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INTERPOLATIONS OF JENSEN’S INEQUALITY

S. S. DRAGOMIR, C. E. M. PEARCE AND J. PEČARIĆ

Abstract. Weighted and unweighted interpolations of general order are given for Jensen’s in-

tegral inequality. Various upper-bound estimates are made for the differences between the in-

terpolates and some convergence results derived. The results generalise and subsume a body of

earlier work and employ streamlined proofs.

1. Introduction

A central tool in the applied literature is Jensen’s weighted integral inequality, the

basic form of which is as follows.

Theorem 1. Let f, g : [a, b] → R be measurable and denote by I the convex hull of

the image of [a, b] under f . Let φ : I→R be convex and suppose that g, fg and (φ ◦ f) · g
are all integrable on [a, b]. If g (t) ≥ 0 on [a, b] and

∫ b

a
g (t) dt > 0, then

φ

(

∫ b

a f (t) g (t) dt
∫ b

a
g (t) dt

)

≤
∫ b

a (φ ◦ f) (t) g (t) dt
∫ b

a
g (t) dt

. (1.1)

A convenient standardisation is suggested by the ubiquitous applications of Jensen’s

inequality in probability. If we define

p(t) := g(t)

/
∫ b

a

g(t)dt,

then p is nonnegative and satisfies
∫ b

a p(t)dt = 1 and so may be regarded as a probability

density function on [a, b]. With this notation, (1.1) takes the simple form

φ

(
∫ b

a

f(t)p(t)dt

)

≤
∫ b

a

(φ ◦ f)(t)p(t)dt. (1.2)

Without loss of generality we may work with this simpler canonical form.
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Recently Dragomir and Goh [10] derived an estimate for the difference between the
two sides of a multivariate version of (1.1). In our present notation, the univariate case
of their estimate is

0 ≤
∫ b

a

(φ ◦ f) (t) p (t) dt − φ

(
∫ b

a

f (t) p (t) dt

)

≤
∫ b

a

(φ′ ◦ f) (t) · f (t) p (t) dt

−
∫ b

a

(φ′ ◦ f) (t) p (t) dt ·
∫ b

a

f (t) p (t) dt, (1.3)

provided that all the integrals exist and φ is differentiable convex on R.
In this paper we give some refinements of these results. For notational convenience,

we introduce the k–variate linear integral operator

Ik {·} :=

∫ b

a

...

∫ b

a

(·)p(t1) . . . p(tk)dt1 . . . dtk.

In this notation, (1.2) now becomes

φ(I1 {f(t)}) ≤ I1 {(φ ◦ f)(t)} (1.4)

and (1.3) reads

0 ≤ I1 {(φ ◦ f)(t)} − φ (I1 {f(t)})
≤ I1 {(φ′ ◦ f)(t) · f(t)} − I1 {(φ′ ◦ f)(t)} · I1 {f(t)} . (1.5)

In Section 2 we interpolate (1.4), using both weighted and unweighted (that is, uni-
formly weighted) forms. The k–th order weighted and unweighted interpolates are re-
spectively

ϕk(u) := Ik

{

φ

( k
∑

i=1

uif(ti)

)}

and

ϕk := Ik

{

φ

(

1

k

k
∑

i=1

f (ti)

)}

.

Here u = (u1, . . . , uk) is a set of probability weights, that is, each ui ≥ 0 and
∑k

i=1 ui = 1,
and it is envisaged that k is a fixed positive integer. When we wish to vary the order k
the extended notation u(k) = (u1,k, . . . , uk,k) will be used.

The basic result is Theorem 2, which generalises a number of known results. We
shall see that the k–th order weighted interpolate ϕk(u) is minimised by the unweighted
interpolate ϕk, that is, when each ui = 1/k. In Section 3 we give upper bounds for the
difference between the first and third terms in (2.1) below. By virtue of the noted min-
imisation result, our estimates include as a special case an upper bound for the difference
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between the first and second terms in (2.1). A convergence theorem is established for
the difference with k → ∞.

In Section 4 we treat the sequence (ϕk(u(k))−ϕk)k≥1. Some results for the sequence
(ϕk − ϕk+1)k≥1 are deduced in Section 5. We conclude in Section 6 with some remarks
on applications to Hadamard’s inequalities.

