi\left(W_{k}\right)-\phi\left(Z_{1}\right) \geq \phi_{+}^{\prime}\left(Z_{1}\right)\left(W_{k}-Z_{1}\right) .
$$

Taking expectations provides

$$
E\left(\phi\left(Z_{1}\right)\right)-E\left(\phi\left(W_{k}\right)\right) \leq E\left\{Z_{1} \phi_{+}^{\prime}\left(Z_{1}\right)\right\}-E\left\{W_{k} \phi_{+}^{\prime}\left(Z_{1}\right)\right\},
$$

which is the desired result in probabilistic form.
The estimate is continued by the next theorem.
Theorem 6. For each $k \geq 1$,

$$
\begin{aligned}
& I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right) \sum_{j=1}^{k} u_{j} f\left(t_{j}\right)\right\}-I_{k}\left\{\phi_{+}^{\prime}\left(\sum_{i=1}^{k} u_{i} f\left(t_{i}\right)\right) \frac{1}{k} \sum_{j=1}^{k} f\left(t_{j}\right)\right\} \\
& \quad \leq \sigma \sqrt{\sum_{i=1}^{k}\left(u_{i}-1 / k\right)^{2} \times\left[I_{k}\left\{\left[\phi_{+}^{\prime}\left(\sum_{j=1}^{k} u_{j} f\left(t_{j}\right)\right)\right]^{2}\right\}\right]^{1 / 2}}
\end{aligned}
$$

Proof. The left-hand side of this inequality is

$$
E\left\{\phi_{+}^{\prime}\left(Z_{1}\right) \times\left(Z_{1}-W_{k}\right)\right\},
$$

which by the Cauchy-Schwarz inequality is less than or equal to

$$
\left(E\left\{\left[\phi_{+}^{\prime}\left(Z_{1}\right)\right]^{2}\right\}\right)^{1 / 2} \times\left(E\left\{\left[Z_{1}-W_{k}\right]^{2}\right\}\right)^{\frac{1}{2}}
$$

Since $E\left(Z_{1}-W_{k}\right)=0$, we may compute the second term in parentheses as

$$
\operatorname{var}\left\{\sum_{j=1}^{k}\left(u_{j}-\frac{1}{k}\right) X_{j}\right\}=\sum_{j=1}^{k}\left(u_{j}-\frac{1}{k}\right)^{2} \operatorname{var}\left(X_{j}\right)=\sigma^{2} \sum_{j=1}^{k}\left(u_{j}-\frac{1}{k}\right)^{2}
$$

from which we deduce the desired estimate.
Corollary 3. If (3.4) applies, then

$$
0 \leq \varphi_{k}(u)-\varphi_{k} \leq M \sigma\left[\sum_{i=1}^{k}\left(u_{i}-\frac{1}{k}\right)^{2}\right]
$$

It follows that subject to (3.4), a sufficient condition for

$$
\lim _{k \rightarrow \infty} \varphi_{k}(u)=\phi\left(I_{1}\{f(t)\}\right)
$$

is that

$$
\lim _{k \rightarrow \infty} \sum_{i=1}^{k}\left(u_{i, k}-1 / k\right)^{2}=0
$$

By virtue of the relation $\sum_{i=1}^{k} u_{i, k}=1$, this is the same condition as (3.5).

## 5. Upper Bounds for $\varphi_{k}-\varphi_{k+1}$

From (2.2), we have

$$
\begin{equation*}
\phi(E(X)) \leq \varphi_{k+1} \leq \varphi_{k} \leq \ldots \leq E(\phi(X)) \tag{5.1}
\end{equation*}
$$

for $k \geq 1$, so that the difference $\varphi_{k}-\varphi_{k+1}$ is nonnegative and can be ascribed a uniform upper bound $E(\phi(X))-\phi(E(X))$ which is independent of $k$. The next theorem refines this to a tighter and $k$-dependent bound.

Theorem 7. For each $k \geq 1$,

$$
\begin{align*}
0 & \leq \varphi_{k}-\varphi_{k+1} \\
& \leq \frac{1}{k+1}\left[I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right) f\left(t_{1}\right)\right\}-I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right\} I_{1}\{f(t)\}\right] . \tag{5.2}
\end{align*}
$$

