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NONLINEAR BOUNDARY VALUE PROBLEM FOR

FRACTIONAL DIFFERENTIAL EQUATIONS WITH ADVANCED

ARGUMENTS UNDER INTEGRAL BOUNDARY CONDITIONS

BAKR HUSSEIN RIZQAN AND DNYANOBA B. DHAIGUDE

Abstract. In this paper, we prove the existence and uniqueness of solutions of fractional

differential equation involving Riemann-Liouville differential operator of order α ∈ (0,1),

with advanced argument under integral boundary conditions. The uniqueness of the

solution is obtained by using a Banach fixed point theorem with weighted norm. By us-

ing the comparison result and applying monotone iterative technique, the existence and

uniqueness results are obtained.

1. Introduction

In this paper, we investigate the existence and uniqueness of the solution of Riemann-

Liouville fractional differential equation with advanced argument under integral boundary

conditions:










Dα
0+u(t ) = f (t ,u(t ),u(θ(t ))), t ∈ J = (0,T ], T > 0,

u(0) = λ

∫T

0
u(s)d s +d , d ∈R,

(1.1)

where λ is 1 or −1 and f (t ,u(t ),u(θ(t ))) ∈ C (J ×R×R,R) , θ ∈ C (J , J) , t ≤ θ(t ) ≤ T, t ∈ J and

Dα
0+ is the Riemann-Liouville fractional derivative of order α (0 <α< 1).

Recently in 2008, Wang and Xie [17] have studied the problem (1.1) without advanced

argument and with strong assumption on a function f that f is Hölder continuous and ob-

tained existence uniqueness results. Further Nanware and Dhaigude [14], have studied the

problem of Wang and Xie without assuming the strong condition of locally Hölder continu-

ity on a function f and developed the monotone iterative method for proving existence and

uniqueness results.
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Many researchers have paid an attention and published series of papers to study the exis-

tence and uniqueness of solution of nonlinear fractional differential equations with advanced

and deviating arguments (see [1, 3, 5, 7, 8, 16]). The monotone technique is an interesting and

powerful tool to deal with existence results for fractional differential equations. Furthermore,

the monotone technique combined with the notion of upper and lower solutions provides

an effective mechanism to prove existence results for nonlinear differential equations. For

details (see [4, 6, 11, 12, 13, 14]).

The paper is organized as follows: In Section 2, we present some useful definitions and

lemmas. In Section 3, we prove the uniqueness of solution for the problem (1.1) by using

Banach fixed point theorem. In Section 4, we develop the monotone iterative technique and

then apply it to obtain existence and uniqueness results for the problem (1.1). In Section 5, we

study the weakly coupled lower and upper solutions of the problem (1.1) and obtain existence

and uniqueness of solution for the problem (1.1) when λ is 1 or −1.

2. Preliminaries

For the convenience of the readers, we present some definitions and basic Lemmas from

the theory of fractional calculus. Let C1−α (J ,R) =
{

u ∈C ((0,T ],R) : t 1−αu(t )∈C (J ,R)
}

with

the norm ‖u‖C1−α
= max

t∈J

∣

∣t 1−αu(t )
∣

∣. Obviously C1−α (J ,R) is a Banach space.

Definition 2.1. [9, 15] The Riemann-Liouville fractional integral of order α> 0 for a continu-

ous function u(t )∈C ([0,T ]) is defined as

Iα0+u(t )=
1

Γ(α)

∫t

0
(t − s)α−1u(s)d s,

provided the integral exists. Γ(α) denotes Euler’s Gamma function.

Definition 2.2 ([9, 15]). For function I n−α
0+ u(t ) ∈ AC n [0,T ] the Riemann-Liouville derivative

of order α (n −1 <α≤ n) can be written as

Dα
0+u(t )=

(

d

d t

)n
(

I n−α
0+ u(t )

)

=
1

Γ(n −α)

(

d

d t

)n ∫t

0
(t − s)n−α−1u(s)d s, t > 0.

Lemma 2.1 ([9]). Let u(t )∈C n[0,T ],α ∈ (n −1,n) , n ∈N. Then for t ∈ J ,

Iα0+Dα
0+u(t )=u(t )−

n−1
∑

k=0

t k

k !
u(k)(0).

Now we state the following lemma without proof.

