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INEQUALITIES OF JENSEN’S TYPE FOR GENERALIZED

k-g -FRACTIONAL INTEGRALS

SILVESTRU SEVER DRAGOMIR

Abstract. In this paper we establish some inequalities of Jensen and Hermite-Hadamard

type for the k-g -fractional integrals of convex functions defined an interval [a,b]. Some

examples for the generalized left- and right-sided Riemann-Liouville fractional integrals

of a function f with respect to another function g on [a,b] and for classical Riemann-

Liouville fractional integrals are also given.

1. Introduction

The following integral inequality

f

(

a +b

2

)

≤
1

b −a

∫b

a
f (t )d t ≤

f (a)+ f (b)

2
, (1.1)

which holds for any convex function f : [a,b] → R, is well known in the literature as the

Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result which

has many applications in Theory of Special Means and in Information Theory for divergence

measures, from which we would like to refer the reader to the monograph [22], the recent

survey paper [15] and the references therein.

Let f : [a,b] → C be a complex valued Lebesgue integrable function on the real interval

[a,b] . The Riemann-Liouville fractional integrals are defined for α> 0 by

Jαa+ f (x) =
1

Γ (α)

∫x

a
(x − t )α−1 f (t )d t

for a < x ≤ b and

Jαb− f (x) =
1

Γ (α)

∫b

x
(t −x)α−1 f (t )d t
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for a ≤ x < b, where Γ is the Gamma function. For α= 0, they are defined as

J 0
a+ f (x)= J 0

b− f (x) = f (x) for x ∈ (a,b) .

In the recent paper [16] we obtained the following Hermite-Hadamard type inequalities

for convex functions and the Riemann-Liouville fractional integrals

1

α+1

[

1

α
f (x)+

f (a)+ f (b)

2

]

≥
1

2
Γ (α)

[

Jαa+ f (x)

(x −a)α
+

Jα
b− f (x)

(b −x)α

]

≥
∫1

0
(1− s)α−1 f

(

sx + (1− s)
a +b

2

)

d s

≥
1

α
f

(

α

α+1

(

x

α
+

a +b

2

))

(1.2)

and
1

α+1

[

f (x)+
1

α

f (a)+ f (b)

2

]

≥
1

2
Γ (α)

[

Jαx− f (a)

(x −a)α
+

Jαx+ f (b)

(b −x)α

]

≥
∫1

0
sα−1 f

(

sx + (1− s)
a +b

2

)

d s

≥
1

α
f

(

α

α+1

(

x +
1

α

a +b

2

))

(1.3)

for any x ∈ (a,b) and α> 0.

In order to extend these type of inequalities for more general fractional integrals we need

the following preparations.

Assume that the kernel k is defined either on (0,∞) or on [0,∞) with complex values and

integrable on any finite subinterval. We define the function K : [0,∞) →C by

K (t ) :=











∫t

0
k (s)d s if 0 < t ,

0 if t = 0.

As a simple example, if k (t ) = tα−1 then for α ∈ (0,1) the function k is defined on (0,∞) and

K (t ) := 1
α tα for t ∈ [0,∞) . If α≥ 1, then k is defined on [0,∞) and K (t ) := 1

α tα for t ∈ [0,∞) .

Let g be a strictly increasing function on (a,b) , having a continuous derivative g ′ on

(a,b). For the Lebesgue integrable function f : (a,b) → C, we define the k-g -left-sided frac-

tional integral of f by

Sk ,g ,a+ f (x)=
∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) f (t )d t , x ∈ (a,b] (1.4)

and the k-g -right-sided fractional integral of f by

Sk ,g ,b− f (x)=
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) f (t )d t , x ∈ [a,b). (1.5)
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If we take k (t )= 1
Γ(α) tα−1, where Γ is the Gamma function, then

Sk ,g ,a+ f (x) =
1

Γ (α)

∫x

a

[

g (x)− g (t )
]α−1

g ′ (t ) f (t )d t

=: Iαa+,g f (x), a < x ≤ b (1.6)

and

Sk ,g ,b− f (x) =
1

Γ (α)

∫b

x

[

g (t )− g (x)
]α−1

g ′ (t ) f (t )d t

=: Iαb−,g f (x), a ≤ x < b, (1.7)

which are the generalized left- and right-sided Riemann-Liouville fractional integrals of a func-

tion f with respect to another function g on [a,b] as defined in [25, p.100].

For g (t )= t in (1.7) we have the classical Riemann-Liouville fractional integrals while for

the logarithmic function g (t )= ln t we have the Hadamard fractional integrals [25, p. 111]

Hα
a+ f (x) :=

1

Γ (α)

∫x

a

[

ln
( x

t

)]α−1 f (t )d t

t
, 0 ≤ a < x ≤ b (1.8)

and

Hα
b− f (x) :=

1

Γ (α)

∫b

x

[

ln

(

t

x

)]α−1 f (t )d t

t
, 0 ≤ a < x < b. (1.9)

One can consider the function g (t )=−t−1 and define the "Harmonic fractional integrals" by

Rα
a+ f (x) :=

x1−α

Γ (α)

∫x

a

f (t )d t

(x − t )1−α tα+1
, 0 ≤ a < x ≤ b (1.10)

and

Rα
b− f (x) :=

x1−α

Γ (α)

∫b

x

f (t )d t

(t −x)1−α tα+1
, 0 ≤ a < x < b. (1.11)

Also, for g (t )= exp
(

βt
)

, β> 0, we can consider the “β-Exponential fractional integrals”

Eα
a+,β f (x) :=

β

Γ (α)

∫x

a

[

exp
(

βx
)

−exp
(

βt
)]α−1

exp
(

βt
)

f (t )d t , (1.12)

for a < x ≤ b and

Eα
b−,β f (x) :=

β

Γ (α)

∫b

x

[

exp
(

βt
)

−exp
(

βx
)]α−1

exp
(

βt
)

f (t )d t , (1.13)

for a ≤ x < b.