Our arguments exploit the standardisation of p being a probability density. Suppose
Y1, . . . , Yk are independent random variables with common density function p and define
X1, . . . , Xk by Xi = f(Yi) (i = 1, . . . , k). We shall also write X, Y for a generic pair
Xi, Yi. Then Ik is simply the expectation operator with respect to the minimal completed
sigma field Fk generated by Y1, . . . , Yk. Denoting the mean of X1 by E(X1), as is
customary, we then have E(X1) = I1{f(t1)}. Since F1 is a sub sigma field of Fk, we
have also E(X1) = Ik{f(t1)}. We may now express (1.2), (1.5) slightly more succinctly
and considerably more evocatively as respectively

φ(E(X)) ≤ E(φ(X))

and
0 ≤ E(φ(X)) − φ(E(X)) ≤ E(Xφ′(X)) − E(φ′(X))E(X).

We shall lean heavily on this probabilistic formulation both for compact notation
within our proofs and for streamlining the algebra involved in them. The assumptions
of Theorem 1 are presumed throughout without further comment and with the standar-
dision that g is replaced by a probability density function p. A number of useful bounds
arise via the Cauchy–Schwarz inequality. In each such connection we shall assume in
addition without further comment that f2 is integrable, and introduce

σ :=
[

I1

{

f2(t)
}

− (I1 {f(t)})2
]1/2

.

Probabilistically this states that

σ2 = E(X2) − [E(X)]2 =: var(X),

the variance of X . The basic probabilistic results we shall invoke are that E(U2) = var(U)
when E(U) = 0 and that for independent random variables X1, . . . , Xk and constants
u1, . . . , uk, we have

var

( k
∑

i=1

uiXi

)

=

k
∑

i=1

u2
i var(Xi).

For notation convenience, it will be convenient to introduce into our discussion the
auxiliary random variables

Z1 = Z1,k :=

k
∑

i=1

uiXi

and

Wk :=
1

k

k
∑

i=1

Xi.
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It is immediate that E(Z1) = E(Wk) = E(X) and that ϕk(u) = E(φ(Z1)) and ϕk =
E(φ(Wk)).

2. Basic Results

Our first result relates expectations involving weighted and unweighted interpolates
and refines (1.1).

Theorem 2. For each k ≥ 1 and set of probability weights u(k), we have

φ (I1 {f(t)}) ≤ ϕk ≤ ϕk(u(k)) ≤ I1 {(φ ◦ f)(t)} . (2.1)

Proof. In probabilistic terms, the result to be proved is that

φ(E(X)) ≤ E(φ(Wk)) ≤ E(φ(Z1)) ≤ E(φ(X)). (2.2)

By Jensen’s integral inequality we have

E {φ (Wk)} ≥ φ (E {(Wk)}) = φ(E(X)),

the first inequality in the enunciation.
For fixed k put Xi+k := Xi and for 1 ≤ j ≤ k define

Zj :=

k
∑

i=1

uiXi+j−1,

which is consistent with the definition of Z1. Then E(Zj) = E(X) and E(φ(Zj)) =
E(φ(Z1)).

By Jensen’s discrete inequality we have

φ

(

1

k

k
∑

i=1

Zi

)

≤ 1

k

k
∑

i=1

φ (Zi) ,

and since
∑k

i=1 Zi = kWk, we derive

φ (Wk) ≤ 1

k

k
∑

j=1

φ (Zj) .

Taking expectations provides

E {φ (Wk)} ≤ 1

k
E

{ k
∑

j=1

φ (Zj)

}

= E{φ(Z1)}. (2.3)

This gives the second inequality in the enunciation.
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Finally, by Jensen’s discrete inequality again, we have

φ (Z1) ≤
k

∑

i=1

uiφ (Xi) .

Taking expectations provides the final desired inequality.

If we choose ui,k+1 = 1/k for 1 ≤ i ≤ k and uk+1,k+1 = 0, then ϕk+1(u) becomes
ϕk. Thus we have ϕk+1 ≤ ϕk and so (ϕk)k≥1 is a nonincreasing sequence. We have also
ϕ1 = E(φ(X)), of course.

The choices f(t) := t and p(t) := 1/(b − a) provide the following interpolation of the
Hadamard integral inequalities, which we exhibit in extenso.

Corollary 1. Suppose φ is convex on [a, b] and that ui (1 ≤ i ≤ k) is a set of

probability weights. Then

φ

(

a + b

2

)

≤ 1

(b − a)k

∫ b

a

...

∫ b

a

φ

(

1

k

k
∑

i=1

ti

)

dt1...dtk

≤ 1

(b − a)k

∫ b

a

...

