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A NOTE ON LAMARLE FORMULA IN MINKOWSKI 3-SPACE

UFUK ÖZTÜRK, KAZIM İLARSLAN, ESRA BETÜL KOÇ ÖZTÜRK AND EMILIJA NES̆OVIĆ

Abstract. The Lamarle formula is known as a simple relation between the Gaussian cur-
vature and the distribution parameter of a non-developable ruled surface. In this pa-
per, we obtain the Lamarle formula of a non-developable ruled surface with pseudo null
base curve and null director vector field in Minkowski 3-space. We also obtain the corre-
sponding striction line and distribution parameter of such surface. We prove that there
is no Lamarle formula when the director vector field is spacelike and its derivative is null,
because the ruled surface in that case is a lightlike plane. Finally, we give some examples.

1. Introduction

The study of the ruled surfaces plays an important role in classical differential geome-

try and has many applications in computer aided-designs, projective geometry, kinematics,

spatial mechanisms, etc. The ruled surface in Euclidean space E
3 has a parametrization of

the form x(s, t ) = α(s)+ t e(s), where α(s) is a regular curve and e(s) is a non-zero vector field

along the curve. Without loss of generality, we may assume that e(s) is a unit vector field,

i.e. ||e(s)|| = 1. A regular curve ᾱ(s) lying on the ruled surface x(s, t ) in E
3 with a property

〈ᾱ′(s),e ′(s)〉 = 0 is called a striction line. If e and e ′ are the unit vector fields, then {e,e ′,e × e ′}

is an orthonormal frame (Sannia frame [5]) in E
3, so the condition g (ᾱ′,e ′) = 0 implies

ᾱ′(s)=λ(s)e(s)+D(s)e(s)×e ′(s), (1.1)

where −λ(s) and D(s) are the pitch function ([4]) and the distribution parameter of the ruled

surface x(s, t ) respectively. Hence in this case D(s) is given by

D(s) = [ᾱ′,e,e ′]. (1.2)

and it measures a component of ᾱ′ perpendicular to e×e ′. If the Gaussian curvature K (s, t ) is

not identically zero on x(s, t ), then there exists a simple relationship between K (s, t ) and the

distribution parameter given by

K (s, t )=−
D2(s)

(D2(s)+ t 2)2
. (1.3)
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Relation (1.3) is known as the Lamarle formula. It is proved in [3] that in Minkowski 3-space

E 3
1 the Lamarle formula has different forms when the vector fields e and e ′ are the spacelike

or the timelike. Also, the distribution parameter D(s) has different expressions in those cases,

since the striction line lies in the spacelike or in the timelike plane [3].

In this paper, we consider two remained cases: (a) e is null vector field and (b) e is space-

like vector field and e ′ is a null vector field. In both cases, as the base curve of the ruled surface

x(s, t ) we choose a pseudo null curve α, whose principal normal vector field N and the binor-

mal vector field B are null vector fields. In case (a), we obtain the striction line and classify

such ruled surfaces as spacelike, timelike and lightlike. We also derive the distribution param-

eter and the corresponding Lamarle formula. In case (b), we prove that there is no Lamarle

formula, because the ruled surface x(s, t ) in that case is a lightlike plane. Finally, we give some

examples.

2. Preliminaries

The Minkowski 3-space E
3
1 is the Euclidean 3-space E

3 provided with the standard flat

metric given by

g =−d x2
1 +d x2

2 +d x2
3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1. Since g is an indefinite metric, recall

that a vector v ∈ E
3
1 can have one of three Lorentzian causal characters: it can be spacelike

if g (v, v) > 0 or v = 0, timelike if g (v, v) < 0 and null (lightlike) if g (v, v) = 0 and v 6= 0. In

particular, the norm (length) of a vector v is given by ‖v‖ =
√

∣

∣g (v, v)
∣

∣ and two vectors v and

w are said to be orthogonal, if g (v, w ) = 0. Next, recall that an arbitrary curve α = α(s) in

E
3
1, can locally be spacelike, timelike or null (lightlike), if all of its velocity vectors α′(s) are

respectively spacelike, timelike or null (lightlike) ([7]). In particular, a spacelike curve whose

the principal normal N and binormal B are the null vectors is called a pseudo null curve ([9]).