If we take g (t )= t in (1.4) and (1.5), then we can consider the following k-fractional inte-

grals

Sk ,a+ f (x) =
∫x

a
k (x − t ) f (t )d t , x ∈ (a,b] (1.14)

for a < x ≤ b and

Sk ,b− f (x)=
∫b

x
k (t −x) f (t )d t , x ∈ [a,b). (1.15)
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In [28], Raina studied a class of functions defined formally by

Fσ
ρ,λ (x) :=

∞
∑

k=0

σ (k)

Γ
(

ρk +λ
)xk , |x| <R , with R > 0 (1.16)

for ρ, λ > 0 where the coefficients σ (k) generate a bounded sequence of positive real num-

bers. With the help of (1.16), Raina defined the following left-sided fractional integral operator

J σ
ρ,λ,a+;w f (x) :=

∫x

a
(x − t )λ−1 Fσ

ρ,λ

(

w (x − t )ρ
)

f (t )d t , x > a (1.17)

where ρ, λ> 0, w ∈R and f is such that the integral on the right side exists.

In [1], the right-sided fractional operator was also introduced as

J σ
ρ,λ,b−;w f (x) :=

∫b

x
(t −x)λ−1 Fσ

ρ,λ

(

w (t −x)ρ
)

f (t )d t , x < b (1.18)

where ρ, λ> 0, w ∈R and f is such that the integral on the right side exists. Several Ostrowski

type inequalities were also established.

We observe that for k (t )= tλ−1Fσ
ρ,λ (w tρ) we re-obtain the definitions of (1.17) and (1.18)

from (1.14) and (1.15).

In [26], Kirane and Torebek introduced the following exponential fractional integrals

T α
a+ f (x) :=

1

α

∫x

a
exp

{

−
1−α

α
(x − t )

}

f (t )d t , x > a (1.19)

and

T α
b− f (x) :=

1

α

∫b

x
exp

{

−
1−α

α
(t −x)

}

f (t )d t , x < b (1.20)

where α ∈ (0,1) .

We observe that for k (t ) = 1
α exp

(

−1−α
α t

)

, t ∈R we re-obtain the definitions of (1.19) and

(1.20) from (1.14) and (1.15).

Let g be a strictly increasing function on (a,b) , having a continuous derivative g ′ on

(a,b). We can define the more general exponential fractional integrals

T α
g ,a+ f (x) :=

1

α

∫x

a
exp

{

−
1−α

α

(

g (x)− g (t )
)

}

g ′ (t ) f (t )d t , x > a (1.21)

and

T α
g ,b− f (x) :=

1

α

∫b

x
exp

{

−
1−α

α

(

g (t )− g (x)
)

}

g ′ (t ) f (t )d t , x < b (1.22)

where α ∈ (0,1) .

Let g be a strictly increasing function on (a,b) , having a continuous derivative g ′ on

(a,b). Assume that α> 0. We can also define the logarithmic fractional integrals

L α
g ,a+ f (x) :=

∫x

a

(

g (x)− g (t )
)α−1

ln
(

g (x)− g (t )
)

g ′ (t ) f (t )d t , (1.23)
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for 0 < a < x ≤ b and

L α
g ,b− f (x) :=

∫b

x

(

g (t )− g (x)
)α−1

ln
(

g (t )− g (x)
)

g ′ (t ) f (t )d t , (1.24)

for 0 < a ≤ x < b, where α> 0. These are obtained from (1.14) and (1.15) for the kernel k (t ) =
tα−1 ln t , t > 0.

For α= 1 we get

Lg ,a+ f (x) :=
∫x

a
ln

(

g (x)− g (t )
)

g ′ (t ) f (t )d t , 0 < a < x ≤ b (1.25)

and

Lg ,b− f (x) :=
∫b

x
ln

(

g (t )− g (x)
)

g ′ (t ) f (t )d t , 0 < a ≤ x < b. (1.26)

For g (t )= t , we have the simple forms

L α
a+ f (x) :=

∫x

a
(x − t )α−1 ln(x − t ) f (t )d t , 0 < a < x ≤ b, (1.27)

L α
b− f (x) :=

∫b

x
(t −x)α−1 ln(t −x) f (t )d t , 0 < a ≤ x < b, (1.28)

La+ f (x) :=
∫x

a
ln(x − t ) f (t )d t , 0 < a < x ≤ b (1.29)

and

Lb− f (x) :=
∫b

x
ln(t −x) f (t )d t , 0< a ≤ x < b. (1.30)

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals see [2]−[18],

[23]−[36] and the references therein.

