ON THE FEKETE-SZEGÖ PROBLEM FOR STRONGLY α-QUASICONVEX FUNCTIONS

NAK EUN CHO AND SHIGEYOSHI OWA

Abstract

The purpose of the present paper is to introduce the classes $\mathcal{M}_{\alpha}(\beta)$ and $\mathcal{Q}_{\alpha}(\beta)$, respectively, of normalized strongly α-convex and α-quasiconvex functions of order β in the open unit disk and to obtain sharp Fekete-Szegö inequalities for functions belonging to the classes $\mathcal{M}_{\alpha}(\beta)$ and $\mathcal{Q}_{\alpha}(\beta)$.

1. Introduction

Let \mathcal{S} denote the class of analytic functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are univalent in the open unit disk $\mathcal{U}=\{z: z \in \mathbb{C}$ and $|z|<1\}$ and let \mathcal{C} and \mathcal{K} denote the subclasses of \mathcal{S} consisting of convex and close-to-convex functions, respectively.

Fekete and Szegö [5] showed that for $f \in \mathcal{S}$, given in \mathcal{U} by (1.1),

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}3-4 \mu & \text { if } \quad \mu \leq 0 \\ 1+2 e^{-2 \mu /(1-\mu)} & \text { if } 0 \leq \mu \leq 1 \\ 4 \mu-3 & \text { if } \mu \geq 1\end{cases}
$$

This inequality is sharp in the sense that for each μ, there exists a function in \mathcal{S} such that equality holds. There are also several results of this type in the literature (see, [1, 8-11]). Recently, Srivastava, Mishra and Das [16] have obtained the Fekete-Szegö inequalities for certain close-to-convex functions.

Denote by $\mathcal{K}(\beta)$ the class of strongly close-to-convex functions of order β. Thus $f \in \mathcal{K}(\beta)$ if and only if there exists $g \in \mathcal{C}$ such that

$$
\left|\arg \frac{f^{\prime}(z)}{g^{\prime}(z)}\right| \leq \frac{\pi}{2} \beta \quad(\beta \geq 0 ; \quad z \in \mathcal{U})
$$

Received May 29, 2001; revised February 21, 2002.
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Fekete-Szegö problem, close-to-convex, strongly α-convex, strongly α-quasiconvex.

Clearly, $\mathcal{K}(0)=\mathcal{C}, \mathcal{K}(1)=\mathcal{K}$ and for $0 \leq \beta \leq 1, \mathcal{K}(\beta)$ is a subclass of \mathcal{K} and hence contains only univalent functions. However, Goodman [6] showed that $\mathcal{K}(\beta)$ can contain functions with infinite valence for $\beta>1$. For the class $\mathcal{K}(\beta)$, the Fekete-Szegö problem has been also solved by London [11] (also, see [1]). We now introduce new classes which cover some well-known classes of univalent functions as follows:

Definition 1.1. A function $f \in \mathcal{S}$ given by (1.1) is said to be strongly α-convex of order β if

$$
\begin{equation*}
\left|\arg \left\{(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}\right\}\right| \leq \frac{\pi}{2} \beta \quad(\alpha \geq 0 ; 0<\beta \leq 1 ; z \in \mathcal{U}) \tag{1.2}
\end{equation*}
$$

Denote by $\mathcal{M}_{\alpha}(\beta)$ the class of strongly α-convex functions of order β. We note that the class $\mathcal{M}_{\alpha}(1)$ was introduced by Mocanu [11], which is a generalization of both classes of starlike and convex functions. In particular, $\mathcal{M}_{0}(\beta)$ is the class of strongly starlike functions of order β studied by Brannan and Kirwan [2].

Definition 1.2. A function $f \in \mathcal{S}$, given by (1.1), is said to be strongly α-quasiconvex of order β if there exists a function $g \in \mathcal{C}$ such that

$$
\left|\arg \left\{(1-\alpha) \frac{f^{\prime}(z)}{g^{\prime}(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}\right| \leq \frac{\pi}{2} \beta \quad(\alpha, \beta \geq 0 ; z \in \mathcal{U})
$$

We denote by $\mathcal{Q}_{\alpha}(\beta)$ the class of strongly α-quasiconvex functions of order β. Also we note that $\mathcal{Q}_{0}(1)=\mathcal{K}$ and $\mathcal{Q}_{1}(1)$ is the class of quasiconvex functions introduced by Noor [13]. Furthermore, the class $\mathcal{Q}_{\alpha}(1)$, the class of α-quasiconvex functions, have extensively studied by Noor and Alkhorasani [14].