∫ b

a

φ

( k
∑

i=1

uiti

)

dt1...dtk

≤ 1

b − a

∫ b

a

φ (t) dt. (2.4)

This subsumes several known results: the first inequality was proved in [11], the
second in [8] and the last in [4]. We pick up these threads again in Section 6.

3. Bounds for the Difference ϕk(u) − φ(I1{f(t)})

Theorem 3. Denote by φ′
+ the right derivative of φ on the interior

◦

I of I. Then

0 ≤ ϕk(u) − φ (I1 {f (t)})

≤ Ik

{

φ′
+

( k
∑

i=1

uif (ti)

) k
∑

j=1

ujf (tj)

}

−I1

{

f (t)

}

·Ik

{

φ′
+

( k
∑

i=1

uif (ti)

)}

. (3.1)

Proof. We already have the first inequality and wish to prove the second. We may
express (3.1) probabilistically as

0 ≤ E {φZ1} − E(X) ≤ E
{

Z1φ
′
+

}

− E(X) · E
{

φ′
+

}

.

Since φ is convex on I,

φ (x) − φ (y) ≥ φ′
+ (y) (x − y) for all x, y ∈

◦

I
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and φ′
+ (·) is nonnegative on

◦

I. Taking x = E(X) and y = Z1, we deduce that

φ(E(X)) − φ(Z1) ≥ φ′
+ (Z1) [E(X) − Z1] .

Taking expectations yields

E {φ (Z1)} − φ(E(Z1)) ≤ E
{

Z1φ
′
+ (Z1)

}

− E {Z1} · E
{

φ′
+ (Z1)

}

, (3.2)

whence we have the desired result.

When each ui = 1/k, we may exploit symmetry in j of the summand in (3.1) to

simplify the conclusion of the last theorem to

0 ≤ ϕk(u) − φ

(

I1{f(t)}
)

≤ Ik

{

f(t1)φ
′
+

(

1

k

k
∑

i=1

f (ti)

)}

−I1 {f(t)} · Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)}

.

The previous theorem may be extended as follows.

Theorem 4. For k ≥ 1 we have

0 ≤ Ik

{

φ′
+

( k
∑

i=1

uif (ti)

) k
∑

j=1

ujf (tj)

}

−I1

{

f (t)

}

·Ik

{

φ′
+

( k
∑

i=1

uif (ti)

)}

≤ σ

√

√

√

√

k
∑

j=1

u2
j

[

Ik

{[

φ′
+

( k
∑

i=1

uif (ti)

)]2}]1/2

. (3.3)

Proof. Since E(X) = E(Z1), the middle term in (3.3) can be cast probabilistically

as

E
{

φ′
+(Z1) × [Z1 − E(Z1)]

}

,

which by the Cauchy–Schwarz inequality is less than or equal to

{

E
{

[

φ′
+ (Z1)

]2
}}1/2 {

E
{

[Z1 − E {Z1}]2
}}1/2

.

Further E[Z1 − E(Z1)] = 0, so we have

E{[Z1 − E(Z1)]
2} = var(Z1) =

k
∑

i=1

u2
i var(Xi) = σ2

k
∑

i=1

u2
i ,

and the desired result follows.
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As with the previous theorem, (3.3) simplifies when ui = 1/k for each i, becoming

0 ≤ Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)

f(t1)

}

−I1 {f(t} · Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)}

≤ σk−1/2

[

Ik

{

[

φ′
+

(

1

k

k
∑

i=1

f (ti)

)]2
}

]1/2

.

for all k ≥ 1.

Corollary 2. Suppose that

M := sup
x∈I

∣

∣φ′
+ (x)

∣

∣ < ∞ (3.4)

and
k

∑

j=1

u2
j,k → 0 as k → ∞. (3.5)

Then

ϕk

(

u(k)
)

→ φ (I1 {f (t)}) as k → ∞.

We note that the second assumption is automatically satisfied in the particular case
uj,k = 1/k for 1 ≤ j ≤ k.

The conclusion of the corollary may be expressed probabilistically as

E {Z1,k} → φ(E(X)) as k → ∞.

4. Bounds for ϕk (u) − ϕk

The difference between the outermost terms in (2.1) can be used to provide a crude
upper bound for ϕk (u) − ϕk. Here we provide tighter bounds.