Lemma 2.2 ([2]). Let m ∈C1−α(J ,R) and for any t1 ∈ (0,T ], we have

m(t1) = 0 and m(t ) ≤ 0 for 0 ≤ t ≤ t1.

Then it follows that,

Dα
0+m(t1) ≥ 0.
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Lemma 2.3. Function u(t )∈C1−α (J ,R) is a solution of the problem (1.1) if and only if u(t ) is a

solution of the integral equation

u(t )=λ

∫T

0
u(s)d s +d +

1

Γ(α)

∫t

0
(t − s)−α f (s,u(s),u(θ(s)))d s.

Proof. The proof is easy, so we omit it. ���

Lemma 2.4. Let {uǫ(t )} be a family of continuous functions defined on J, for each ǫ> 0, which

satisfies










Dα
0+uǫ(t ) = f (t ,uǫ(t ),uǫ(θ(t ))),

uǫ(0) = λ

∫T

0
uǫ(s)d s +d ,

(2.1)

where | f (t ,uǫ(t ),uǫ(θ(t )))| ≤ M for t ∈ J . Then the family {uǫ(t )} is equicontinuous on J.

Proof. We need to show that the family {uǫ(t )} is equicontinuous on J . Let 0 ≤ t1 < t2 ≤ T .

Note that
∫t2

t1

(t − s)α−1d s =

∫t2−t1

0
(t2 − t1 − s)α−1d s = (t2 − t1)α

Γ(α)

Γ(α+1)
. (2.2)

Then, in view of (2.2), we have

|uǫ(t1)−uǫ(t2)| ≤
M

Γ(α)

(
∫t1

0
[(t1 − s)α−1

− (t2 − s)α−1]d s +

∫t2

t1

(t2 − s)α−1d s

)

≤
M

Γ(α+1)

[

tα1 − tα2 +2(t2 − t1)α
]

≤
2M

Γ(α+1)
(t2 − t1)α < ǫ

provided that |t2 − t1| <δ=

[

ǫΓ(α+1)
2M

]
1
α

, proving the result. ���

3. Uniqueness of solution

In this section, we discuss the uniqueness of solution of the problem (1.1) for Riemann-

Liouville fractional differential equation with advanced argument under integral boundary

conditions. We introduce the following assumption for later use.

(H1) There exists nonnegative constants M , N such that

∣

∣ f (t ,u1,u2)− f (t ,υ1,υ2)
∣

∣≤ M |u1 −υ1|+N |u2 −υ2| , ∀t ∈ J , ui ,υi ∈R, i = 1,2

Theorem 3.1. Let (H1) hold and f ∈C (J ×R×R,R). If λ<
Γ(2α)−Γ(α)T α(M+N)

TΓ(2α) , then the problem

(1.1) has a unique solution.
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Proof. Define an operator T : C1−α(J ,R) →C1−α(J ,R) as

Tu(t )=λ

∫T

0
u(s)d s +d +

1

Γ(α)

∫t

0
(t − s)α−1 f (s,u(s),u(θ(s))d s.

Using assumption (H1), for any u,υ∈C1−α(J ,R), we have

‖Tu −Tυ‖C1−α
= max

t∈J

∣

∣t 1−α [(Tu)(t )− (Tυ)(t )]
∣

∣

≤ max
t∈J

t 1−αλ

∫T

0
|u(s)−υ(s)|d s +max

t∈J

t 1−α

Γ(α)

∫t

0
(t − s)α−1

×
∣

∣ f (s,u(s),u(θ(s)))− f (s,υ(s),υ(θ(s)))
∣

∣d s

≤ λ

∫T

0
d s ‖u −υ‖C1−α

+max
t∈J

t 1−α

Γ(α)

∫t

0
(t − s)α−1

× [|M (u(s)−υ(s))|+ |N (u(θ(s))−υ(θ(s)))|]d s

≤ λT ‖u −υ‖C1−α
+max

t∈J

t 1−α

Γ(α)

∫t

0
(t − s)α−1

×

[

M sα−1
∥

∥u − y
∥

∥

C1−α
+N (θ(s))α−1

∥

∥u − y
∥

∥

C1−α

]

d s

≤ λT ‖u −υ‖C1−α
+max

t∈J

(M +N )t 1−α

Γ(α)

∫t

0
(t − s)α−1sα−1

‖u −υ‖C1−α
d s

≤ λT ‖u −υ‖C1−α
+max

t∈J

(M +N )tα

Γ(α)

∫1

0
(1−η)α−1ηα−1dη‖u −υ‖C1−α

≤

[

λT +
Γ(α)T α

Γ(2α)
(M +N )

]

‖u −υ‖C1−α
.