For k and g as at the beginning of Introduction, we consider the mixed operator

Sk ,g ,a+,b− f (x) :=
1

2

[

Sk ,g ,a+ f (x)+Sk ,g ,b− f (x)
]

=
1

2

[
∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) f (t )d t +
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) f (t )d t

]

(1.31)

for the Lebesgue integrable function f : (a,b)→C and x ∈ (a,b) .

Observe that

Sk ,g ,x+ f (b) =
∫b

x
k

(

g (b)− g (t )
)

g ′ (t ) f (t )d t , x ∈ [a,b)

and

Sk ,g ,x− f (a) =
∫x

a
k

(

g (t )− g (a)
)

g ′ (t ) f (t )d t , x ∈ (a,b].

We can define also the dual mixed operator

S̆k ,g ,a+,b− f (x) :=
1

2

[

Sk ,g ,x+ f (b)+Sk ,g ,x− f (a)
]
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=
1

2

[∫b

x
k

(

g (b)− g (t )
)

g ′ (t ) f (t )d t +
∫x

a
k

(

g (t )− g (a)
)

g ′ (t ) f (t )d t

]

for any x ∈ (a,b) .

In this paper we establish some inequalities of Jensen and Hermite-Hadamard type for

the k-g -fractional integrals of convex functions defined an interval [a,b]. Some examples

for the generalized left- and right-sided Riemann-Liouville fractional integrals of a function

f with respect to another function g on [a,b] and for classical Riemann-Liouville fractional

integrals are also given.

2. The main results

We have the following bounds for the operator Sk ,g ,a+,b− f :

Theorem 1. Assume that the kernel k is defined either on (0,∞) or on [0,∞) with nonnegative

values and integrable on any finite subinterval. Let g be a strictly increasing function on (a,b) ,

having a continuous derivative g ′ on (a,b) . If f : [a,b]→R is a convex function, then

1

2

[

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)]

× f

(

K
(

g (x)− g (a)
)

a +K
(

g (b)− g (x)
)

b

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
) +

∫x
a K

(

g (x)− g (t )
)

d t −
∫b

x K
(

g (t )− g (x)
)

d t

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)

)

≤
1

2

[

f

(

a +
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (x)− g (t )
)

d t

)

K
(

g (x)− g (a)
)

+ f

(

b −
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (t )− g (x)
)

d t

)

K
(

g (b)− g (x)
)

]

≤ Sk ,g ,a+,b− f (x)

≤
1

2

[

K
(

g (x)− g (a)
)

f (a)+K
(

g (b)− g (x)
)

f (b)
]

+
1

2

[

f (x)− f (a)

x −a

∫x

a
K

(

g (x)− g (t )
)

d t −
f (b)− f (x)

b −x

∫b

x
K

(

g (t )− g (x)
)

d t

]

(2.1)

for x ∈ (a,b) .

Proof. Since f : [a,b]→R is convex, then for x ∈ (a,b)

f (t )≤
t −a

x −a
f (x)+

x − t

x −a
f (a) , t ∈ [a, x] (2.2)

and

f (t )≤
t −x

b −x
f (b)+

b − t

b −x
f (x) , t ∈ [x,b] . (2.3)

By (2.2) and (2.3) we have

Sk ,g ,a+,b− f (x) =
1

2

[∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) f (t )d t +
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) f (t )d t

]
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≤
1

2

∫x

a
k

(

g (x)− g (t )
)

g ′ (t )

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]

d t

+
1

2

∫b

x
k

(

g (t )− g (x)
)

g ′ (t )

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]

d t (2.4)

for x ∈ (a,b) .

Using the chain rule we have

(

K
(

g (x)− g (t )
))′ =−K ′ (g (x)− g (t )

)

g ′ (t )=−k
(

g (x)− g (t )
)

g ′ (t )

for t ∈ (a, x) and

(

K
(

g (t )− g (x)
))′ = K ′ (g (t )− g (x)

)

g ′ (t )= k
(

g (t )− g (x)
)

g ′ (t )

for t ∈ (x,b) .

Then, integrating by parts, we have

∫x

a
k

(

g (x)− g (t )
)

g ′ (t )

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]

d t

=−
∫x

a

(

K
(

g (x)− g (t )
))′

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]

d t

=−
[

K
(

g (x)− g (t )
)

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]∣

∣

∣

∣

x

a

−
f (x)− f (a)

x −a

∫x

a
K

(

g (x)− g (t )
)

d t

]

=K
(

g (x)− g (a)
)

f (a)+
f (x)− f (a)

x −a

∫x

a
K

(

g (x)− g (t )
)

d t

and

∫b

x
k

(

g (t )− g (x)
)

g ′ (t )

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]

d t

=
∫b

x

(

K
(

g (t )− g (x)
))′

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]

d t

= K
(

g (t )− g (x)
)

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]∣

∣

∣

∣

b

x

−
f (b)− f (x)

b −x

∫b

x
K

(

g (t )− g (x)
)

d t

= K
(

g (b)− g (x)
)

f (b)−
f (b)− f (x)

b −x

∫b

x
K

(

g (t )− g (x)
)

d t

for x ∈ (a,b) .

