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ON THE FEKETE-SZEGO PROBLEM FOR
STRONGLY a-QUASICONVEX FUNCTIONS

NAK EUN CHO AND SHIGEYOSHI OWA

Abstract. The purpose of the present paper is to introduce the classes M (3) and Qn(3),
respectively, of normalized strongly a-convex and a-quasiconvex functions of order 3 in the
open unit disk and to obtain sharp Fekete-Szegd inequalities for functions belonging to the
classes M (3) and Q. (83).

1. Introduction

Let S denote the class of analytic functions f of the form
o0
f(z):erZanz" (1.1)
n=2

which are univalent in the open unit disk & = {z : z € Cand |z| < 1} and let C
and K denote the subclasses of S consisting of convex and close-to-convex functions,
respectively.

Fekete and Szego [5] showed that for f € S, given in U by (1.1),

3—4pu if u<o,
lag — pa3| < 142~ 20/0=m if 0<p <1,
4p—3 if p>1.

This inequality is sharp in the sense that for each p, there exists a function in S such that
equality holds. There are also several results of this type in the literature (see, [1, 8-11]).
Recently, Srivastava, Mishra and Das [16] have obtained the Fekete-Szeg6 inequalities
for certain close-to-convex functions.

Denote by K(f) the class of strongly close-to-convex functions of order 3. Thus
f € K(B) if and only if there exists g € C such that

'R _ ,
arggl(z)‘ < 5@ (B>0; zel).
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Clearly, £(0) = C, K(1) = K and for 0 < 8 < 1, K(f) is a subclass of K and hence
contains only univalent functions. However, Goodman [6] showed that K(/3) can contain
functions with infinite valence for 8 > 1. For the class K(3), the Fekete-Szegd problem
has been also solved by London [11] (also, see [1]). We now introduce new classes which
cover some well-known classes of univalent functions as follows:

Definition 1.1. A function f € S given by (1.1) is said to be strongly a-convex of
order (3 if

{1 G2

Denote by M, () the class of strongly a-convex functions of order 8. We note that the
class My (1) was introduced by Mocanu [11], which is a generalization of both classes
of starlike and convex functions. In particular, My(8) is the class of strongly starlike
functions of order § studied by Brannan and Kirwan [2].

B (>0, 0<p<1; z€eU). (1.2)

| 3

Definition 1.2. A function f € S, given by (1.1), is said to be strongly a-quasiconvex
of order f if there exists a function g € C such that

{5

B (a, B>0; z€U).

bo| 3

We denote by Q, () the class of strongly a-quasiconvex functions of order 8. Also we
note that Qp(1) = K and Q;(1) is the class of quasiconvex functions introduced by Noor
[13]. Furthermore, the class Q, (1), the class of a-quasiconvex functions, have extensively
studied by Noor and Alkhorasani [14].

The purpose of the present paper is to prove sharp Fekete-Szego inequalities for
functions belonging to the classes M, () and Q, (), which imply the results obtained
earlier by Abdel-Gawad and Thomas [1], Keogh and Merkes [8] and London [11].

2. Main Results

To prove our main results, we need the following

Lemma 2.1. Let p be analytic in U and satisfy Re{p(z)} > 0 for z € U, with
p(2) =1+ p1z +p2z®+---. Then

Pl <2 (n>1) (2.1)
and ) | |2
P1 P1

— =<2 - = 2.2

-] <2- 12 (2.2

The inequality (2.1) was first proved by Carathéodory [3] (also, see Duren [4, p.41]) and
the inequality (2.2) can be found in [15, p.166].

With the help of Lemma 2.1, we now derive
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Theorem 2.1. Let f € M, (B) and be given by (1.1). The for complex number p,

- {1 |2 +8a+34u(1+20¢)|ﬂ}
’ (1+a)? '

2
— <
lag — pa3| < 1+ 2a

For each p, there is a function in M (8) such that equality holds.