Therefore, ‖Tu −Tυ‖C1−α
≤ ‖u −υ‖C1−α

and T is a contraction operator on C1−α(J ,R). Conse-

quently, by the contraction mapping theorem T has a unique fixed point u(t ), i.e. u(t ) is a

unique solution of the problem (1.1). The proof is complete. ���

Lemma 3.1. Suppose that M , N are constants and σ ∈C1−α(J ,R). Function u ∈C1−α(J ,R) is a

unique solution of the following linear problem










Dα
0+u(t )+Mu(t )+Nu(θ(s))=σ(t ), t ∈ J , 0 <α< 1,

u(0)=λ

∫T

0
u(s)d s +d , d ∈R,

(3.1)

if u is a unique solution of the following integral equation

u(t )=λ

∫T

0
u(s)d s +d +

1

Γ(α)

∫t

0
(t − s)α−1 [−Mu(s)−Nu(θ(s))+σ(s)]d s.

Proof. By the proof of Theorem 3.1, we see the solving (3.1) is equivalent to solving a fixed

point problem with operator Tσ defined by

Tσu(t )=λ

∫T

0
u(s)d s +d +

1

Γ(α)

∫t

0
(t − s)α−1 [−Mu(s)−Nu(θ(s))+σ(s)]d s.

For any σ ∈C1−α(J ,R). Then the operator Tσ has a unique fixed point. ���



NONLINEAR BOUNDARY VALUE PROBLEM 105

4. Monotone iterative technique

In this section, we mainly investigate the existence and uniqueness of solution of the

problem (1.1) for fractional differential equation with advanced argument by monotone iter-

ative technique. We need the following comparison result which play a very important role in

further discussion.

Lemma 4.1. Let α ∈ (0,1), θ(t ) ∈C (J , J) and t ≤ θ(t ) on J. Suppose that p ∈C1−α(J ,R) satisfies

the inequalities






Dα
0+p(t ) ≤ −M p(t )−N p(θ(t ))≡ F p(t ), t ∈ J

p(0) ≤ 0,
(4.1)

where M and N ≥ 0. If

−T α(M +N )Γ(1−α) < 1,

then p(t )≤ 0 for all t ∈ J .

Proof. Put pε(t )= p(t )−ε, ε> 0. Then

Dα
0+pε(t ) = Dα

0+p(t )−Dα
0+ε

≤ F p(t )−
ε

tαΓ(1−α)

≤ −M pε(t )−N pε(θ(t ))+ε[−(M +N )− (1/(tαΓ(1−α)))]

< F pε(t ),

and

pε(0) = p(0)−ε< 0.

We prove that pε(t ) < 0 on J . Assume that it is not true. It means there exists t1 ∈ (0,T ] such

that pε(t1) = 0 and pε(t ) < 0, t ∈ (0, t1). In view of Lemma 2.2 we have Dα
0+pε(t1) ≥ 0. It follows

that

0 < F pε(t1) =−N pε(θ(t1)).

If N = 0, then 0 < 0, so it is a contradiction. If −N < 0, then pε(θ(t1)) < 0, it is a contradiction

too. This proves that pε(t ) < 0 on J . So p(t )−ε < 0 on J . Now, if ε→ 0, we get required

result. ���

Definition 4.1. A pair of functions (υ0(t ), w0(t )) in C1−α(J ,R) is called lower and upper solu-

tions of the problem (1.1) for λ= 1 if

Dα
0+υ0(t ) ≤ f (t ,υ0(t ),υ0(θ(t ))) , υ0(0) ≤

∫T

0
υ0(s)d s +d ,

Dα
0+w0(t ) ≥ f (t , w0(t ), w0(θ(t ))) , w0(0) ≥

∫T

0
w0(s)d s +d .
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Theorem 4.1. Assume that:

(i) functions υ0(t ) and w0(t ) in C1−α(J ,R) are lower and upper solutions of the problem (1.1)

such that υ0(t )≤ w0(t ) on J ,

(ii) f (t ,u(t ),u(θ(t )))∈C (J ×R×R,R) , θ ∈C (J , J) , t ≤ θ(t )≤ T, t ∈ J ,

(iii) there exists nonnegative constants M , N such that function f satisfies the condition

f (t ,υ1,υ2)− f (t ,u1,u2) ≥−M (υ1 −u1)−N (υ2 −u2),

for υ0(t ) ≤u1 ≤ υ1 ≤ w0(t ), υ0(θ(t )) ≤ u2 ≤ υ2 ≤ w0(θ(t )).