Therefore by (2.4) we have

Sk ,g ,a+,b− f (x)≤
1

2

[

f (x)− f (a)

x −a

∫x

a
K

(

g (x)− g (t )
)

d t +K
(

g (x)− g (a)
)

f (a)

]

+
1

2

[

K
(

g (b)− g (x)
)

f (b)−
f (b)− f (x)

b −x

∫b

x
K

(

g (t )− g (x)
)

d t

]
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=
1

2

[

K
(

g (x)− g (a)
)

f (a)+K
(

g (b)− g (x)
)

f (b)
]

+
1

2

[

f (x)− f (a)

x −a

∫x

a
K

(

g (x)− g (t )
)

d t −
f (b)− f (x)

b −x

∫b

x
K

(

g (t )− g (x)
)

d t

]

for x ∈ (a,b) , which proves the third inequality in (2.1).

We use the Jensen inequality in the form

∫d
c w (t ) f (t )d t
∫d

c w (t )d t
≥ f

(
∫d

c w (t ) t d t
∫d

c w (t )d t

)

, (2.5)

where f : [c ,d ]→R is convex and w (t )≥ 0, t ∈ [c ,d ] is integrable with
∫d

c w (t )d t > 0.

Therefore
∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) f (t )d t

≥ f

(
∫x

a k
(

g (x)− g (t )
)

g ′ (t ) t d t
∫x

a k
(

g (x)− g (t )
)

g ′ (t )d t

)

∫x

a
k

(

g (x)− g (t )
)

g ′ (t )d t (2.6)

and
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) f (t )d t

≥ f

(
∫b

x k
(

g (t )− g (x)
)

g ′ (t ) t d t
∫b

x k
(

g (t )− g (x)
)

g ′ (t )d t

)

∫b

x
k

(

g (t )− g (x)
)

g ′ (t )d t (2.7)

for x ∈ (a,b) .

We have
∫x

a
k

(

g (x)− g (t )
)

g ′ (t )d t =−
∫x

a

(

K
(

g (x)− g (t )
))′

d t =K
(

g (x)− g (a)
)

and
∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) t d t =−
∫x

a

(

K
(

g (x)− g (t )
))′

t d t

=−
[

K
(

g (x)− g (t )
)

t
∣

∣

x
a −

∫x

a
K

(

g (x)− g (t )
)

d t

]

= K
(

g (x)− g (a)
)

a +
∫x

a
K

(

g (x)− g (t )
)

d t

for x ∈ (a,b) .

Also
∫b

x
k

(

g (t )− g (x)
)

g ′ (t )d t =
∫b

x

(

K
(

g (t )− g (x)
))′

d t = K
(

g (b)− g (x)
)

and
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) t d t =
∫b

x

(

K
(

g (t )− g (x)
))′

t d t
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= K
(

g (t )− g (x)
)

t
∣

∣

b
x −

∫b

x
K

(

g (t )− g (x)
)

d t

= K
(

g (b)− g (x)
)

b −
∫b

x
K

(

g (t )− g (x)
)

d t

for x ∈ (a,b) .

Then by (2.6) and (2.7) we have
∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) f (t )d t

≥ f

(

a +
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (x)− g (t )
)

d t

)

K
(

g (x)− g (a)
)

(2.8)

and
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) f (t )d t

≥ f

(

b −
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (t )− g (x)
)

d t

)

K
(

g (b)− g (x)
)

(2.9)

for x ∈ (a,b) .

Using the inequalities (2.8) and (2.9) we have

Sk ,g ,a+,b− f (x)=
1

2

[∫x

a
k

(

g (x)− g (t )
)

g ′ (t ) f (t )d t +
∫b

x
k

(

g (t )− g (x)
)

g ′ (t ) f (t )d t

]

≥
1

2
f

(

a +
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (x)− g (t )
)

d t

)

K
(

g (x)− g (a)
)

+
1

2
f

(

b −
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (t )− g (x)
)

d t

)

K
(

g (b)− g (x)
)

,

which proves the second inequality in (2.1).

By the convexity of f we have for α, β≥ 0 with α+β> 0, that

α f (c)+β f (d )

α+β
≥ f

(

αc +βd

α+β

)

. (2.10)

Then for

α =
K

(

g (x)− g (a)
)

2
, β=

K
(

g (b)− g (x)
)

2
and

c = a +
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (x)− g (t )
)

d t ,

d = b −
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (t )− g (x)
)

d t

we have

f

(

a +
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (x)− g (t )
)

d t

)

K
(

g (x)− g (a)
)

2
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+ f

(

b −
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (t )− g (x)
)

d t

)

K
(

g (b)− g (x)
)

2

≥
1

2

[

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)]

× f

(

K
(

g (x)− g (a)
)

a +K
(

g (b)− g (x)
)

b

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
) +

∫x
a K

(

g (x)− g (t )
)

d t −
∫b

x K
(

g (t )− g (x)
)

d t

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)

)

,

which proves the first inequality in (2.1). ���

If g is a function which maps an interval I of the real line to the real numbers, and is both

continuous and injective then we can define the g -mean of two numbers a, b ∈ I as

Mg (a,b) := g−1
(

g (a)+ g (b)

2

)

.