Proof. From (1.2), we can write

RO BN )
T A (23)

where p is given by Lemma 2.1. Equating coefficents, we obtain

as — pal = _ B inp_% (a2 + 8a + 3 — 4u(1 + 20))3%p?
2 2(1 +20¢) 2 4(1+2a)(1+a)2

Therefore, using (2.4) and applying Lemma 2.1, we have

5 _ 1+ )?
2 1+ 2a’ i k(a) < %’

— <
jas — paz| < la® + 8o+ 3 — 4p(1 +2a)|6° it k(o) > (A+a)?
(11 20)(1+a)? ! -8

where
E(a) = [a? + 8a+ 3 — 4u(1 + 2a)).

Equality is attained for functions in M,(3), respectively, given by

2f'(2) | GF(R) (14227
T B e —(122) 25)
and 5
S GFE) (1+e
ATy T —(12) | (26)

Remark 2.1. It follows at once from (2.3) that |az| < 26/(1 + «) and Theorem 2.1
gives
B
1+2a’
(a? + 8a + 3)3?
(1+2a)(1+«)?

The inequality for |ag| is sharp when f is defined by (2.6) and the inequalities for |as|
are sharp when f is defined by (2.5) and (2.6), respectively.

if (14 a)?>(a?+8a+3)3,
las| <
if (14 a)? < (a?+8a+3)8.

Next, we consider the real number p as follows.
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Theorem 2.2. Let f € M, () and be given by (1.1). Then for real number pu,

(@*+8a+3—4(1+2a)u)3? (@ +8a+3)3— (1+a)?

At2a0+ap 4 #< A1 +20)8 ’

9 g . (@®+8a+3)3—(1+a)? (a*+8a+3)3+(1+a)?

s = nazl S\ 4(1+20)8 SHs 1(1+20)8 !
(4(142a)p— (a*+8a+3))3? s (@?+8a+3)3+ (1 + a)?

A+20)1+az = W = A(1+20)3 '

For each p, there is a function in My (8) such that equality holds in all cases.

Proof. We consider two cases. At first, we suppose that u < (a2 +8a+3)/(4(142a)).
Then (2.4) and Lemma 2.1 give

5 B (@ +8a+3—4p(l+2a))5° — (1+a)?B)|p |
s = parl < 950 A1+ 20)(1 + )2 '

So, by using the fact that |p1]| < 2, we obtain

(@ +8a+3—4(1+2a)u) > (@®+8a+3)3— (1+a)?

b .f < b
Jas— pa3| < (1+20)(1 +02) B 41+ 20)5
3~ >~
? 3 o (@%8at3)i-—(1+a)?  _o’f8a+3
1+ 20’ 41+ 20)3 =P+ 2a)

Equality is attained by choosing p1 = pa = 2 and p; = 0, pa = 2, respectively, in (2.4).
Next, we suppose that u > (o + 8a + 3)/(4(1 + 2a)). In this case, it follows, as in
the first case, from (2.4) and Lemma 2.1 that

J&; i a2+8a+3<u<(a2+8a+3)ﬂ+(1+a)2
| 2 < 1+2a’ 41+420) =~ 4(1+20)8 ’
az—pas| <

IS 414 20)u— (02180t 3)) 3 oo (@24 8a+3)8+ (14 a)’
Q+2)1+az = " H= A1 +20)8 '

The results are sharp choosing p; =0, p2 =2 and p; =2i, po =—2, respectively, in (2.4).
Finally, we prove

Theorem 2.3. Let f € Q,(8) and be given by (1.1). Then for « >0 and 3 > 0, we
have

3(2a + 1)|az — pa3l
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1+a+ﬂﬂeggjfy3@a+bw7 ”’“ﬁgéffﬁgi@’
< “Qﬁ+%wig@;;zjﬁa§%ZDM’ el 5%%%f§@§“§§££%’
1+(l+ﬂ?@@g¢%§2@+bﬁ’ iffiZ?éifﬁﬁig-

For each p, there is a function in Qu(8) such that equality holds in all cases.
Proof. Let f € Q,(83). Then it follows from the definition that we may write

'), @FR) s
(1-a) +a =p’(2), (2.7)
g'(2) 9'(2)
where g is convex and p has positive real part. Let g(t) = 2 + bo2z? 4+ b32® + - -- and let p
be given as in Lemma 2.1. Then by comparing the coefficients of both sides of (2.7), we

obtain

320+ 1)(aa — pad) =3 (b + 3o =208 ) + 8+ (90 - 252 ) + by (28)

where

~ 2(a+1)? =32a+ 1)u

B (a+1)? '
Since rotations of f also belong to Q, (), without loss of generality, we may assume that
az — pa3 is positive. Thus we now estimate Re(az — pa3).

