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THE OPTIMAL DISPERSAL STRATEGY:

A TWO-PATCH MODEL WITH TRAVEL LOSS

CHANG-HONG WU

Abstract. The dispersal of organisms plays an important role in determining the dy-

namics of ecological models. Ecologically, it is of interest in understanding how disper-

sal strategy influences the distribution of populations. An ideal free distribution (IFD)

of populations has been used to predict the distribution of organisms among patches,

where a key assumption is to assume that species can move freely between patches with-

out paying any cost. If instead one assumes that there are losses when species moves

from one patch to another, then ideal free distributions may not appear. In this note,

we examine a two-patch resident-mutant model with travel loss and predict the optimal

dispersal strategy for resident and mutant. Moreover, such strategy which produces a

non-IFD is evolutionarily stable. Some same and different features of patch models with

travel loss are discussed.

1. Introduction

How organisms select their habitats is a fundamental issue in ecology. A classical theory,

ideal free distribution (IFD) theory, proposed by Fretwell and Lucas [15] has been used to

predict the distribution of organisms among patches, that is, at steady state individuals in

each patch have the same fitness (all populations of species are at carrying capacity). IFD has

been supported by some experiments in laboratory (Milinski [32]; Regelmann [35]; Korona

[24]). The dispersal strategy of organisms plays a central role in ecology and evolutionary

biology and affects the habitats selection for animals (Bowler and Benten [2]; Clobert et al. [8];

Levin et al. [26]). "Balanced dispersal" which means that, for each patch, the total number

of immigrants is equal to the number of emigrants (Doncaster et al. [14]), can be thought

of as an extension of IFD. For a single species logistic model with two patches, the dispersal

strategy which leads to "balanced dispersal" results in an ideal free distribution (McPeek and

Holt [31]). For more general m-species patch models in n-patch:

duki

d t
=

n∑

j=1, j 6=i

[
d k

i j uk j −d k
j i uki

]
+ fki (u)uki , i = 1, . . . ,n, k = 1, . . . ,m,
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where u := (u11,u12, . . . ,umn)T is the vector of population of all species over all patches, so an

ideal free dispersal strategy relative to the stationary point u∗ can be realized as that there is

no net movement of population when u =u∗ (Cantrell et al. [5]). Namely,

n∑

j=1, j 6=i

[
d k

i j uk j −d k
j i uki

]
= 0, i = 1, . . . ,n, k = 1, . . . ,m.

A key assumption of IFD is that species can move freely between patches without paying

any cost. In reality, it is reasonable to take travel cost into account. As pointed by DeAngelis et

al. [9], movement may leads to the loss of energy, which may increase the risk of predation so

that species will die during the movement. If one assumes that there exists losses in moving

from one place to another, we may expect that IFD may not exist anymore. DeAngelis et al. [9]

proposed a tri-trophic model in N patches (N ≥ 2) with travel loss. They focus on how travel

loss will impact the the population distribution which is not an IFD. An "optimal" dispersal

rate was also given to explain that the travel loss leads to a deviation of the population dis-

tribution from the IFD. The global stability was studied by Lou and Wu [28]. We also refer to

[1, 7, 18, 22, 30, 33, 36, 37] and references therein for studies including travel loss.

It is also of ecological interest in understanding the evolution of dispersal. An interesting

result reported by Hastings [20] is that for spatially variable but temporally constant environ-

ments, selection usually favors slower unconditional dispersal (see also Dockery et al. [13];

Kirkland et al. [23]). However, faster dispersal rates may be selected if the dispersal is un-

conditional in spatially and temporally varying environments (Hutson et al. [21]; McPeek and

Holt [31]). We also refer to [3, 6, 27, 34] and references therein for partial differential mod-

els. From the viewpoint of adaptive dynamics (Dieckmann [10]; Dieckmann and R. Law [11];

Diekmann [12]; Geritz and Gyllenberg [16]; Geritz et al. [17]), an important notion related to

the evolution of dispersal is called evolutionarily stable strategy (ESS). A dispersal strategy is

an ESS if a population adopting this strategy cannot be invaded by a small population adopt-

ing any other strategy. It is interesting to ask under what conditions an ideal free dispersal

strategy is evolutionarily stable. Cantrell et al. [5] provided certain conditions such that an

ideal free dispersal strategy is actually evolutionarily stable. Some more general results has

been established by Cantrell et al. [4] constructing a new Lyapunov functional. It is natural to

ask if a non-ideal free dispersal strategy can be an ESS? The answer is positive (DeAngelis et

al. [9]; Lou and Wu [28]). Furthermore, we may ask if this is a common feature of ecological

models if travel loss is taken into account. For this, we shall examine a simple resident-mutant

model with travel loss in two patches to capture this phenomenon.

