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AN ASYMPTOTIC MEASURE OF ACCURACY EFFECT FROM

CENSORSHIP IN PARAMETRIC ESTIMATION

CHUNG-SIUNG KAO

Abstract. An asymptotic measure is provided to evaluate the effect on loss of accuracy for

censored data in parametric estimation of location and scale parameters. With this measure, it

is shown that the amount of effect from censored data relative to noncensored data is invariant

of the actual values of the location and scale parameters, but is only dependent on the form of

underlying distributions which the data are originated. In addition, among the most well-known

distributions, obtained results for the measure show that two censored data values together usu-

ally may possess more information than one noncensored data value in the parametric estimation

for location and scale parameters.

1. Introduction

In the occurrences of strike by natural forces like earthquakes, etc., the after-math
may only provide registered magnitude of the forces and the number of investigated
subjects that are broken and not broken. Also, in qualification tests for quality control
upon produced pipes or metal rods, etc., an economic consideration is to exert some
preassigned magnitude of force upon said pieces of material to observe how many of
them are broken and not broken instead of tediously obtaining the precise break point
for each of the pieces. For either of the above frequently occurred examples, what are
observed appear obviously to be censored data, which mean the registered or preassigned
magnitudes of force here and whether the investigated subjects are broken or not.

Throughout the years a large quantity of published work covered estimation problems
with censored data. Most of the one-sided censored data are right censored, especially
those in survival analysis. Among many such examples, Englehardt and Bain (1974) dealt
point estimation problem with censored samples. Lately, estimation of regression models
appear to be the main subject for investigation with right-censored data where efficiency
of the estimates is studied. For example, Gould and Lawiess (1988) and Young and
Bakier (1993) investigated estimation efficiency for censored data. Recently attention
has been directed to treatment method when the data are interval-censored. Among
others, Rabinowitz, Tsiatis and Aragon (1995) and Leung and Elashoff (1996) touched
on use of interval-censored data in regression.
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An important question regarding censored data should be how much information
remain of such censored data as compared to that of the precise data which are the
values of actual strength of the investigated subjects. It appears that this question
has not be addressed and properly studied. In this work, we compare the maximum
likelihood estimators (MLE) between using censored data and using actual data as basis
for answering the aforesaid question, assuming the underlying distribution regarding
investigated subjects is known. A ratio measure called in this work as M -efficiency is
properly established to shed light upon how much information is lost when precise data
are changed to censored data in the context of estimating location and scale parameters.
To begin with, we obtain proofs to assert that the MLE’s from using totally censored
data are both consistent and asymptotically normal. Then it is shown that specifically
for estimation of location and scale parameters, the M -efficiency is invariant to the true
values of location and scale parameters. The M -efficiency is explicitly expressed in form
of a formula in terms of the p.d.f. and c.d.f. of the underlying distribution. Finally,
examples with the best known distributions including Normal, Exponential and Uniform
are provided to show that despite censorship the censored data may still retain major
portion of the information possessed by their corresponding precise data.

For uniformity in the presentation, we shall use X to denote a precise data value
and Z to denote a 0 or 1 qualification value. The threshoulds shall be denoted by
Q’s. In addition, F (·; θ) shall denote the cumulative distribution function (c.d.f.) of X ,
where θ = (θ1, θ2, . . . , θJ ) is the parameter vector of dimension J . The corresponding
probability density function (p.d.f.) will be denoted by f(·; θ). The inference problem
considered here will be to estimate θ given observations of X ’s and Z’s and Q’s using
maximum likelihood method.

2. Maximum Likelihood Estimator of θ

Assume that X1, X2, . . . , XN are identically and independently distributed unknown
random observations which fall upon K known censoring thresholds Q1, Q2, . . . , QK .
Without loss of generality, let there be sequentially nk of Xi’s falling on threshold Qk,
1 ≤ k ≤ K, and let Nk =

∑k
j=1 nj for 1 ≤ k ≤ K with NK = N . Then for Nk−1 + 1 ≤

j ≤ Nk with N0 = 0, define

Zj = 1 if Xj > Qk,

and = 0 otherwise. (2.1)

Although Xj ’s are not observable, we have the values of Zj ’s which are Bernoulli ob-
servations, and the Qk’s. The common c.d.f. of Xi’s is F (·; θ), therefore for each

Zj, Nk−1 ≤ j ≤ Nk, the p.d.f. of Zj is p
Zj

k (1 − pk)1−Zj for Zj = 1 or 0, where
pk = pk(θ) = 1 − F (Qk; θ). The likelihood function based on the qualification ob-
servations is LN (θ), defined by

LN(θ) =

K
∏

k=1





Nk
∏

i=Nk−1+1

pZi

k (1 − pk)1−Zi



 , (2.2)
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where N = NK . Then the log likelihood function becomes

log LN(θ) = log LN (Z; θ)

=

K
∑

k=1

Sk log[1 − F (Qk; θ)] +

K
∑

k=1

(nk − Sk) log F (Qk; θ), (2.3)

where Sk =
∑Nk

i=Nk−1+1 Zi for 1 ≤ k ≤ K and Z = (Z1, Z2, . . . , ZN ) with N denoting
the total sample size (N = NK). Let