Theorem 5. For k ≥ 1 we have

0 ≤ ϕk (u) − ϕk

≤ Ik

{

φ′
+

( k
∑

i=1

uif (ti)

) k
∑

j=1

ujf (tj)

}

−Ik

{

φ′
+

( k
∑

i=1

uif (ti)

)

1

k

k
∑

j=1

f (tj)

}

.

Proof. By the convexity of φ

φ (Wk) − φ (Z1) ≥ φ′
+ (Z1) (Wk − Z1) .

Taking expectations provides

E(φ(Z1)) − E(φ(Wk)) ≤ E
{

Z1φ
′
+(Z1)

}

− E
{

Wkφ′
+(Z1)

}

,
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which is the desired result in probabilistic form.

The estimate is continued by the next theorem.

Theorem 6. For each k ≥ 1,

Ik

{

φ′
+

( k
∑

i=1

uif(ti)

) k
∑

j=1

ujf (tj)

}

−Ik

{

φ′
+

( k
∑

i=1

uif (ti)

)

1

k

k
∑

j=1

f (tj)

}

≤ σ

√

√

√

√

k
∑

i=1

(ui − 1/k)
2 ×

[

Ik

{[

φ′
+

( k
∑

j=1

ujf (tj)

)]2}]1/2

.

Proof. The left–hand side of this inequality is

E
{

φ′
+ (Z1) × (Z1 − Wk)

}

,

which by the Cauchy–Schwarz inequality is less than or equal to

(

E
{

[

φ′
+ (Z1)

]2
})1/2

×
(

E
{

[Z1 − Wk]
2
})

1

2

.

Since E(Z1 − Wk) = 0, we may compute the second term in parentheses as

var

{ k
∑

j=1

(

uj −
1

k

)

Xj

}

=

k
∑

j=1

(

uj −
1

k

)2

var(Xj) = σ2
k

∑

j=1

(

uj −
1

k

)2

,

from which we deduce the desired estimate.

Corollary 3. If (3.4) applies, then

0 ≤ ϕk (u) − ϕk ≤ Mσ

[

k
∑

i=1

(

ui −
1

k

)2
]

.

It follows that subject to (3.4), a sufficient condition for

lim
k→∞

ϕk (u) = φ (I1 {f (t)})

is that

lim
k→∞

k
∑

i=1

(ui,k − 1/k)
2

= 0.

By virtue of the relation
∑k

i=1 ui,k = 1, this is the same condition as (3.5).
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5. Upper Bounds for ϕk − ϕk+1

From (2.2), we have

φ(E(X)) ≤ ϕk+1 ≤ ϕk ≤ ... ≤ E(φ(X)) (5.1)

for k ≥ 1, so that the difference ϕk −ϕk+1 is nonnegative and can be ascribed a uniform

upper bound E(φ(X)) − φ(E(X)) which is independent of k. The next theorem refines

this to a tighter and k–dependent bound.

Theorem 7. For each k ≥ 1,

0 ≤ ϕk − ϕk+1

≤ 1

k + 1

[

Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)

f(t1)

}

−Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)}

I1{f (t)}
]

. (5.2)

Proof. As φ is convex,

φ

(

1

k + 1

k+1
∑

i=1

Xi

)

−φ

(

1

k

k
∑

i=1

Xi

)

≥ φ′
+

(

1

k

k
∑

i=1

Xi

)(

1

k + 1

k+1
∑

j=1

Xj −
1

k

k
∑

j=1

Xj

)

= φ′
+

(

1

k

k
∑

i=1

Xi

)[

Xk+1

k + 1
− 1

k(k + 1)

k
∑

j=1

Xj

]

for all k ≥ 1.

Taking expectations provides

ϕk+1 − ϕk ≥ 1

k + 1

[

E

{

φ′
+

(

1

k

k
∑

i=1

Xi

)}

E(X) − E

{

φ′
+

(

1

k

k
∑

i=1

Xi

)

1

k

k
∑

j=1

Xj

}]

=
1

k + 1

[

E

{

φ′
+

(

1

k

k
∑

i=1

Xi

)}

E(X) − E

{

X1φ
′
+

(

1

k

k
∑

i=1

Xi

)}]

,

where symmetry has been coupled with a change of variables to provide the last step.

The above result is continued by the following one.