If α is a pseudo null curve in E
3
1, the Frenet formulas have the form ([9])








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
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

, (2.1)

where the first curvature κ can take only two values: κ= 0 when α is a straight line, or κ= 1 in

all other cases. In particular, the following conditions hold:

g (T,T ) = 1, g (N , N )= g (B ,B )= 0,

g (T, N )= g (T,B )= 0, g (N ,B )= 1.
(2.2)
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The cross products of the frame’s vectors are given by

T ×N = N , N ×B = T, B ×T =B. (2.3)

Recall that the Lorentzian vector product of two vectors u = (u1,u2,u3) and v = (v1, v2, v3) in

E
3
1 is defined by

u ×v = (u3v2 −u2v3, u3v1 −u1v3, u1v2 −u2v1).

Definition 2.1. A surface S in Minkowski 3-space is called a timelike (spacelike), if the induced

metric on the surface is a Lorentzian (positive definite Riemannian) metric, i.e. if the normal

on the surface is a spacelike (timelike) vector.

A spacelike or a timelike surface in Minkowski 3-space is also called a non-degenerate

(non-null) surface.

Definition 2.2. A surface S in Minkowski 3-space is called a lightlike (null, degenerate), if the

induced metric on the surface is degenerate.

The image of the map x : I ×R→ E
3
1 defined by

x(s, t )=α(s)+ t e(s), s ∈ I , t ∈R (2.4)

is called a ruled surface in E
3
1, where α : I ⊂ R → E

3
1 is a curve and e : I ⊂ R → E

3
1 is a vec-

tor field along α. The curve α is called base curve (or the generating curve) and e are called

the director curve (or the director vector filed). The rulings of a ruled surface are the straight

lines t →α(s)+ t e(s). If the tangent plane of the ruled surface is constant along a fixed rul-

ing, then the surface is called a developable surface. In Minkowski space E
3
1, the examples of

non-degenerate developable ruled surfaces are spacelike or timelike planes, cylinders, cones

and tangent surfaces. Tangent planes of such surfaces depend on only one parameter. The

examples of degenerate developable ruled surfaces in E
3
1 are lightlike planes, cylinders, cones

and tangent surfaces [8].

Definition 2.3. In Minkowski 3-space a ruled surface S with parametrization (2.4) is said to

be cylindrical if e(s)×e ′(s) = 0, and non-cylindrical if e(s)×e ′(s) 6= 0.

Definition 2.4. A curve ᾱ lying on the surface with parametrization (2.4) is called striction

line, if it satisfies the condition g (ᾱ′,e ′) = 0, and its points are called central points ([2]).

The Gaussian curvature K (s, t ) of the non-degenerate ruled surface with parametrization

(2.4) is given by ([1])

K (s, t )= g (η,η)
LN −M 2

EG −F 2
, (2.5)
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where E , F , G are the coefficients of the first fundamental form, L, M , N are the coefficients

of the second fundamental form and

η(s, t )=
xs ×xt

‖xs ×xt‖
(2.6)

is the unit normal vector field on x(s, t ).

Definition 2.5. Non-degenerate ruled surface in Minkowski 3-space is called a non-developable

surface, if its Gaussian curvature K (s, t ) 6= 0 at each point of the surface.

3. The Lamarle formulae for ruled surfaces with pseudo null base curve in E
3
1

Denote by S the ruled surface in E
3
1 with parametrization

x : I ×R→ E
3
1

(s, t )→ x(s, t )=α(s)+ t e(s),
(3.1)

where α is a pseudo null base curve and e is a director vector field along α. In this section,

we obtain the Lamarle formula of the ruled surface (3.1) by considering two cases: (a) e is a

null vector field; (b) e is a spacelike vector field and its derivative e ′ is null. In what follows,

we consider this two cases separately.

(a) g (e,e) = 0. Then g (e,e ′) = 0, so e ′ is the spacelike or the null vector field. Hence we may

distinguish two subcases: (a.1) e ′ is the spacelike; (a.2) e ′ is the null.

(a.1) If e ′(s) is a spacelike vector field where s denotes the arc-length parameter of e ,

then g (e ′(s),e ′(s)) = 1. In the first theorem we obtain the striction line ᾱ of S.

Theorem 3.1. Let S be the ruled surface in E
3
1 with parametrization (3.1). Then the striction

line of S is given by

ᾱ(s)=α(s)− g (α′(s),e ′(s))e(s). (3.2)

Proof. Assume that the curve ᾱ(s) lies on the ruled surface S. Then

ᾱ(s) =α(s)+u(s)e(s), (3.3)

where u(s) is a differentiable function. Next assume that ᾱ satisfies the condition g (ᾱ′,e ′) = 0.

Differentiating the equation (3.3) with respect to s, we obtain

ᾱ′(s) =α′(s)+u′(s)e(s)+u(s)e ′(s).