The purpose of the present paper is to prove sharp Fekete-Szegö inequalities for functions belonging to the classes $\mathcal{M}_{\alpha}(\beta)$ and $\mathcal{Q}_{\alpha}(\beta)$, which imply the results obtained earlier by Abdel-Gawad and Thomas [1], Keogh and Merkes [8] and London [11].

2. Main Results

To prove our main results, we need the following
Lemma 2.1. Let p be analytic in \mathcal{U} and satisfy $\operatorname{Re}\{p(z)\}>0$ for $z \in \mathcal{U}$, with $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$. Then

$$
\begin{equation*}
\left|p_{n}\right| \leq 2 \quad(n \geq 1) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{2}-\frac{p_{1}^{2}}{2}\right| \leq 2-\frac{\left|p_{1}\right|^{2}}{2} \tag{2.2}
\end{equation*}
$$

The inequality (2.1) was first proved by Carathéodory [3] (also, see Duren [4, p.41]) and the inequality (2.2) can be found in [15, p.166].

With the help of Lemma 2.1, we now derive

Theorem 2.1. Let $f \in \mathcal{M}_{\alpha}(\beta)$ and be given by (1.1). The for complex number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\beta}{1+2 \alpha} \max \left\{1, \frac{\left|\alpha^{2}+8 \alpha+3-4 \mu(1+2 \alpha)\right| \beta}{(1+\alpha)^{2}}\right\}
$$

For each μ, there is a function in $\mathcal{M}_{\alpha}(\beta)$ such that equality holds.
Proof. From (1.2), we can write

$$
\begin{equation*}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=p^{\beta}(z) \tag{2.3}
\end{equation*}
$$

where p is given by Lemma 2.1. Equating coefficents, we obtain

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{\beta}{2(1+2 \alpha)}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{\left(\alpha^{2}+8 \alpha+3-4 \mu(1+2 \alpha)\right) \beta^{2} p_{1}^{2}}{4(1+2 \alpha)(1+\alpha)^{2}} \tag{2.4}
\end{equation*}
$$

Therefore, using (2.4) and applying Lemma 2.1, we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\beta}{1+2 \alpha}, & \text { if } \quad k(\alpha) \leq \frac{(1+\alpha)^{2}}{\beta} \\ \frac{\left|\alpha^{2}+8 \alpha+3-4 \mu(1+2 \alpha)\right| \beta^{2}}{(1+2 \alpha)(1+\alpha)^{2}}, & \text { if } \quad k(\alpha) \geq \frac{(1+\alpha)^{2}}{\beta}\end{cases}
$$

where

$$
k(\alpha)=\left|\alpha^{2}+8 \alpha+3-4 \mu(1+2 \alpha)\right| .
$$

Equality is attained for functions in $\mathcal{M}_{\alpha}(\beta)$, respectively, given by

$$
\begin{equation*}
(1+\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=\left(\frac{1+z^{2}}{1-z^{2}}\right)^{\beta} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
(1+\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}=\left(\frac{1+z}{1-z}\right)^{\beta} \tag{2.6}
\end{equation*}
$$

Remark 2.1. It follows at once from (2.3) that $\left|a_{2}\right| \leq 2 \beta /(1+\alpha)$ and Theorem 2.1 gives

$$
\left|a_{3}\right| \leq \begin{cases}\frac{\beta}{1+2 \alpha}, & \text { if } \quad(1+\alpha)^{2} \geq\left(\alpha^{2}+8 \alpha+3\right) \beta \\ \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta^{2}}{(1+2 \alpha)(1+\alpha)^{2}} & \text { if } \quad(1+\alpha)^{2} \leq\left(\alpha^{2}+8 \alpha+3\right) \beta\end{cases}
$$

The inequality for $\left|a_{2}\right|$ is sharp when f is defined by (2.6) and the inequalities for $\left|a_{3}\right|$ are sharp when f is defined by (2.5) and (2.6), respectively.

Next, we consider the real number μ as follows.

Theorem 2.2. Let $f \in \mathcal{M}_{\alpha}(\beta)$ and be given by (1.1). Then for real number μ,

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{\left(\alpha^{2}+8 \alpha+3-4(1+2 \alpha) \mu\right) \beta^{2}}{(1+2 \alpha)(1+\alpha)^{2}}, \quad \text { if } \quad \mu \leq \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta-(1+\alpha)^{2}}{4(1+2 \alpha) \beta} \\
\frac{\beta}{1+2 \alpha}, \quad \text { if } \quad \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta-(1+\alpha)^{2}}{4(1+2 \alpha) \beta} \leq \mu \leq \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta+(1+\alpha)^{2}}{4(1+2 \alpha) \beta} \\
\frac{\left(4(1+2 \alpha) \mu-\left(\alpha^{2}+8 \alpha+3\right)\right) \beta^{2}}{(1+2 \alpha)(1+\alpha)^{2}}, \quad \text { if } \quad \mu \geq \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta+(1+\alpha)^{2}}{4(1+2 \alpha) \beta}
\end{array}\right.
$$