Then there exists monotone sequences {υn(t )} and {wn(t )} in C1−α(J ,R) such that

{υn(t )} → υ(t ) and {wn(t )} → w (t ) as n →∞

where υ(t ) and w (t ) are minimal and maximal solutions of the problem (1.1) respectively,

and υ(t ) ≤u(t )≤ w (t ) on J.

Proof. We consider the following linear problem:











Dα
0+u(t ) = −Mu(t )−Nu(θ(t ))+σ(t ),

u(0) =

∫T

0
u(s)d s +d ,

(4.2)

where σ(t )= f
(

t ,η(t ),η(θ(t ))
)

+Mη(t )+Nη(θ(t )) and η ∈C1−α(J ,R).

Obviously, by Lemma 3.1, the linear problem (4.2) has a unique solution u(t ).

We next define the iterates as follows:

{

Dα
0+υn+1(t ) = f (t ,υn(t ),υn(θ(t )))−M [υn+1(t )−υn(t )]−N [υn+1(θ(t ))−υn (θ(t ))] ,

υn+1(0) =
∫T

0 υn(s)d s +d ,
(4.3)

and
{

Dα
0+ wn+1(t ) = f (t , wn(t ), wn(θ(t )))−M [wn+1(t )−wn(t )]−N [wn+1(θ(t ))−wn(θ(t ))] ,

wn+1(0) =
∫T

0 wn(s)d s +d ,
(4.4)

Obviously, the above arguments imply the existence of the unique solutions υn+1(t ) and

wn+1(t ) of the problems (4.3), (4.4). By putting n = 0 in the problems (4.3), (4.4), we get the

existence of solutions υ1(t ) and w1(t ). We show that υ0(t ) ≤ υ1(t ) ≤ w1(t ) ≤ w0(t ). For this,

consider p(t )= υ0(t )−υ1(t ) on J , and υ0(t ) is the lower solution of the problem (1.1). Then

Dα
0+p(t ) = Dα

0+υ0(t )−Dα
0+υ1(t )

≤ −M [υ0(t )−υ1(t )]−N [υ0(θ(t ))−υ1(θ(t ))]

≤ −M p(t )−N p(θ(t )),
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and

p(0) = υ0(0)−υ1(0) ≤

∫T

0
υ0(s)d s +d −

∫T

0
υ0(s)d s −d = 0.

By Lemma 4.1, we get p(t )≤ 0, implies that υ0(t )≤ υ1(t ) on J . Similarly, we can prove w1 ≤ w0

and υ1(t )≤ w1(t ) on J . Thus υ0(t ) ≤ υ1(t )≤ w1(t ) ≤ w0(t ). Assume that for some k > 1,

υk−1(t ) ≤ υk (t ) ≤ wk (t )≤ wk−1(t ) on J .

We claim that υk (t ) ≤ υk+1(t ) ≤ wk+1(t ) ≤ wk(t ) on J . To prove the claim, set p(t ) = υk (t )−

υk+1(t ), we have

Dα
0+p(t ) = Dα

0+υk
(t )−Dα

0+υk+1
(t )

≤ −M [υk (t )−υk+1(t )]−N [υn(θ(t ))−υk+1(θ(t ))]

≤ −M p(t )−N p(θ(t )),

and

p(0) = υk (0)−υk+1(0) =

∫T

0
υk−1(s)d s −

∫T

0
υk (s)d s

≤

∫T

0
υk (s)d s −

∫T

0
υk (s)d s = 0.