By taking the scalar product of the both sides of the last equation with e ′ and using the condi-

tions g (e,e ′) = g (ᾱ′,e ′) = 0, and g (e ′,e ′) = 1, we get

u(s)=−g (α′(s),e ′(s)).
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Substituting this in (3.3) we obtain (3.2). ���

In particular, it can be easily verified that the striction line is a unique. Differentiating the

equation (3.2) with respect to s, we get

ᾱ′ =α′− (g (α′,e ′))′e − g (α′,e ′)e ′.

Multiplying the last equation with e , it follows that

g (ᾱ′,e)= g (α′,e). (3.4)

By using (3.4), the following theorem can be proved.

Theorem 3.2. Let S be the ruled surface in E
3
1 with parametrization (3.1) and director vector

field satisfying the conditions g (e,e)= 0, g (e ′,e ′) = 1. Then S is a timelike surface if and only if

g (ᾱ′,e)= g (α′,e) 6= 0.

Proof. Assume that S has the parametrization (3.1). By taking the partial derivatives of the

relation (3.1) with respect to s and t , we obtain respectively

xs =α′(s)+ t e ′(s), xt = e(s).

Hence the coefficients of the first fundamental form are given by

E = g (xs , xs ), F = g (xs , xt ) = g (α′,e), G = g (xt , xt ) = 0.

By using (3.4), it follows that

(xs ×xt )2 =−EG +F 2 = F 2 = g (α′,e)2 = g (ᾱ′,e)2.

Therefore, S is a timelike surface if and only if g (α′,e) 6= 0. ���

Corollary 3.3. There is no spacelike ruled surface in E
3
1 with the null rulings.

Corollary 3.4. If the ruled surface S with null ruling in E
3
1 is lightlike, then its striction line is

null curve.

Note that when g (e,e) = 0 and g (e ′,e ′) = 1, then there exists a unique transversal null

vector field e t satisfying the conditions g (e,e t ) = 1, g (e ′,e t ) = 0. Consequently, {e,e ′,e t } is an

pseudo-orthonormal basis of E 3
1 ([6]). With respect to this basis, the tangent vector of the

striction curve ᾱ can be written as

ᾱ′ =λe +De t , (3.5)

where the function −λ = −g (ᾱ′,e t ) is called the pitch function ([4]) and the function D is

called the distribution parameter. Hence the next theorem can be proved.
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Theorem 3.5. Let S be the timelike ruled surface in E
3
1 with the striction line ᾱ and director

vector field e satisfying the conditions g (e,e) = 0, g (e ′,e ′) = 1. Then the distribution parameter

of S is given by

D(s) = g (ᾱ′,e) 6= 0. (3.6)

Proof. By taking the scalar product of the relation (3.5) with e , we get the relation (3.6). If

g (ᾱ′,e) = 0, by using the relation (3.4) we have g (α′,e)= 0. The last equation and the relation

g (e,e ′) = 0 imply that the spacelike vector α′ is collinear with the null vector e , which is a

contradiction. Therefore, g (ᾱ′,e) 6= 0. ���

Theorem 3.6. The Lamarle formula of the timelike ruled surface S in E
3
1 with parametrization

(3.1) and director vector field e satisfying the conditions g (e,e)= 0 and g (e ′,e ′) = 1 reads

K (s, t )=
1

D2(s)
.

Proof. Assume that the ruled surface S has the parametrization (3.1). By taking the partial

derivatives of the relation (3.1) with respect to s and t , we obtain

xs = ᾱ′+ t e ′, xt = e. (3.7)

By using Theorem 3.5, it follows that the coefficients of the first fundamental form are given

by

E = g (xs , xs ), F = g (xs , xt ) = g (ᾱ′,e)= D, G = g (xt , xt ) = 0. (3.8)

Consequently,

(xs ×xt )2 =−EG +F 2 =D2. (3.9)

On the other hand, by taking the partial derivatives of (3.7) with respect to s and t , we find

xss = ᾱ′′+ t e ′′, xst = e ′, xt t = 0. (3.10)

By using (2.6), it follows that the unit spacelike normal vector field on S is given by

η=
ᾱ′×e + t e ×e ′

p
D2

. (3.11)

Since xt t = 0, the coefficient N = g (xt t ,η) of the second fundamental form is zero. Next the

relations (3.8), (3.10) and (3.11) imply

M = g (xst ,η) =
D

p
D2

= sg n(D). (3.12)

Therefore,

LN −M 2 =−M 2 =−1. (3.13)
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Finally, the relations (3.9) and (3.13) imply that the Lamarle formula has the form

K (s, t )= g (η,η)
LN −M 2

EG −F 2
=

1

D2(s)
. ���

Example. Let S be the ruled surface in E
3
1 with parametrization (3.1) and pseudo null base

curve given by (Figure 1)

α(s) = (e s , s,e s), (3.14)
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Figure 1: The pseudo null helix α.

where s is the arc-length parameter of α.