For each μ, there is a function in $\mathcal{M}_{\alpha}(\beta)$ such that equality holds in all cases.
Proof. We consider two cases. At first, we suppose that $\mu \leq\left(\alpha^{2}+8 \alpha+3\right) /(4(1+2 \alpha))$. Then (2.4) and Lemma 2.1 give

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\beta}{1+2 \alpha}+\frac{\left(\left(\alpha^{2}+8 \alpha+3-4 \mu(1+2 \alpha)\right) \beta^{2}-(1+\alpha)^{2} \beta\right)\left|p_{1}\right|^{2}}{4(1+2 \alpha)(1+\alpha)^{2}}
$$

So, by using the fact that $\left|p_{1}\right| \leq 2$, we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{\left(\alpha^{2}+8 \alpha+3-4(1+2 \alpha) \mu\right) \beta^{2}}{(1+2 \alpha)\left(1+\alpha^{2}\right)}, \quad \text { if } \mu \leq \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta-(1+\alpha)^{2}}{4(1+2 \alpha) \beta} \\
\frac{\beta}{1+2 \alpha}, \quad \text { if } \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta-(1+\alpha)^{2}}{4(1+2 \alpha) \beta} \leq \mu \leq \frac{\alpha^{2}+8 \alpha+3}{4(1+2 \alpha)}
\end{array}\right.
$$

Equality is attained by choosing $p_{1}=p_{2}=2$ and $p_{1}=0, p_{2}=2$, respectively, in (2.4).
Next, we suppose that $\mu \geq\left(\alpha^{2}+8 \alpha+3\right) /(4(1+2 \alpha))$. In this case, it follows, as in the first case, from (2.4) and Lemma 2.1 that

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{\beta}{1+2 \alpha}, & \text { if } \quad \frac{\alpha^{2}+8 \alpha+3}{4(1+2 \alpha)} \leq \mu \leq \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta+(1+\alpha)^{2}}{4(1+2 \alpha) \beta} \\ \frac{\left(4(1+2 \alpha) \mu-\left(\alpha^{2}+8 \alpha+3\right)\right) \beta^{2}}{(1+2 \alpha)(1+\alpha)^{2}}, & \text { if } \mu \geq \frac{\left(\alpha^{2}+8 \alpha+3\right) \beta+(1+\alpha)^{2}}{4(1+2 \alpha) \beta}\end{cases}
$$

The results are sharp choosing $p_{1}=0, p_{2}=2$ and $p_{1}=2 i, p_{2}=-2$, respectively, in (2.4).
Finally, we prove
Theorem 2.3. Let $f \in \mathcal{Q}_{\alpha}(\beta)$ and be given by (1.1). Then for $\alpha \geq 0$ and $\beta \geq 0$, we have

$$
3(2 \alpha+1)\left|a_{3}-\mu a_{2}^{2}\right|
$$

$$
\leq \begin{cases}1+\frac{(1+\beta)^{2}\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}{(\alpha+1)^{2}}, & \text { if } \mu \leq \frac{2 \beta(1+\alpha)^{2}}{3(2 \alpha+1)(1+\beta)}, \\ 1+2 \beta+\frac{2\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}{2(\alpha+1)^{2}-\beta\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}, & \text { if } \frac{2 \beta(1+\alpha)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{2(1+\alpha)^{2}}{3(2 \alpha+1)}, \\ 1+2 \beta, & \text { if } \frac{2(1+\alpha)^{2}}{3(2 \alpha+1) \leq \mu \leq \frac{2(1+\alpha)^{2}(2+\beta)}{3(2 \alpha+1)(1+\beta)},} \\ -1+\frac{(1+\beta)^{2}\left(3(2 \alpha+1) \mu-2(\alpha+1)^{2}\right)}{(\alpha+1)^{2}}, & \text { if } \mu \geq \frac{2(1+\alpha)^{2}(2+\beta)}{3(2 \alpha+1)(1+\beta)} .\end{cases}
$$