Proof. As $\phi$ is convex,

$$
\begin{aligned}
\phi\left(\frac{1}{k+1} \sum_{i=1}^{k+1} X_{i}\right)-\phi\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right) & \geq \phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\left(\frac{1}{k+1} \sum_{j=1}^{k+1} X_{j}-\frac{1}{k} \sum_{j=1}^{k} X_{j}\right) \\
& =\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\left[\frac{X_{k+1}}{k+1}-\frac{1}{k(k+1)} \sum_{j=1}^{k} X_{j}\right]
\end{aligned}
$$

for all $k \geq 1$.
Taking expectations provides

$$
\begin{aligned}
\varphi_{k+1}-\varphi_{k} \geq \frac{1}{k+1} & {\left[E\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\right\} E(X)-E\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right) \frac{1}{k} \sum_{j=1}^{k} X_{j}\right\}\right] } \\
& =\frac{1}{k+1}\left[E\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\right\} E(X)-E\left\{X_{1} \phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\right\}\right]
\end{aligned}
$$

where symmetry has been coupled with a change of variables to provide the last step.
The above result is continued by the following one.
Theorem 8. For each $k \geq 1$ we have

$$
\begin{aligned}
& \frac{1}{k+1}\left[I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right) f\left(t_{1}\right)\right\}-I_{k}\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right\} I_{1}\{f(t)\}\right] \\
& \quad \leq \frac{\sigma}{\sqrt{k(k+1)}}\left[I_{k}\left\{\left[\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} f\left(t_{i}\right)\right)\right]^{2}\right\}\right]^{1 / 2} .
\end{aligned}
$$

Proof. The left-hand side can be expressed as

$$
\frac{1}{k+1} E\left\{\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\left[X_{k+1}-\frac{1}{k} \sum_{j=1}^{k} X_{j}\right]\right\}
$$

which by the Cauchy-Schwarz inequality is less than or equal to

$$
\left(E\left\{\left[\phi_{+}^{\prime}\left(\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)\right]^{2}\right\}\right)^{1 / 2} \times\left(E\left\{\left[X_{k+1}-\frac{1}{k} \sum_{i=1}^{k} X_{i}\right]^{2}\right\}\right)^{1 / 2}
$$

Since $E\left(X_{k+1}-(1 / k) \sum_{i=1}^{k} X_{i}\right)=0$, the expression within the second pair of parentheses is

$$
\operatorname{var}\left(X_{k+1}-\frac{1}{k} \sum_{i=1}^{k} X_{i}\right)=\operatorname{var}\left(X_{k+1}\right)+\frac{1}{k^{2}} \sum_{i=1}^{k} \operatorname{var}\left(X_{i}\right)=\frac{(k+1) \sigma^{2}}{k}
$$

from which we deduce the desired result.
Finally we have the following corollary.
Corollary 4. If (3.4) holds, then for all $\alpha \in[0,1)$ we have

$$
\lim _{n \rightarrow \infty}\left(\varphi_{n}-\varphi_{n+1}\right) n^{\alpha}=0
$$

Proof. By the two preceding theorems,

$$
\begin{equation*}
0 \leq \varphi_{n}-\varphi_{n+1} \leq \frac{M \sigma}{\sqrt{n(n+1)}} \tag{5.3}
\end{equation*}
$$

for all $n \geq 1$, whence the result.

## 6. Applications to Hadamard's Inequalities

We conclude by resuming from Corollary 1 and the observations made there. Hadamard's inequality states that if $\phi: I \rightarrow \mathbb{R}$ is convex on the interval $I=[a, b]$ of real numbers, then

$$
\begin{equation*}
\phi\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} \phi(x) d x \leq \frac{\phi(a)+\phi(b)}{2} \tag{6.1}
\end{equation*}
$$

Denote by

$$
J_{k}\{\cdot\}:=\frac{1}{(b-a)^{k}} \int_{a}^{b} \ldots \int_{a}^{b}(\cdot) d x_{1} \ldots d x_{k}
$$

the special case of $I_{k}$ when $p(x):=1 /(b-a)$ on $[a, b]$. Dragomir, Pečarić and Sándor [11] have interpolated the first inequality in (6.1) as

$$
\begin{equation*}
\phi\left(\frac{a+b}{2}\right) \leq J_{k+1}\left\{\phi\left(\frac{1}{k+1} \sum_{i=1}^{k+1} x_{i}\right)\right\} \leq J_{k}\left\{\phi\left(\frac{1}{k} \sum_{i=1}^{k} x_{i}\right)\right\} \leq \ldots \leq J_{1}\{\phi(x)\} \tag{6.2}
\end{equation*}
$$

for all $k \geq 1$. This is a particular case of (5.1).
Dragomir [4] has also established a weighted interpolation, in our notation

$$
\begin{equation*}
\phi\left(\frac{a+b}{2}\right) \leq J_{k}\left\{\phi\left(\sum_{i=1} u_{i} x_{i}\right)\right\} \leq J_{1}\{\phi(x)\} \tag{6.3}
\end{equation*}
$$

of Hadamard's first inequality. This was subsequently improved by Dragomir and Buşe [8] who proved inter alia that

$$
\begin{equation*}
J_{k}\left\{\phi\left(\frac{1}{k} \sum_{i=1}^{k} x_{i}\right)\right\} \leq J_{k}\left\{\phi\left(\sum_{i=1}^{k} u_{i} x_{i}\right)\right\} . \tag{6.4}
\end{equation*}
$$

This is Theorem 2 with $f(x):=x$ (and so $X_{i}=Y_{i}$ ).
From Corollary 2 we can obtain the following result which was derived by a different argument in [9].