The Frenet frame of α reads
T (s) = (e s ,1,e s ),

N (s)= (e s ,0,e s ),

B (s)= (− e2s+1
2es ,−1, 1−e2s

2es ),

(3.15)

Since the curvature functions of α are constants given by κ(s) = 1 and τ(s) = 1, α is pseudo

null helix. Assume that null director vector field e of S is given by

e(s)= e−sT (s)+
e−2s

2
N (s)−B (s). (3.16)

Differentiating the last relation with respect to s and using (2.1), we find

e ′(s)= (1−e−s )T (s)+ (e−s −
e−2s

2
)N (s)+B (s). (3.17)

Hence e ′ is the unit vector field. The relations (3.1), (3.14), (3.15) and (3.16) imply that S has

parametrization of the form (Figure 2)

x(s, t )=
(

e s + t (e−s +1+
e s

2
), s + t (e−s +1),e s + t (1+

e s

2
)

)

. (3.18)
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Figure 2: The timelike ruled surface S.
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Figure 3: The striction line ᾱ of S.

According to Theorem 3.1, the striction line ᾱ of S is given by (Figure 3)

ᾱ(s) = (e−2s −
1

2
+

e s

2
, s +e−2s −1,e−s −

1

2
+

e s

2
). (3.19)

By using Theorems 3.5 and 3.6, we obtain the distribution parameter and the Gaussian cur-

vature of S as follows

D(s) = e−s , K (s, t )= e2s .

(a.2) If e ′ is null, then e and e ′ are collinear null vectors, so the ruled surface is cylindrical

ruled surface. Then the next theorem holds.

Theorem 3.7. Let S be the ruled surface in E
3
1 with parametrization (3.1), director vector field

e satisfying the conditions g (e,e)= 0, g (e ′,e ′) = 0 and whose base curve is striction line. Then S

is a lightlike cylindrical ruled surface.

By using Theorem 3.7, we conclude that in this case there is no Lamarle formula, since

the ruled surface is a lightlike developable surface.
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Example. Consider the principal normal surface over pseudo null base curve α in E
3
1 with

parametrization

x(s, t )=α(s)+ t N (s),

where N (s) is the principal normal of α and s is the arclength parameter of α. By using (2.1)

and (2.2), we find g (α′, N ′) = g (T,τN ) = 0. Hence α is the striction line on S. Since g (N , N ) =
g (N ′, N ′) = 0, according to Theorem 3.7 the surface S is a lightlike cylindrical ruled surface

(Figure 4).

Figure 4: Principal normal surface.

(b) e is a spacelike vector field and its derivative derivative e ′ is null. Then we may assume

that e is the unit spacelike vector field, i.e. g (e,e)= 1.

Theorem 3.8. Let S̄ be the ruled surface in E
3
1 with the striction line ᾱ and director vector field

e satisfying the conditions g (e,e)= 1 and g (e ′,e ′) = 0. Then S̄ is the lightlike plane of E3
1.

Proof. Assume that the ruled surface S̄ has the parametrization

x(s, t )= ᾱ(s)+ t e(s),

where ᾱ is the striction line and e is director vector field satisfying the conditions g (e,e) = 1

and g (e ′,e ′) = 0. It follows that directory curve e(s) is a null curve lying in the unit pseudo-

sphere S2
1(1). Therefore, e is a null straight line. Up to isometries of E3

1, we may assume that

e has parameter equation e(s) = (s, s,1). Hence e(s) lies in the lightlike plane with the equa-

tion x1 = x2. Next, assume that ᾱ has parameter equation ᾱ(s) = (ᾱ1(s), ᾱ2(s), ᾱ3(s)), where

ᾱ1, ᾱ2, ᾱ3 are some differentiable functions. The condition g (ᾱ′,e ′) = 0 yields ᾱ′
1 = ᾱ′

2. Up to

a translation of E3
1, we obtain that the striction line has parameter equation ᾱ = (ᾱ1, ᾱ1, ᾱ3).

Consequently, the ruled surface S̄ is the lightlike plane with the equation x1 = x2. ���
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