For each μ, there is a function in $\mathcal{Q}_{\alpha}(\beta)$ such that equality holds in all cases.
Proof. Let $f \in \mathcal{Q}_{\alpha}(\beta)$. Then it follows from the definition that we may write

$$
\begin{equation*}
(1-\alpha) \frac{f^{\prime}(z)}{g^{\prime}(z)}+\alpha \frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}=p^{\beta}(z) \tag{2.7}
\end{equation*}
$$

where g is convex and p has positive real part. Let $g(t)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ and let p be given as in Lemma 2.1. Then by comparing the coefficients of both sides of (2.7), we obtain

$$
\begin{equation*}
3(2 \alpha+1)\left(a_{3}-\mu a_{2}^{2}\right)=3\left(b_{3}+\frac{1}{3}(x-2) b_{2}^{2}\right)+\beta\left(p_{2}+\frac{1}{4}(\beta x-2) p_{1}^{2}\right)+\beta x p_{1} b_{2} \tag{2.8}
\end{equation*}
$$

where

$$
x=\frac{2(\alpha+1)^{2}-3(2 \alpha+1) \mu}{(\alpha+1)^{2}}
$$

Since rotations of f also belong to $\mathcal{Q}_{\alpha}(\beta)$, without loss of generality, we may assume that $a_{3}-\mu a_{2}^{2}$ is positive. Thus we now estimate $\operatorname{Re}\left(a_{3}-\mu a_{2}^{2}\right)$.

Since $g \in \mathcal{C}$, there exists $h(z)=1+k_{1} z+k_{2} z^{2}+\cdots(z \in \mathcal{U})$ with positive real part, such that $g^{\prime}(z)+z g^{\prime \prime}(z)=g^{\prime}(z) h(z)$. Hence, by equating coefficients, we get that $b_{2}=k_{1} / 2$ and $b_{3}=\left(k_{2}+k_{1}^{2}\right) / 6$. So, by using Lemma 2.1 and letting $k_{1}=2 \rho e^{i \phi}$ $(0 \leq \rho \leq 1,0 \leq \phi \leq 2 \pi)$ and $p_{1}=2 r e^{i \theta}(0 \leq r \leq 1,0 \leq \theta \leq 2 \pi)$ in (2.8), we obtain

$$
\begin{align*}
& 3(2 \alpha+1) \operatorname{Re}\left(a_{3}-\mu a_{2}^{2}\right) \\
& \leq\left(1-\rho^{2}\right)+(x+1) \rho^{2} \cos 2 \phi+2 \beta\left(1-r^{2}\right)+\beta^{2} x r^{2} \cos 2 \theta+2 \beta x r \rho \cos (\theta+\phi) \\
& =\psi(x), \quad \text { say. } \tag{2.9}
\end{align*}
$$

We consider first the case

$$
\frac{2 \beta(1+\alpha)^{2}}{3(2 \alpha+1)(1+\beta)} \leq \mu \leq \frac{2(1+\alpha)^{2}}{3(2 \alpha+1)}
$$

Then we have $0 \leq x \leq 2 /(1+\beta)$. Since the expression $-2 t^{2}+\beta x t^{2} \cos 2 \theta+2 x t$ is the largest when $t=x /(2-\beta x \cos 2 \theta)$, we have

$$
\psi(x) \leq 1+2 \beta+\frac{2\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}{2(\alpha+1)^{2}-\beta\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}
$$

and with (2.9), we obtain the second inequality of the theorem. Equality occurs only if the function f is defined by

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(z f^{\prime}(z)\right)^{\prime}=\frac{1}{(1-z)^{2}}\left(\lambda \frac{1+z}{1-z}+(1-\lambda) \frac{1-z}{1+z}\right)^{\beta}
$$

where

$$
\lambda=\frac{2(\alpha+1)^{2}+(1-\beta)\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}{4(\alpha+1)^{2}-2 \beta\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)} .
$$

We now prove the first inequality. Let

$$
\mu \leq \frac{2 \beta(1+\alpha)^{2}}{3(2 \alpha+1)(1+\beta)}
$$

Then we have $x \geq 2 /(1+\beta)$, and

$$
\psi(x) \leq 1+\frac{(1+\beta)^{2}\left(2(\alpha+1)^{2}-3(2 \alpha+1) \mu\right)}{(\alpha+1)^{2}}
$$

as required. Equality occurs only if the function f is defined by

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(z f^{\prime}(z)\right)^{\prime}=\frac{1}{(1-z)^{2}}\left(\frac{1+z}{1-z}\right)^{\beta}
$$

Let $x_{1}=-2 /(1+\beta)$. We note that $\psi\left(x_{1}\right) \leq 1+2 \beta$. Now we consider two possibilities. Firstly, we suppose that $x_{1} \leq x \leq 0$, that is,

$$
\frac{2(1+\alpha)^{2}}{3(2 \alpha+1)} \leq \mu \leq \frac{2(1+\alpha)^{2}(2+\beta)}{3(2 \alpha+1)(1+\beta)}
$$