If I =R and g (t )= t is the identity function, then Mg (a,b)= A (a,b) := a+b
2 , the arithmetic

mean. If I = (0,∞) and g (t ) = ln t , then Mg (a,b) = G (a,b) :=
p

ab, the geometric mean. If

I = (0,∞) and g (t ) = 1
t

, then Mg (a,b) = H (a,b) := 2ab
a+b

, the harmonic mean. If I = (0,∞) and

g (t ) = t p , p 6= 0, then Mg (a,b) = Mp (a,b) :=
(

ap+bp

2

)1/p
, the power mean with exponent p .

Finally, if I =R and g (t )= exp t , then

Mg (a,b)= LME (a,b) := ln

(

exp a +expb

2

)

,

the LogMeanExp function.

Corollary 1. With the assumptions of Theorem 1 we have

K

(

g (b)− g (a)

2

)

f





a +b

2
+

∫Mg (a,b)
a K

(

g (a)+g (b)
2 − g (t )

)

d t−
∫b

Mg (a,b) K
(

g (t )− g (a)+g (b)
2

)

d t

2K
(

g (b)−g (a)
2

)





≤
1

2



 f



a +
1

K
(

g (b)−g (a)
2

)

∫Mg (a,b)

a
K

(

g (a)+ g (b)

2
− g (t )

)

d t





+ f



b −
1

K
(

g (b)−g (a)
2

)

∫b

Mg (a,b)
K

(

g (t )−
g (a)+ g (b)

2

)

d t







K

(

g (b)− g (a)

2

)

≤ Sk ,g ,a+,b− f
(

Mg (a,b)
)

≤
1

2

[

f (a)+ f (b)
]

K

(

g (b)− g (a)

2

)

+
1

2

f
(

Mg (a,b)
)

− f (a)

Mg (a,b)−a

∫Mg (a,b)

a
K

(

g (a)+ g (b)

2
− g (t )

)

d t

−
1

2

f (b)− f
(

Mg (a,b)
)

b −Mg (a,b)

∫b

Mg (a,b)
K

(

g (t )−
g (a)+ g (b)

2

)

d t . (2.11)
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For the dual operator S̆k ,g ,a+,b− f we also have the following bounds:

Theorem 2. Assume that the kernel k is defined either on (0,∞) or on [0,∞) with nonnegative

values and integrable on any finite subinterval. Let g be a strictly increasing function on (a,b),

having a continuous derivative g ′ on (a,b) . If f : [a,b]→R is a convex function, then

1

2

[

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)]

× f

(

x +
∫b

x K
(

g (b)− g (t )
)

d t −
∫x

a K
(

g (t )− g (a)
)

d t

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)

)

≤
1

2

[

f

(

x −
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (t )− g (a)
)

d t

)

K
(

g (x)− g (a)
)

+ f

(

x +
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (b)− g (t )
)

d t

)

K
(

g (b)− g (x)
)

]

≤ S̆k ,g ,a+,b− f (x)

≤
1

2

[

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)]

f (x)

+
1

2

[

f (b)− f (x)

b −x

∫b

x
K

(

g (b)− g (t )
)

d t −
f (x)− f (a)

x −a

∫x

a
K

(

g (t )− g (a)
)

d t

]

(2.12)

for x ∈ (a,b) .

Proof. Using (2.2) and (2.3) we have

S̆k ,g ,a+,b− f (x)=
1

2

∫x

a
k

(

g (t )− g (a)
)

g ′ (t ) f (t )d t +
1

2

∫b

x
k

(

g (b)− g (t )
)

g ′ (t ) f (t )d t

≤
1

2

∫x

a
k

(

g (t )− g (a)
)

g ′ (t )

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]

d t

+
1

2

∫b

x
k

(

g (b)− g (t )
)

g ′ (t )

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]

d t (2.13)

for x ∈ (a,b) .

Using the chain rule we have

(

K
(

g (b)− g (t )
))′ =−K ′ (g (b)− g (t )

)

g ′ (t )=−k
(

g (b)− g (t )
)

g ′ (t )

for t ∈ (x,b) and

(

K
(

g (t )− g (a)
))′ = K ′ (g (t )− g (a)

)

g ′ (t )= k
(

g (t )− g (a)
)

g ′ (t )

for t ∈ (a, x) .

Then we have
∫x

a
k

(

g (t )− g (a)
)

g ′ (t )

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]

d t
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=
∫x

a

(

K
(

g (t )− g (a)
))′

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]

d t

= K
(

g (t )− g (a)
)

[

t −a

x −a
f (x)+

x − t

x −a
f (a)

]∣

∣

∣

∣

x

a

−
f (x)− f (a)

x −a

∫x

a
K

(

g (t )− g (a)
)

d t

= K
(

g (x)− g (a)
)

f (x)−
f (x)− f (a)

x −a

∫x

a
K

(

g (t )− g (a)
)

d t

and
∫b

x
k

(

g (b)− g (t )
)

g ′ (t )

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]

d t

=−
∫b

x

(

K
(

g (b)− g (t )
))′

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]

d t

=−
[

K
(

g (b)− g (t )
)

[

t −x

b −x
f (b)+

b − t

b −x
f (x)

]∣

∣

∣

∣

b

x

−
f (b)− f (x)

b −x

∫b

x
K

(

g (b)− g (t )
)

d t

]

= K
(

g (b)− g (x)
)

f (x)+
f (b)− f (x)

b −x

∫b

x
K

(

g (b)− g (t )
)

d t

for x ∈ (a,b) .