Theorem 8. For each k ≥ 1 we have

1

k + 1

[

Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)

f (t1)

}

−Ik

{

φ′
+

(

1

k

k
∑

i=1

f (ti)

)}

I1 {f (t)}
]

≤ σ
√

k (k + 1)

[

Ik

{[

φ′
+

(

1

k

k
∑

i=1

f (ti)

)]2}]1/2

.
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Proof. The left–hand side can be expressed as

1

k + 1
E

{

φ′
+

(

1

k

k
∑

i=1

Xi

)[

Xk+1 −
1

k

k
∑

j=1

Xj

]}

,

which by the Cauchy–Schwarz inequality is less than or equal to

(

E

{[

φ′
+

(

1

k

k
∑

i=1

Xi

)]2})1/2

×
(

E

{[

Xk+1 −
1

k

k
∑

i=1

Xi

]2})1/2

.

Since E(Xk+1 − (1/k)
∑k

i=1 Xi) = 0, the expression within the second pair of paren-

theses is

var

(

Xk+1 −
1

k

k
∑

i=1

Xi

)

= var (Xk+1) +
1

k2

k
∑

i=1

var(Xi) =
(k + 1)σ2

k
,

from which we deduce the desired result.

Finally we have the following corollary.

Corollary 4. If (3.4) holds, then for all α ∈ [0, 1) we have

lim
n→∞

(ϕn − ϕn+1) nα = 0.

Proof. By the two preceding theorems,

0 ≤ ϕn − ϕn+1 ≤ Mσ
√

n(n + 1)
(5.3)

for all n ≥ 1, whence the result.

6. Applications to Hadamard’s Inequalities

We conclude by resuming from Corollary 1 and the observations made there.

Hadamard’s inequality states that if φ : I → R is convex on the interval I = [a, b] of real

numbers, then

φ

(

a + b

2

)

≤ 1

b − a

∫ b

a

φ(x)dx ≤ φ (a) + φ (b)

2
. (6.1)

Denote by

Jk {·} :=
1

(b − a)k

∫ b

a

...

∫ b

a

(·) dx1...dxk
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the special case of Ik when p(x) := 1/(b−a) on [a, b]. Dragomir, Pečarić and Sándor [11]
have interpolated the first inequality in (6.1) as

φ

(

a + b

2

)

≤ Jk+1

{

φ

(

1

k + 1

k+1
∑

i=1

xi

)}

≤ Jk

{

φ

(

1

k

k
∑

i=1

xi

)}

≤ ... ≤ J1{φ (x)} (6.2)

for all k ≥ 1. This is a particular case of (5.1).
Dragomir [4] has also established a weighted interpolation, in our notation

φ

(

a + b

2

)

≤ Jk

{

φ

(

∑

i=1

uixi

)}

≤ J1 {φ (x)} , (6.3)

of Hadamard’s first inequality. This was subsequently improved by Dragomir and Buşe
[8] who proved inter alia that

Jk

{

φ

(

1

k

k
∑

i=1

xi

)}

≤ Jk

{

φ

( k
∑

i=1

uixi

)}

. (6.4)

This is Theorem 2 with f(x) := x (and so Xi = Yi).
From Corollary 2 we can obtain the following result which was derived by a different

argument in [9].
Suppose φ : I → R is convex, (3.4) holds and that

lim
n→∞

∑n
i=1 v2

i

(
∑n

i=1 vi)
2 = 0.

Then if Vn :=
∑n

i=1 vi > 0, we have

lim
n→∞

Jn

{

φ

( n
∑

i=1

vixi/Vn

)}

= φ

(

a + b

2

)

.

Write hn, hn(u) respectively for ϕn, ϕn(u) in the case p(x) = 1/(b − a) on [a, b]. We
have the following.

Proposition 1. Let φ : I → R be convex and suppose (3.4) holds. Then for all

a, b ∈ I with a < b, we have

0 ≤ hn − hn+1 ≤ M (b − a)

2
√

3
√

n (n + 1)

for all positive integers n.

Proof. The result is (5.3) with

σ2 =

∫ b

a
t2dt

b − a
−

(

∫ b

a
tdt

b − a

)2

=
(b − a)2

12
.
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The consequence

lim
n→∞

[nα (hn − hn+1)] = 0 for α ∈ [0, 1)

is an improvement on the results of [7].

The weighted case is embodied in the following proposition.

Proposition 2. With the assumptions of Proposition 1,

0 ≤ hn (u) − hn ≤ M (b − a)

2
√

3

[ n
∑

i=1

(ui − 1/n)2
]1/2

for all n ≥ 1.

For other results connected with Hadamard’s inequality see [1]−[9], where further

references are given.
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