Suppose $\phi: I \rightarrow \mathbb{R}$ is convex, (3.4) holds and that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} v_{i}^{2}}{\left(\sum_{i=1}^{n} v_{i}\right)^{2}}=0
$$

Then if $V_{n}:=\sum_{i=1}^{n} v_{i}>0$, we have

$$
\lim _{n \rightarrow \infty} J_{n}\left\{\phi\left(\sum_{i=1}^{n} v_{i} x_{i} / V_{n}\right)\right\}=\phi\left(\frac{a+b}{2}\right)
$$

Write $h_{n}, h_{n}(u)$ respectively for $\varphi_{n}, \varphi_{n}(u)$ in the case $p(x)=1 /(b-a)$ on $[a, b]$. We have the following.

Proposition 1. Let $\phi: I \rightarrow \mathbb{R}$ be convex and suppose (3.4) holds. Then for all $a, b \in I$ with $a<b$, we have

$$
0 \leq h_{n}-h_{n+1} \leq \frac{M(b-a)}{2 \sqrt{3} \sqrt{n(n+1)}}
$$

for all positive integers $n$.
Proof. The result is (5.3) with

$$
\sigma^{2}=\frac{\int_{a}^{b} t^{2} d t}{b-a}-\left(\frac{\int_{a}^{b} t d t}{b-a}\right)^{2}=\frac{(b-a)^{2}}{12}
$$

The consequence

$$
\lim _{n \rightarrow \infty}\left[n^{\alpha}\left(h_{n}-h_{n+1}\right)\right]=0 \text { for } \alpha \in[0,1)
$$

is an improvement on the results of [7].
The weighted case is embodied in the following proposition.
Proposition 2. With the assumptions of Proposition 1,

$$
0 \leq h_{n}(u)-h_{n} \leq \frac{M(b-a)}{2 \sqrt{3}}\left[\sum_{i=1}^{n}\left(u_{i}-1 / n\right)^{2}\right]^{1 / 2}
$$

for all $n \geq 1$.
For other results connected with Hadamard's inequality see [1]-[9], where further references are given.

## Acknowledgement

This work was done during a visit of the last-named author to The University of Adelaide.

## References

[1] S. S. Dragomir, Two refinements of Hadamard's inequalities, Coll. of Sci. Pap. of the Fac. of Sci., Kragujevac 11(1990), 23-26.
[2] S. S. Dragomir, A mapping in connection with Hadamard's inequalities, Ann. Östr. Akad. Wiss. Math.-Maths 128(1991), 17-20.
[3] S. S. Dragomir, Two mappings in connection to Hadamard's inequality, J. Math. Anal. Appl. 167(1992), 45-56.
[4] S. S. Dragomir, On Hadamard's inequality for convex functions, Mat. Balkanica 6(1992), 215-222.
[5] S. S. Dragomir, A refinement of Hadamard's inequality for isotonic linear functionals, Tamkang J. Math. 24(1993), 101-106.
[6] S. S. Dragomir, Some remarks on Hadamard's inequality for convex functions, Extracta Math. 9(1994), 89-94.
[7] S. S. Dragomir, D. Barbu and C. Buşe, A probabilistic argument for the convergence of some sequences associated with Hadamard's inequality, Studia Univ. Babes-Bolyai Math. 38 (1993), 29-33.
[8] S. S. Dragomir and C. Buşe, Refinements of Hadamard's inequality for multiple integrals, Utilitas Math. 47(1995), 193-195.
[9] S. S. Dragomir, C. Buşe and D. Barbu, The convergence of some sequences connected to Hadamard's inequality, Demonstratio Math. 29(1996), 53-59.
[10] S. S. Dragomir and C. J. Goh, A counterpart of Jensen's continuous inequality and applications in information theory, RGMIA http://rgmia.vu.edu.au/Jensen.html
[11] S. S. Dragomir, J. Pečarić and J. Sándor, A note on the Jensen-Hadamard inequality, Anal. Num. Theor. Approx. 19(1990), 21-28.
[12] J. Pečarić and S. S. Dragomir, A refinement of Jensen's inequality and applications, Studia Univ. Babes-Bolyai 34(1989), 15-19.

School of Communications and Informatics, Victoria University of Technology, PO Box 14428, Melbourne City, MC 8001 Australia.
E-mail: cpearce@maths.adelaide.edu.au
Applied Mathematics Department, Adelaide University, Adelaide, SA 5005, Australia.
E-mail: Sever.Dragomir@vu.edu.au
Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
E-mail: pecaric@mahazu.hazu.hr


[^0]:    Received April 29, 2002.
    2000 Mathematics Subject Classification. 26D15.
    Key words and phrases. Convexity, Jensen's inequality, Hadamard's inequality.