Since g € C, there exists h(z) = 1 + k12 + kaz? + -+ (2 € U) with positive real
part, such that ¢'(z) + zg”(2) = ¢’'(2)h(z). Hence, by equating coefficients, we get that
by = k1/2 and by = (k2 + k?)/6. So, by using Lemma 2.1 and letting k; = 2pe’®
(0<p<1,0<¢<2m) and p; =2re? (0<r <1, 0<6<27)in (2.8), we obtain

3(2a + 1)Re(az — pa3)

<(1=pH) 4 (x+1)p?cos2¢ + 26(1 — %) 4 32xr? cos 20 + 2Bxrp cos(f + ¢)

=(z), say. (2.9)
We consider first the case

26(1 + a)?
32a+1)(14+5)
Then we have 0 < 2 < 2/(1 + 3). Since the expression —2t% + Bxt? cos 20 + 2zt is the
largest when ¢t = x/(2 — Sz cos 260), we have
2(2(a+1)% = 3(2a + 1)p)

(a+1)2 = B2(a+1)2 - 312+ Nu)

2(1 + a)?
32a+1)

IN

<u

w@)§1+2ﬂ+2
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and with (2.9), we obtain the second inequality of the theorem. Equality occurs only if
the function f is defined by

z —z\”’
(=) alef O = o (M + 0= Ms )

where
2(a+1)2+ (1 - B)(2(a +1)2 = 3(2a + 1)p)
4a+1)2-262(a+1)2-32a+1)u)

We now prove the first inequality. Let

)\ =

26(1 + a)?
F=32a+1)(1+58)

Then we have z > 2/(1+ /), and

(14 8)2(2(a +1)2 — 3(2a + 1))
(a+1)2 ’

Y(r) <1+

as required. Equality occurs only if the function f is defined by

B
1 1+2
/ / [
(I—a)f'(z) +a(zf(2) = (=L (ﬁ) :
Let 1 = —2/(14 ). We note that ¢)(x1) < 1+25. Now we consider two possibilities.
Firstly, we suppose that 1 < z < 0, that is,

2(1+ «)?

2(1+ )*(245)
e

= 32a+ 1)1 +8)

Since

Y(Ar1) = Mp(z1) + (1 = A)p(0) < 1+ 28,

for 0 < A < 1, we obtain ¢(z) < 142/ and this prove the third inequality of the theorem.
Equality occurs only if the function f is defined by

22 B
(1—a)f'(z) +a(zf'(2) = (1(1272)1)%

Secondly, we suppose that x < z1, that is,

2(1+a)*(2+0)
" et D11 A)

Then we have
1+ 3)2(BQ2a+ 1)u—2(a+1)%)

Y(z) < -1+ (a+1)2 )
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and this is the last inequality of the theorem. Equality occurs only if the function f is
defined by

.\ B
1 1412
1 _ / / r_ )
(1= ) () 4 aleF ) = e ()
Therefore we complete the proof of the theorem.

From Theorem 2.3, we have immediately the following

Corollary 2.1. Let f € Q1(8) and be given by (1.1). Then for § >0, we have

(1+6)*(8 —9u) ‘ 80
A ;e 1
28— ) 8 8
1420+ ——7—— if —/———<pu<—,
1+2p if §§M§mv
200, _
_1+—(1+5)4(9“ ) uf uziggig;.

For each p, there is function in Q1(5) such that equality holds in all cases.

Remark 2.2. (i). By letting 8 = 1 in Corollary 2.1, we have the result by Keogh
and Merkes [8].

(ii). For a = 0 in Theorem 2.3, we have the corresponding results obtained by
Abdel-Gawad and Thomas [1] and London [11].
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