The rest of this paper is organized as follows. In Section 2, we examine a simple resident-

mutant model with travel loss and prove our main results. Finally, we give a brief conclusion

in Section 3.
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2. The two-patch model

We consider a simple logistic growth model, where the species P can disperse between

two patches, and will die during dispersal. The model is formulated as

dP1

d t
= P1[a1 −P1]−m21P1 +m12(1−ε12)P2,

dP2

d t
= P2[a2 −P2]−m12P2 +m21(1−ε21)P1.

where Pi (t ) denotes the population of resident in i -th patch (i = 1,2) and at time t ≥ 0; the

positive constant ai measures the resource of the patch i ; the positive constant mi j represents

dispersal rate of resident P from patch j to patch i ; the constant εi j ∈ (0,1) stands for the

fractional loss of individuals during movement from patch j to patch i .

To capture some common features of resident-mutant models with travel loss, we envi-

sion that a mutant appears and play a different dispersal strategy m̂i j . Therefore, we examine

the following two-patch resident-mutant model:

dP1

d t
=P1[a1 − (P1 + P̂1)]−m21P1 +m12(1−ε12)P2, (2.1)

dP2

d t
=P2[a2 − (P2 + P̂2)]−m12P2 +m21(1−ε21)P1, (2.2)

dP̂1

d t
= P̂1[a1 − (P1 + P̂1)]−m̂21P̂1 +m̂12(1−ε12)P̂2, (2.3)

dP̂2

d t
= P̂2[a2 − (P2 + P̂2)]−m̂12P̂2 +m̂21(1−ε21)P̂1, (2.4)

with the initial condition

Pi (0) > 0, P̂i (0) > 0, i = 1,2,

where Pi (t ), P̂i (t ) denote the number of resident and mutant, respectively, in i -th patch (i =

1,2) and at time t ≥ 0; the constant m̂i j represents dispersal rates of mutant P̂ from patch j to

patch i .

We adopt a similar biological assumption as in [9, 28]: due to stream flow, species is

forced to disperse from patch 2 to patch 1 with a fixed rate, i.e., patch 2 is located in the upper

part of a stream and patch 1 is located downstream. Then larva in patch 2 will be washed out

from patch 2 and move to patch 1. So we assume that the resident larva and the mutant larva

have the same dispersal rate from patch 2 to patch 1, i.e., m12 = m̂12. When larva grows into

adult, it is reasonable to assume the resident adults in patch 1 have different dispersal rate

from the mutant adults. In conclusion, we have the following assumption:

(A) m12 = m̂12 and m21 6= m̂21.
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Under the assumption (A), it is interesting to see if there exists an optimal dispersal rate

from patch 1 to patch 2 such that the resident will not be replaced by the mutant when rare

which use a different dispersal rate from patch 1 to patch 2? Our goal is to predict the exact

form of the optimal dispersal rate. To do so, our approach follows from theory of adaptive

dynamics (see e.g., [10, 12, 16, 17]). See also [9].

We linearize (2.1)−(2.4) at a semi-trivial stationary point E := (P∗
1 ,P∗

2 ,0,0) for some P∗
j
> 0

( j = 1,2). Let J be the Jacobian matrix for system (2.1)−(2.4) evaluated at E . By direct compu-

tations, J takes the form

J =

[
A B

0 D

]

,

where 0 denotes 2 by 2 matrix with all entries 0,

A =

[
a1 −2P∗

1 −m21 (1−ε12)m12

(1−ε21)m21 a2 −2P∗
2 −m12

]

,

D =

[
a1 −P∗

1 −m̂21 (1−ε12)m12

(1−ε21)m̂21 a2 −P∗
2 −m12

]

.

Let λ be any eigenvalue of J. Then

0 = det(J−λI) =det(A−λI)det(D−λI).

Thus, we can understand the stability at E if the sign of the real parts of the eigenvalues of

A and D can be obtained. Also, note that A is actually the Jacobian matrix of the following

system

dP1

d t
= P1[a1 −P1]−m21P1 +m12(1−ε12)P2,

dP2

d t
= P2[a2 −P2]−m12P2 +m21(1−ε21)P1

evaluated at the coexistence state (P∗
1 ,P∗

2 ). It is well-known that the coexistence state is

asymptotically stable if it exists. Therefore, to study the stability of E , it suffices to investi-

gate the eigenvalues of D, which is called the invasion matrix.

Taking c > 0 large enough such that D′ := D+ cI forms a nonnegative irreducible matrix.

Then Perron-Frobenius theorem yields that D′ has the largest eigenvalue. Hence D has the

largest eigenvalue, say λ1. The other eigenvalue is defined by λ2 such that λ2 ≤λ1.

We now start to predict the optimal dispersal strategy. Assume that there exits m∗ > 0

such that λ1 ≤ 0 for m21 = m∗ for all m̂21 lying in a neighborhood of m21. Then we can observe

that

λ1|m̂21=m21
= 0. (2.5)
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Indeed, from (2.1) and (2.2), we have

a1 −P∗
1 = m21 − (1−ε12)m12

P∗
2

P∗
1

, (2.6)

a2 −P∗
2 = m12 − (1−ε21)m21

P∗
1

P∗
2

. (2.7)

Using (2.6) and (2.7), we have

detD|m21=m̂21
= (a1 −P∗

1 −m21)(a2 −P∗
2 −m12)− (1−ε12)(1−ε21)m12m21 = 0.