Uk(z; θ) = ▽θ(log gk(z; θ)), z = 0, 1 for 1 ≤ k ≤ K (2.4)

where gk(z; θ) = (1−F (Qk; θ))zF (Qk; θ)1−z , and ▽θ = ( ∂
∂θ1

, ∂
∂θ2

, . . . , ∂
∂θJ

) with J being

dim θ. Since X1, X2, . . . , XN are i.i.d., we may define

Ak(θ0, θ) = Eθ
0
[Uk(Zi; θ)] for Nk−1 + 1 ≤ i ≤ Nk

and ΨN(Z; θ) =

K
∑

k=1

∑

Nk−1+1

▽′
θ(Uk(Zi; θ)) with N0 ≡ 0, (2.5)

where ▽′
θ is the transposed of vector operator ▽θ. Note that Ak and ΨN as defined

above are an J-dimensional vector and a J × J matrix respectively. Since f and the gk’s
are probability density function, it follows that

Ak(θ, θ) = 0 for 0 ≤ k ≤ K, (2.6)

where 0 denotes the zero vector. Let Bk be defined by

Bk(θ0, θ) = Eθ
0
[U ′

k(Zi; θ)Uk(Zi; θ)] for Nk−1 + 1 ≤ i ≤ Nk. (2.7)

Then assuming the true value of θ to be θ0, the variance-covariance matrix of Uk(Zi; θ)
for any i such that Nk−1 + 1 ≤ i ≤ Nk is equal to Bk(θ0, θ) − Ak(θ0, θ)Ak(θ0, θ).
Due to the mutual independence of the Zi’s it follows that the variance-covariance ma-

trix of log LN (Z; θ) given the true value of θ being θ0 is equal to
∑K

k=0 nk[Bk(θ0, θ) −
A′

k(θ0, θ)Ak(θ0, θ)]. Let this sum of matrices be denoted by CN (θ0, θ). It is easily seen
that CN (θ0, θ) = −Eθ

0
ΨN(Z; θ) due to the fact that, for any random variable W ,

Eθ

[

∂

∂θi
log h(W ; θ)

]

= −E

[

∂2

∂θi∂θj
log h(W ; θ)

]

,

where h(·; θ) is the probability density function of W .

In what follows we will denote the maximum likelihood estimate (MLE) of θ by
θ̂N based on likelihood function under the given Zi’s (depend on Qk’s). When the
underlying cumulative distribution function F (x; θ) for Xi’s are regular with respect to
θ, it follows from the commonly known asymptotic properties of maximum likelihood

estimators (see Serfling (1980)) that θ̂ is strongly consistent and asymptotically normal
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N(θ0, C
−1
N (θ0, θ0)) for large N , where CN (θ0, θ) = −Eθ

0
ΨN (Z; θ) with ΨN(Z; θ) defined

in above at (2.5).

3. Efficiency of Censored Observations

As it was mentioned earlier, the amount of information from censored observations
is almost compatible to that from distribution observations provided that the censoring
thresholds are properly chosen. It is important to note that the order of magnitude for
estimation accuracy is maintained at 1√

n
when the censored observations are used. This

gives the essential reason for promoting the use of censored data. In this section, the
loss of information is to be measured by comparing the widths of asymptotic confidence
intervals obtained by using maximum likelihood method upon censored data and distri-
bution data separately. For purpose of simplicity we shall restrict the comparison to only
one-dimensional case for θ(= θ).

Following the notations in the preceding sections, let there be n random distribution
observations {Xi, 1 ≤ i ≤ n}. Then for the distribution observation Xi, let the threshold
be Qi and the corresponding censored observation be Zi. Accordingly,

Zi = 1 if Xi > Qi,

and = 0 otherwise.

Again let the common cumulative distribution function of the Xi’s be F (·; θ), and the
probability density function be f(·; θ).

Now denote the maximum likelihood estimate (MLE) of θ using the X ’s by θ̂X , and
denote the MLE of θ using the Z’s by θ̂z. Then for large n let the asymptotic standard
deviation derived from the asymptotic distribution of θ̂X be denoted by VX,n(θ0) and
the one corresponding to θ̂Z , be VZ,n(Q, θ0), where Q = (Q1, Q2, . . . , Qn). Note that the
components of Q have K distinct values for all n ≥ K, and K is preassigned.

Definition 3.1. For given Q, the M -efficiency e(Q) of using censored observations
versus using distribution observations is defined by

e(Q; θ0) = lim
n→∞

VX,n(θ0)

VZ,n(Q, θ0)
. (3.1)

When Q = Q
0

maximizes e(Q; θ0) for all Q, then we call e∗(θ0) = e(Q
0
θ0) the optimal

M -efficiency.
It is known that θ̂X is asymptotically normal with mean θ0 and variance

n−1E−1
θ0

[

(

∂

∂θ
log f(X ; θ)

)2

θ=θ0

]

.