By Lemma 4.1, we get p(t ) ≤ 0, implies that υk (t ) ≤ υk+1(t ) on J . Similarly, we can prove that

wk+1(t ) ≤ wk(t ) and υk+1(t ) ≤ wk+1(t ) on J . By the principle of mathematical induction, we

have

υ0 ≤ υ1 ≤ υ2 ≤ ·· · ≤ υk ≤ wk ≤ ·· · ≤ w2 ≤ w1 ≤ w0 on J . (4.5)

Obviously, the sequences {υn (t )} and {wn(t )} are uniformly bounded. We observe that {Dα
0+υn}

and {Dα
0+ wn} are also uniformly bounded on J , in view of the relations (4.3) and (4.4). Then

using Lemma 2.4 we can conclude that sequences {υn (t )},{wn(t )} are equicontinuous. Hence

by the Ascoli-Arzela theorem, the sequences {υn(t )} and {wn(t )} converge uniformly to υ and

w, respectively on J . If n →∞, then we see that υ, w are continuous solutions of the problem

(1.1).

Now, we prove that υ(t ) and w (t ) are the minimal and maximal solutions of the problem

(1.1). Let u(t ) be any solution of the problem (1.1) different from υ(t ) and w (t ), so that there

exists k such that υk (t )≤ u(t )≤ wk (t ) on J . Set p(t )= υk+1(t )−u(t ). we have

Dα
0+p(t ) = Dα

0+υk+1(t )−Dα
0+u(t )

≤ −M [υk+1(t )−u(t )]−N [υk+1(θ(t ))−u(θ(t ))]

≤ −M p(t )−N p(θ(t )),

and

p(0) = υk+1(0)−u(0) =

∫T

0
[υk (s)−u(s)]d s ≤ 0.
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By Lemma 4.1, we get p(t ) ≤ 0, implies that υk+1(t )≤ u(t ) for all k on J . Similarly we can

prove u(t )≤ wk+1(t ) for all k on J . Since υ0(t )≤ u(t )≤ u0(t ) on J . By induction it follows that

υk (t ) ≤ u(t ) and u(t ) ≤ wk (t ) for all k . Thus υk (t ) ≤ u(t ) ≤ wk(t ) on J . Taking limit as k →∞,

we get υ(t ) ≤ u(t ) ≤ w (t ) on J . The functions υ(t ) and w (t ) are the minimal and maximal

solutions to the problem (1.1). The proof is complete. ���

Next, we prove the uniqueness of solution of the problem (1.1) as follows:

Theorem 4.2. Assume that:

(i) functions υ0(t ) and w0(t ) in C1−α(J ,R) are lower and upper solutions of the problem (1.1)

such that υ0(t )≤ w0(t ) on J ,

(ii) f (t ,u(t ),u(θ(t )))∈C (J ×R×R,R) , θ ∈C (J , J) , t ≤ θ(t )≤ T, t ∈ J ,

(iii) there exists nonnegative constants M , N such that function f satisfies the condition

f (t ,υ1,υ2)− f (t ,u1,u2)≤ M (υ1 −u1)+N (υ2 −u2) , (4.6)

for υ0(t ) ≤u1 ≤ υ1 ≤ w0(t ), υ0(θ(t )) ≤ u2 ≤ υ2 ≤ w0(θ(t )).

(iv) lim
n→∞

‖wn(t )−υn(t )‖ = 0, where the norm is defined by
∥

∥ f
∥

∥ =
∫T

0

∣

∣ f (s)
∣

∣d s then the prob-

lem (1.1) has a unique solution.

Proof. Since υ(t ) ≤ w (t ), it is sufficient to prove υ(t )≥ w (t ). Consider p(t )= w (t )−υ(t ), then

Dα
0+p(t ) = Dα

0+w (t )−Dα
0+υ(t )

≤ M [w (t )−υ(t )]+N [w (θ(t ))−υ(θ(t ))]

≤ M p(t )+N p(θ(t )),

and

p(0) = w (0)−υ(0) =

∫T

0
[w (s)−υ(s)]d s

= ‖w (0)−υ(0)‖ = lim
n→∞

‖wn(0)−υn (0)‖ = 0.

By Lemma 4.1, we get p(t ) ≤ 0, implies that w (t ) ≤ υ(t ). Hence υ(t ) = w (t ) is the unique

solution of the problem (1.1) on J . ���

5. Weakly coupled lower and upper solutions

In this section, we investigate the existence and uniqueness of solution of the problem

(1.1) by weakly coupled lower and upper solutions.