From (2.13) we get

S̆k ,g ,a+,b− f (x) ≤
1

2

[

K
(

g (x)− g (a)
)

f (x)−
f (x)− f (a)

x −a

∫x

a
K

(

g (t )− g (a)
)

d t

]

+
1

2

[

K
(

g (b)− g (x)
)

f (x)+
f (b)− f (x)

b −x

∫b

x
K

(

g (b)− g (t )
)

d t

]

=
1

2

[

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)]

f (x)

+
1

2

[

f (b)− f (x)

b −x

∫b

x
K

(

g (b)− g (t )
)

d t −
f (x)− f (a)

x −a

∫x

a
K

(

g (t )− g (a)
)

d t

]

,

which proves the third inequality in (2.12).

By Jensen’s inequality (2.5) we also have

∫x

a
k

(

g (t )− g (a)
)

g ′ (t ) f (t )d t

≥ f

(
∫x

a k
(

g (t )− g (a)
)

g ′ (t ) t d t
∫x

a k
(

g (t )− g (a)
)

g ′ (t )d t

)

∫x

a
k

(

g (t )− g (a)
)

g ′ (t )d t (2.14)

and
∫b

x
k

(

g (b)− g (t )
)

g ′ (t ) f (t )d t

≥ f

(
∫b

x k
(

g (b)− g (t )
)

g ′ (t ) t d t
∫b

x k
(

g (b)− g (t )
)

g ′ (t )d t

)

∫b

x
k

(

g (b)− g (t )
)

g ′ (t )d t (2.15)

for x ∈ (a,b) .
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Observe that
∫x

a
k

(

g (t )− g (a)
)

g ′ (t )d t =
∫x

a

(

K
(

g (t )− g (a)
))′

d t = K
(

g (x)− g (a)
)

and
∫x

a
k

(

g (t )− g (a)
)

g ′ (t ) t d t =
∫x

a

(

K
(

g (t )− g (a)
))′

t d t

= K
(

g (t )− g (a)
)

t
∣

∣

x
a −

∫x

a
K

(

g (t )− g (a)
)

d t

= K
(

g (x)− g (a)
)

x −
∫x

a
K

(

g (t )− g (a)
)

d t

for x ∈ (a,b) .

Also

∫b

x
k

(

g (b)− g (t )
)

g ′ (t )d t =−
∫b

x

(

K
(

g (b)− g (t )
))′

d t =K
(

g (b)− g (x)
)

and

∫b

x
k

(

g (b)− g (t )
)

g ′ (t ) t d t =−
∫b

x

(

K
(

g (b)− g (t )
))′

t d t

=−
[

K
(

g (b)− g (t )
)

t
∣

∣

b
x −

∫b

x
K

(

g (b)− g (t )
)

d t

]

= K
(

g (b)− g (x)
)

x +
∫b

x
K

(

g (b)− g (t )
)

d t

for x ∈ (a,b) .

Therefore, by (2.14) and (2.15) we have

S̆k ,g ,a+,b− f (x)=
1

2

∫x

a
k

(

g (t )− g (a)
)

g ′ (t ) f (t )d t +
1

2

∫b

x
k

(

g (b)− g (t )
)

g ′ (t ) f (t )d t

≥
1

2
f

(

x −
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (t )− g (a)
)

d t

)

K
(

g (x)− g (a)
)

+
1

2
f

(

x +
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (b)− g (t )
)

d t

)

K
(

g (b)− g (x)
)

,

which prove the second inequality in (2.12).

Using the inequality (2.10) for

α =
K

(

g (x)− g (a)
)

2
, β=

K
(

g (b)− g (x)
)

2
and

c = x −
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (t )− g (a)
)

d t ,
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d = x +
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (b)− g (t )
)

d t

we have

f

(

x −
1

K
(

g (x)− g (a)
)

∫x

a
K

(

g (t )− g (a)
)

d t

)

K
(

g (x)− g (a)
)

2

+ f

(

x +
1

K
(

g (b)− g (x)
)

∫b

x
K

(

g (b)− g (t )
)

d t

)

K
(

g (b)− g (x)
)

2

≥
1

2

[

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)]

f

(

x +
∫b

x K
(

g (b)− g (t )
)

d t −
∫x

a K
(

g (t )− g (a)
)

d t

K
(

g (x)− g (a)
)

+K
(

g (b)− g (x)
)

)

,

which proves the first inequality in (2.12). ���

Corollary 2. With the assumptions of Theorem 2, we have

K

(

g (b)− g (a)

2

)

f



Mg (a,b)+

∫b
Mg (a,b) K

(

g (b)− g (t )
)

d t −
∫Mg (a,b)

a K
(

g (t )− g (a)
)

d t

2K
(

g (b)−g (a)
2

)





≤
1

2



 f



Mg (a,b)−
1

K
(

g (b)−g (a)
2

)

∫Mg (a,b)

a
K

(

g (t )− g (a)
)

d t





+ f



Mg (a,b)+
1

K
(

g (b)−g (a)
2

)