According to known property of maximum likelihood estimator it is easily seen that θ̂Z

is asymptotically normal with mean θ0 and variance v2
n(θ0), where

v2
n(θ) =

{

n
∑

i=1

[ ∂
∂θ F (Qi; θ)]

2

F (Qi; θ)[1 − F (Qi; θ)]

}−1

. (3.2)
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Therefore the optimal choice of Qi’s is to set Qi = q0 for all i such that Qi = q0 maximizes
[ ∂
∂θF (Qi; θ)]

2
θ=θ0

/[F (Qi; θ0)(1 − F (Qi; θ0))]. Then we have the optimal M -efficiency

e∗(θ0) =

{

[ ∂
∂θF (q0; θ)]

2
θ=θ0

Eθ0
[( ∂

∂θ log f(X ; θ))2θ=θ0
)]F (q0; θ0)[1 − F (q0; θ0)]

}
1

2

. (3.3)

This is obvious, since it can be easily shown that

e(Qi; θ0) =

[

∂

∂θ
F (Qi; θ)

]2

θ=θ0

/

{

Eθ0

[

(

∂

∂θ
log f(X ; θ)

)2

θ=θ0

]

F (Qi; θ0)[1 − F (Qi; θ0)]

}

In case that θ is either a location parameter or a scale parameter, the optimal M -
efficiency e∗(θ0) is a constant e0 which is invariant to value of θ0. This is shown in the
following:

When θ is a location parameter, we have F (x; θ) = F0(x − θ). Then

Eθ0

[

(

∂

∂θ
log f(X ; θ)

)2

θ=θ0

]

=

∫ ∞

−∞

[f ′
0(t)]

2

f0(t)
dt,

and

max
Q

{

[ ∂
∂θF (Q; θ)]2θ=θ0

F (Q; θ0)[1 − F (Q; θ0)]

}

= max
Q

{

f2
0

F0(Q)[1 − F0(Q)]

}

,

therefore e∗(θ0) is actually a constant independent of θ0. When θ is a scale parameter,
we have F (x, θ) = F0(z/θ). Then

Eθ0

[

(

∂

∂θ
log f(X ; θ)

)2

θ=θ0

]

=
1

θ2
0

∫ ∞

−∞

[

r
f ′
0(r)

f0(r)
+ 1

]2

f0(r)dr,

and

max
Q

{

[ ∂
∂θF (Q; θ)]2θ=θ0

F (Q; θ0)[1 − F (Q; θ0)]

}

=
1

θ2
0

max
Q

{

Q2f2
0

F0(Q)[1 − F0(Q)]

}

,

therefore θ2
0 is cancelled out in (3.3) for e∗(θ0). Hence e∗(θ0) is a constant also indepen-

dent of θ0. In such case, let e∗ = e∗(θ0) denote the constant. The above results prove
for the following theorem.

Theorem 4.1. If θ is either a location parameter or a scale parameter, then the

optimal M -efficiency is independent of the true value of the parameter θ.

Example 1. Let the sequence {Xi, 1 ≤ i ≤ n} be a simple random sample from
N (µ, σ2), where σ2 is known variance and, without loss of generality, σ2 is assumed to
be 1. Then we have the optimal threshold q0 = µ. Thus the optimal choice of the
threshold is the unknown true mean. It follows that the optimal M -efficiency e∗(µ) is

independent of µ. In fact, we have e∗ =
√

2
π = 0.798. It is worth noting that if θ = σ is
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unknown and µ is known, then it may be shown that q0 = µ + 1.58σ. Furthermore, this

gives e∗ = 0.554. In fact, q0 can also be µ − 1.58σ, which yields the same value for e∗.

Example 2. Let the sequence {Xi, 1 ≤ i ≤ n} be random observations from a
negative exponential distribution, where

f(x; λ) =
1

λ
e−x/λ, x > 0 (θ = λ > 0).

Then we have F (x; λ) = 1−e−x/λ. It is obtained that q0 = 1.59λ, which yields e∗ = 0.805.

Example 3. Let {Xi, 1 ≤ i ≤ n} be random observations from a uniform distribu-
tion, where

f(x; λ) =
1

λ
, 0 < x ≤ λ (θ = λ > 0).

It follows that F (x; λ) = 1
λI+(λ − I+(x)), where I+ is defined by

I+(t) = t if t > 0

and = 0 otherwise.

Then we have q0 = λ and e∗ = 1 according to the calculations. In fact, this is predictable
and seems obvious, since for this example the optimal qualification observation and the

distribution observation yield equivalent information about λ.
In the above examples it appears that q0 = g(θ) for some function g, which normally

has an obtainable analytic form. Thus in practice one may select the first threshold to
be g(θp) where θp is an estimate of true θ based on prior information. Then the optimal
threshold can be approached by successive approximations.

For example, when e∗ = 0.5, it means that the information from four optimally
censored observations is equivalent to information from one distribution observation. If

e∗ = 0.8, it means the information from two optimally censored observations is better
than that from one distribution observation in the context of maximum likelihood esti-

mation. The preceding examples strongly justify use of censored data in light of the e∗

values.
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