Definition 5.1. A pair of functions (υ0(t ), w0(t )) in C1−α(J ,R) is called weakly coupled lower

and upper solutions of the problem (1.1) for λ=−1 if

Dα
0+υ0(t )≤ f (t ,υ0(t ),υ0(θ(t ))) , υ0(0) ≤−

∫T

0
w0(s)d s +d ,
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Dα
0+w0(t )≥ f (t , w0(t ), w0(θ(t ))) , w0(0) ≥−

∫T

0
υ0(s)d s +d .

Theorem 5.1. Assume that:

(i) functions υ0(t ) and w0(t ) in C1−α(J ,R) are weakly coupled lower and upper solutions of

the problem (1.1) with λ=−1 such that υ0(t ) ≤ w0(t ) on J ,

(ii) f (t ,u(t ),u(θ(t )))∈C (J ×R×R,R) , θ ∈C (J , J) , t ≤ θ(t ) ≤T, t ∈ J ,

(iii) there exists nonnegative constants M , N such that function f satisfies the condition

f (t ,υ1,υ2)− f (t ,u1,u2) ≥−M (υ1 −u1)−N (υ2 −u2),

for υ0(t )≤ u1 ≤ υ1 ≤ w0(t ), υ0(θ(t )) ≤u2 ≤ υ2 ≤ w0(θ(t )).

Then there exists monotone sequences {υn (t )} and {wn(t )} in C1−α(J ,R) such that

{υn (t )} → υ(t ) and {wn(t )} → w (t ) as n →∞

where υ(t ) and w (t ) are minimal and maximal solutions of the problem (1.1) with λ=−1,

respectively; and υ(t )≤ u(t )≤ w (t ) on J.

Proof. We consider the following linear problem:







Dα
0+u(t ) = −Mu(t )−Nu(θ(t ))+σ(t )

u(0) = −

∫T

0
u(s)d s +d ,

(5.1)

where σ(t ) = f
(

t ,η(t ),η(θ(t ))
)

−Mη(t )−Nη(θ(t )) and η ∈C1−α(J ,R).

The unique of solution of the linear problem (5.1) can be proved as in Lemma 3.1.

Define the iterates as follows:






Dα
0+υn+1(t ) = f (t ,υn(t ),υn(θ(t )))−M [υn+1(t )−υn (t )]−N [υn+1(θ(t ))−υn (θ(t ))] ,

υn+1(0) = −
∫T

0 w n(s)d s +d ,
(5.2)

and






Dα
0+wn+1(t ) = f (t , wn(t ), wn(θ(t )))−M [wn+1(t )−wn(t )]−N [wn+1(θ(t ))−wn(θ(t ))] ,

wn+1(0) = −
∫T

0 υn(s)d s +d ,
(5.3)

Obviously, the above arguments imply the existence of the unique solutionsυn+1 (t ) and wn+1(t )

for the problems (5.2), (5.3). By setting n = 0 in the problems (5.2), (5.3), we get the existence

of solutions υ1(t ) and w1(t ). We show that υ0(t ) ≤ υ1(t ) ≤ w1(t ) ≤ w0(t ). For this, consider

p(t )= υ0(t )−υ1(t ) on J , and υ0(t ) is the lower solution of the problem (1.1). Then

Dα
0+p(t ) = Dα

0+υ0
(t )−Dα

0+υ1
(t )
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≤ −M [υ0(t )−υ1(t )]−N [υ0(θ(t ))−υ1(θ(t ))]

≤ −M p(t )−N p(θ(t )),

and

p(0) = υ0(0)−υ1(0) ≤−

∫T

0
w0(s)d s +d +

∫T

0
w0(s)d s −d = 0.

By Lemma 4.1, we get p(t )≤ 0, implies that υ0(t )≤ υ1(t ) on J . Similarly, we can prove w1 ≤ w0

and υ1(t )≤ w1(t ) on J . Thus υ0(t ) ≤ υ1(t )≤ w1(t ) ≤ w0(t ). Assume that for some k > 1,

υk−1(t )≤ υk (t )≤ wk(t ) ≤ wk−1(t ) on J .