∫b

Mg (a,b)
K

(

g (b)− g (t )
)

d t







K

(

g (b)− g (a)

2

)

≤ S̆k ,g ,a+,b− f
(

Mg (a,b)
)

≤ K

(

g (b)− g (a)

2

)

f
(

Mg (a,b)
)

+
1

2

f (b)− f
(

Mg (a,b)
)

b −Mg (a,b)

∫b

Mg (a,b)
K

(

g (b)− g (t )
)

d t

−
1

2

f
(

Mg (a,b)
)

− f (a)

Mg (a,b)−a

∫Mg (a,b)

a
K

(

g (t )− g (a)
)

d t . (2.16)

3. Applications for generalized Riemann-Liouville fractional integrals

If we take k (t ) = 1
Γ(α) tα−1, where Γ is the Gamma function, then

Sk ,g ,a+ f (x) = Iαa+,g f (x) :=
1

Γ (α)

∫x

a

[

g (x)− g (t )
]α−1

g ′ (t ) f (t )d t

for a < x ≤ b and

Sk ,g ,b− f (x) = Iαb−,g f (x) :=
1

Γ (α)

∫b

x

[

g (t )− g (x)
]α−1

g ′ (t ) f (t )d t

for a ≤ x < b, which are the generalized left- and right-sided Riemann-Liouville fractional

integrals of a function f with respect to another function g on [a,b] as defined in [25, p.100].
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We consider the mixed operators

Iαg ,a+,b− f (x) :=
1

2

[

Iαa+,g f (x)+ Iαb−,g f (x)
]

(3.1)

and

Ĭαg ,a+,b− f (x) :=
1

2

[

Iαx+,g f (b)+ Iαx−,g f (a)
]

(3.2)

for x ∈ (a,b) .

We observe that for α> 0 we have

K (t )=
1

Γ (α)

∫t

0
sα−1d s =

tα

αΓ (α)
=

tα

Γ (α+1)
, t ≥ 0.

In what follows we assume that f : [a,b]→R is a convex function on [a,b]. Using the inequal-

ity (2.1) we get

1

2Γ (α+1)

[(

g (x)− g (a)
)α+

(

g (b)− g (x)
)α]

× f

(
(

g (x)− g (a)
)α

a+
(

g (b)− g (x)
)α

b+
∫x

a

(

g (x)− g (t )
)α

d t−
∫b

x

(

g (t )− g (x)
)α

d t
(

g (x)− g (a)
)α+

(

g (b)− g (x)
)α

)

≤
1

2Γ (α+1)

[

f

(

a +
1

(

g (x)− g (a)
)α

∫x

a

(

g (x)− g (t )
)α

d t

)

(

g (x)− g (a)
)α

+ f

(

b −
1

(

g (b)− g (x)
)α

∫b

x

(

g (t )− g (x)
)α

d t

)

(

g (b)− g (x)
)α

]

≤ Iαg ,a+,b− f (x)

≤
1

2Γ (α+1)

[(

g (x)− g (a)
)α

f (a)+
(

g (b)− g (x)
)α

f (b)
]

+
1

2Γ (α+1)

[

f (x)− f (a)

x −a

∫x

a

(

g (x)− g (t )
)α

d t −
f (b)− f (x)

b −x

∫b

x

(

g (t )− g (x)
)α

d t

]

(3.3)

while from (2.12) we get

1

2Γ (α+1)

[(

g (x)− g (a)
)α+

(

g (b)− g (x)
)α]

× f

(

x +
∫b

x

(

g (b)− g (t )
)α

d t −
∫x

a

(

g (t )− g (a)
)α

d t
(

g (x)− g (a)
)α+

(

g (b)− g (x)
)α

)

≤
1

2Γ (α+1)

[

f

(

x −
1

(

g (x)− g (a)
)α

∫x

a

(

g (t )− g (a)
)α

d t

)

(

g (x)− g (a)
)α

+ f

(

x +
1

(

g (b)− g (x)
)α

∫b

x

(

g (b)− g (t )
)α

d t

)

(

g (b)− g (x)
)α

]

≤ Ĭαg ,a+,b− f (x)
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≤
1

2Γ (α+1)

[(

g (x)− g (a)
)α+

(

g (b)− g (x)
)α]

f (x)

+
1

2Γ (α+1)

[

f (b)− f (x)

b −x

∫b

x

(

g (b)− g (t )
)α

d t −
f (x)− f (a)

x −a

∫x

a

(

g (t )− g (a)
)α

d t

]

(3.4)

for x ∈ (a,b) .