Since

$$
\psi\left(\lambda x_{1}\right)=\lambda \psi\left(x_{1}\right)+(1-\lambda) \psi(0) \leq 1+2 \beta
$$

for $0 \leq \lambda \leq 1$, we obtain $\psi(x) \leq 1+2 \beta$ and this prove the third inequality of the theorem. Equality occurs only if the function f is defined by

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(z f^{\prime}(z)\right)^{\prime}=\frac{\left(1+z^{2}\right)^{\beta}}{\left(1-z^{2}\right)^{1+\beta}}
$$

Secondly, we suppose that $x \leq x_{1}$, that is,

$$
\mu \geq \frac{2(1+\alpha)^{2}(2+\beta)}{3(2 \alpha+1)(1+\beta)}
$$

Then we have

$$
\psi(x) \leq-1+\frac{(1+\beta)^{2}\left(3(2 \alpha+1) \mu-2(\alpha+1)^{2}\right)}{(\alpha+1)^{2}}
$$

and this is the last inequality of the theorem. Equality occurs only if the function f is defined by

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(z f^{\prime}(z)\right)^{\prime}=\frac{1}{(1-i z)^{2}}\left(\frac{1+i z}{1-i z}\right)^{\beta}
$$

Therefore we complete the proof of the theorem.
From Theorem 2.3, we have immediately the following
Corollary 2.1. Let $f \in \mathcal{Q}_{1}(\beta)$ and be given by (1.1). Then for $\beta \geq 0$, we have

$$
9\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{ll}
1+\frac{(1+\beta)^{2}(8-9 \mu)}{4} & \text { if } \quad \mu \leq \frac{8 \beta}{9(1+\beta)} \\
1+2 \beta+\frac{2(8-9 \mu)}{8-\beta(8-9 \mu)} & \text { if } \\
\frac{8 \beta}{9(1+\beta)} \leq \mu \leq \frac{8}{9} \\
1+2 \beta & \text { if } \\
\frac{8}{9} \leq \mu \leq \frac{8(2+\beta)}{9(1+\beta)} \\
-1+\frac{(1+\beta)^{2}(9 \mu-8)}{4} & \text { if }
\end{array} \quad \mu \geq \frac{8(2+\beta)}{9(1+\beta)} .\right.
$$

For each μ, there is function in $\mathcal{Q}_{1}(\beta)$ such that equality holds in all cases.
Remark 2.2. (i). By letting $\beta=1$ in Corollary 2.1, we have the result by Keogh and Merkes [8].
(ii). For $\alpha=0$ in Theorem 2.3, we have the corresponding results obtained by Abdel-Gawad and Thomas [1] and London [11].

Acknowledgements

This work was supported by Pukyong National University Grant made in the program year of 2001. The authors express their gratitude to the referee for his valuable comments.

References

[1] H. R. Abdel-Gawad and D. K. Thomas, The Fekete-Szegö problem for strongly close-toconvex functions, Proc. Amer. Math. Soc. 114(1992), 345-349.
[2] D. A. Brannan and W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. 1(1969), 431-443.
[3] C. Carathéodory, Uber den variabilitätsbereich der fourier'schen konstanten von positiven harmonischen funktionen, Rend. Circ. Mat. Palermo 32(1911), 193-127.
[4] P. L. Duren, Univalent functions, Springer-Verlag, New York, 1983.
[5] M. Fekete and G. Szegö, Eine Bermerkung uber ungerade schlichte function, J. London Math. Soc. 8(1933), 85-89.
[6] A. W. Goodman, On close-to-convex functions of higher oreder, Ann. Univ. Sci. Badapest Eötvös Sect. Math. 15(1972), 17-30.
[7] W. Kalplan, Close-to-convex schlicht functions, Michigan Math. J. 1(1952), 169-185.
[8] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20(1969), 8-12.
[9] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101(1987), 89-95.
[10] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Arch. Math. 49 (1987), 420-433.
[11] R. R. London, Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117(1993), 947-950.
[12] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11(1969), 127-133.
[13] K. I. Noor, On quasi-convex functions and related topics, Internat. J. Math. and Math. Sci. 10(1987), 234-258.
[14] K. I. Noor and H. A. Alkhorasani, Properties of close-to-convexing preserved by some integral operators, J. Math. Anal. Appl. 112(1985), 509-516.
[15] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
[16] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegö problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44(2001), 145-163.

Nak Eun Cho, Division of Mthematical Sciences, Pukyoung National University, Pusan 608-737, Korea.

Shigeyoshi Owa, Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan.