We claim that υk (t ) ≤ υk+1(t ) ≤ wk+1(t ) ≤ wk (t ) on J . To prove the claim, set p(t ) = υk (t )−

υk+1(t ), we have

Dα
0+ p(t ) = Dα

0+υk
(t )−Dα

0+υk+1
(t )

≤ −M [υk (t )−υk+1(t )]−N [υn(θ(t ))−υk+1(θ(t ))]

≤ −M p(t )−N p(θ(t )).

and

p(0) = υk (0)−υk+1(0) =−

∫T

0
wk−1(s)d s +

∫T

0
wk (s)d s

≤ −

∫T

0
wk (s)d s +

∫T

0
wk(s)d s = 0.

By Lemma 4.1, we get p(t ) ≤ 0, implies that υk (t ) ≤ υk+1(t ) on J . Similarly, we can prove that

υk+1(t ) ≤ wk+1(t ) and wk+1(t ) ≤ wk(t ) on J . By the principle of mathematical induction, we

have

υ0 ≤ υ1 ≤ υ2 ≤ ·· · ≤ υk ≤ wk ≤ ·· · ≤ w2 ≤ w1 ≤ w0 on J . (5.4)

Obviously, the sequences {υn (t )} and {wn(t )} are uniformly bounded. We observe that {Dα
0+υn}

and {Dα
0+wn} are also uniformly bounded on J , in view of the relations (5.2) and (5.3). Then us-

ing Lemma 2.4 we can conclude the equicontinuous of the sequences {υn(t )}, {wn(t )}. Hence

by the Ascoli-Arzela theorem, the sequences {υn(t )} and {wn(t )} converge uniformly to υ and

w, respectively on J . If n →∞, then we see that υ, w are continuous solutions of the problem

(1.1) with λ=−1. Now, we prove that υ(t ) and w (t ) are the minimal and maximal solutions of

the problem (1.1) with λ=−1. Let u(t ) be any solution of the problem (1.1) different from υ(t )

and w (t ), so that there exists k such that υk (t ) ≤ u(t ) ≤ wk (t ) on J . Set p(t ) = υk+1(t )−u(t ).

we have

Dα
0+p(t ) = Dα

0+υk+1(t )−Dα
0+u(t )

≤ −M [υk+1(t )−u(t )]−N [υk+1(θ(t ))−u(θ(t ))]

≤ −M p(t )−N p(θ(t )),
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and

p(0) = υk+1(0)−u(0) =−

∫T

0
[wk(s)−u(s)]d s ≤ 0.

By Lemma 4.1, we get p(t ) ≤ 0, implies that υk+1(t ) ≤u(t ) for all k on J . Similarly we can

prove u(t )≤ wk+1(t ) for all k on J . Since υ0(t ) ≤ u(t )≤ u0(t ) on J . By induction it follows that

υk (t )≤ u(t ) and u(t )≤ wk (t ) for all k . Thus υk (t ) ≤ u(t )≤ wk(t ) on J . Taking limit as k →∞, it

follows that υ(t ) ≤ u(t )≤ w (t ) on J . The functions υ(t ) and w (t ) are the minimal and maximal

solutions to the problem (1.1) with λ=−1. The proof is complete. ���

Next, we prove the uniqueness of solutions of the problem (1.1) as follows:

Theorem 5.2. Assume that:

(i) functions υ0(t ) and w0(t ) in C1−α(J ,R) are weakly coupled lower and upper solutions of

the problem (1.1) with λ=−1 such that υ0(t ) ≤ w0(t ) on J,

(ii) f (t ,u(t ),u(θ(t )))∈C (J ×R×R,R) , θ ∈C (J , J) , t ≤ θ(t ) ≤T, t ∈ J ,

(iii) there exists nonnegative constants M , N such that function f satisfies the condition

f (t ,υ1,υ2)− f (t ,u1,u2) ≤ M (υ1 −u1)+N (υ2 −u2) ,

for υ0(t )≤ u1 ≤ υ1 ≤ w0(t ), υ0(θ(t )) ≤u2 ≤ υ2 ≤ w0(θ(t )).

(iv) lim
n→∞

‖wn(t )−υn (t )‖ = 0, where the norm is defined by
∥

∥ f
∥

∥ =
∫T

0

∣

∣ f (s)
∣

∣d s then the prob-

lem (1.1) has a unique solution with λ=−1.

Proof. It is as in Theorem 4.2. ���
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