Also, by (2.11) and (2.16) we have

1

2αΓ (α+1)

(

g (b)− g (a)
)α

× f







a +b

2
+

∫Mg (a,b)
a

(

g (a)+g (b)
2 − g (t )

)α
d t−

∫b
Mg (a,b)

(

g (t )− g (a)+g (b)
2

)α
d t

21−α (

g (b)− g (a)
)α







≤
1

2α+1Γ (α+1)






f






a +

1
(

g (b)−g (a)
2

)α

∫Mg (a,b)

a

(

g (a)+ g (b)

2
− g (t )

)α

d t







+ f






b −

1
(

g (b)−g (a)
2

)α

∫b

Mg (a,b)

(

g (t )−
g (a)+ g (b)

2

)α

d t













(

g (b)− g (a)
)α

≤ Iαg ,a+,b− f
(

Mg (a,b)
)

≤
1

2α+1Γ (α+1)

[

f (a)+ f (b)
](

g (b)− g (a)
)α

+
1

2Γ (α+1)

f
(

Mg (a,b)
)

− f (a)

Mg (a,b)−a

∫Mg (a,b)

a

(

g (a)+ g (b)

2
− g (t )

)α

d t

−
1

2Γ (α+1)

f (b)− f
(

Mg (a,b)
)

b −Mg (a,b)

∫b

Mg (a,b)

(

g (t )−
g (a)+ g (b)

2

)α

d t (3.5)

and
1

2αΓ (α+1)

(

g (b)− g (a)
)α

× f



Mg (a,b)+

∫b
Mg (a,b)

(

g (b)− g (t )
)α

d t −
∫Mg (a,b)

a

(

g (t )− g (a)
)α

d t

21−α (

g (b)− g (a)
)





≤
1

2α+1Γ (α+1)






f






Mg (a,b)−

1
(

g (b)−g (a)
2

)α

∫Mg (a,b)

a

(

g (t )− g (a)
)α

d t







+ f






Mg (a,b)+

1
(

g (b)−g (a)
2

)α

∫b

Mg (a,b)

(

g (b)− g (t )
)α

d t













(

g (b)− g (a)
)α

≤ Ĭαg ,a+,b− f
(

Mg (a,b)
)

≤
1

2αΓ (α+1)

(

g (b)− g (a)
)α

f
(

Mg (a,b)
)
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+
1

2Γ (α+1)

f (b)− f
(

Mg (a,b)
)

b −Mg (a,b)

∫b

Mg (a,b)

(

g (b)− g (t )
)α

d t

−
1

2Γ (α+1)

f
(

Mg (a,b)
)

− f (a)

Mg (a,b)−a

∫Mg (a,b)

a

(

g (t )− g (a)
)α

d t . (3.6)

If we take g (t )= t , t ∈ [a,b] in (3.3) and (3.4), then we get

1

2Γ (α+1)

[

(x −a)α+ (b −x)α
]

f

(

aα+x
α+1 (x −a)α+ x+αb

α+1 (b −x)α

(x −a)α+ (b −x)α

)

≤
1

2Γ (α+1)

[

f
(aα+x

α+1

)

(x −a)α+ f

(

x +αb

α+1

)

(b −x)α
]

≤ Jαa+,b− f (x)

≤
1

2Γ (α+1)

[

(x −a)α f (a)+ (b −x)α f (b)
]

+
1

2Γ (α+2)

[(

f (x)− f (a)
)

(x −a)α−
(

f (b)− f (x)
)

(b −x)α
]

(3.7)

while from (2.12) we get

1

2Γ (α+1)

[

(x −a)α+ (b −x)α
]

f

(

αx+a
α+1 (x −a)α+ b+αx

α+1 (b −x)α

(x −a)α+ (b −x)α

)

≤
1

2Γ (α+1)

[

f
(αx +a

α+1

)

(x −a)α+ f

(

b +αx

α+1

)

(b −x)α
]

≤ J̆αa+,b− f (x)

≤
1

2Γ (α+1)

[

(x −a)α+ (b −x)α
]

f (x)

+
1

2Γ (α+2)

[(

f (b)− f (x)
)

(b −x)α−
(

f (x)− f (a)
)

(x −a)α
]

(3.8)

for x ∈ (a,b) , where

Jαa+,b− f (x) :=
1

2

[

Jαa+ f (x)+ Jαb− f (x)
]

and

J̆αa+,b− f (x) :=
1

2

[

Jαx+ f (b)+ Jαx− f (a)
]

for x ∈ (a,b) .

If we take x = a+b
2 in (3.7) and (3.8), then we get, after required calculations

(b −a)α

2αΓ (α+1)
f

(

a +b

2

)

≤
(b −a)α

2α+1Γ (α+1)

[

f

(

(2α+1) a +b

2(α+1)

)

+ f

(

a + (2α+1) b

2(α+1)

)]

≤ Jαa+,b− f

(

a +b

2

)

≤
(b −a)α

2αΓ (α+2)
f

(

a +b

2

)

+
α(b −a)α

2αΓ (α+2)

f (a)+ f (b)

2
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≤
(b −a)α

2αΓ (α+1)

f (a)+ f (b)

2
(3.9)

and
(b −a)α

2αΓ (α+1)
f

(

a +b

2

)

≤
(b −a)α

2α+1Γ (α+1)

[

f

(

(α+2) a +αb

2(α+1)

)

+ f

(

αa + (α+2) b

2(α+1)

)]

≤ J̆αa+,b− f

(

a +b

2

)

≤
α(b −a)α

2αΓ (α+2)
f

(

a +b

2

)

+
(b −a)α

2αΓ (α+2)

f (b)+ f (a)

2

≤
(b −a)α

2αΓ (α+1)

f (a)+ f (b)

2
. (3.10)

The last inequalities follow by the fact that

f

(

a +b

2

)

≤
f (b)+ f (a)

2
.
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