Hence 0 is an eigenvalue of D. Also, it is easy to see that the all component of the eigenvector

associated with the eigenvalue 0 are positive. It follows that 0 is the largest eigenvalue of D

(Perron-Frobenius theorem), which implies (2.5). Moreover, since we assume that λ1 ≤ 0 for

all m̂21 nearby m21 = m∗, it follows that

∂λ1

∂m̂21

∣∣∣
m̂21=m21=m∗

= 0. (2.8)

Using (2.5) and (2.8), we obtain

∂detD

∂m̂21

∣∣∣
m21=m̂21=m∗

=
∂(λ1λ2)

∂m̂21

∣∣∣
m21=m̂21=m∗

= 0

On the other hand, by the definition of D, we can also calculate

0 =
∂detD

∂m̂21

∣∣∣
m21=m̂21=m∗

=−a2 +P∗
2 +m12 − (1−ε12)(1−ε21)m12

such that

P∗
2 = a2 + (1−ε12)(1−ε21)m12 −m12 (2.9)

Note that (P∗
1 ,P∗

2 ) satisfies (2.1) and (2.2) with m21 =m∗. Putting (2.9) into (2.2) yields that

P∗
1 =

P∗
2 (m12 +P∗

2 −a2)

(1−ε21)m∗
. (2.10)

Putting (2.10) into (2.1) with m21 = m∗, we obtain

m∗
=

m12

a1
P∗

2 (1−ε12)

=
m12

a1
(1−ε12)

[
a2 + (1−ε12)(1−ε21)m12 −m12

]

= m12(1−ε12)
P∗

2

P∗
1

.

From the above discussion, we obtain our first result as follows:
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Theorem 1. Assume that (A) holds. Suppose that there exists m∗ > 0 such that λ1 ≤ 0 for m21 =

m∗ and for all m̂21 lying in a neighborhood of m∗. Then

m∗
=

m12

a1
(1−ε12)

[
a2 + (1−ε12)(1−ε21)m12 −m12

]
= m12(1−ε12)

P∗
2

P∗
1

,

where λ1 is the largest eigenvalue of the invasion matrix defined above.

Our next result shows that m∗ is actually an global ESS if m∗ > 0.

Theorem 2. Assume that (A) holds and m21 = m∗ > 0. Then E := (P∗
1 ,P∗

2 ,0,0) is globally

asymptotically stable, where

(P∗
1 ,P∗

2 ) =
(
a1, a2 + (1−ε12)(1−ε21)m12 −m12

)
. (2.11)

The proof of Theorem 2 can be done by using Lyapunov function method, where the

Lyapunov function was introduced by Goh [19]. Together with LaSalle’s invariant principle

[25] (see Proposition 1 below), the global stability of E can be established. The proof basically

follows the same line as in [28].

Here we need a modified version of LaSalle’s invariant principle.

Proposition 1 (Theorem 1.2 of [29]). Consider the system of differential equations

d x

d t
= f (x),

where f :Rn →R
n is continuous. Suppose that V : G ⊂Rn →R satisfies the followings:

(i) V is continuous on G;

(ii) V is not continuous at x̄ ∈ Ḡ (the closure of G) implies that limx→x̄ ,x∈G V (x) =+∞;

(iii) ∇V · f ≤ 0 i n G.

Let M := {x|V̇ (x) = 0, x ∈ Ḡ} and M
′ be the largest invariant set in M . Then every

bounded (for t ≥ 0) trajectory of ẋ = f (x) which remains in G for t ≥ 0 tends to the set M
′

as t →+∞.

We are ready to show Theorem 2.

Proof of Theorem 2. For convenience, we adopt the following notations:

X := (x1, x2, x3, x4)T
= (P1,P2, P̂1, P̂2)T ,

X ∗ := (x∗
1 , x∗

2 , x∗
3 , x∗

4 )T
= (P∗

1 ,P∗
2 ,0,0)T .

The system (2.1)−(2.4) is written as a vector form Ẋ = f (X ), where

f (X ) := ( f1(X ), f2(X ), f3(X ), f4(X ))T .
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Let G := {X | x1 > 0, x2 > 0, x3 ≥ 0, x4 ≥ 0}. Define V : G →R by

V (X ) :=
2∑

i=1

ki

[

xi −x∗
i −x∗

i ln(
xi

x∗
i

)

]

+

4∑

i=3

ki xi

where ki > 0 (i = 1, . . . ,4) is defined as

k1 = k3 = 1, k2 = k4 =
1

1−ε21
. (2.12)

By direct calculations, we have

V̇ (X ) =
2∑

i=1

ki

[
ẋi −x∗

i

ẋi

xi

]
+

4∑

i=3

ki ẋi

=

2∑

i=1

ki (xi −x∗
i )

ẋi

xi
+

4∑

i=3

ki ẋi .

Using ẋi = fi (X ) and fi (X ∗)= 0 for i = 1, . . . ,4, we obtain

V̇ (X ) =
2∑

i=1

ki (xi −x∗
i )

[
fi (X )

xi
−

fi (X ∗)

x∗
i

]

+

4∑

i=3

ki

[

fi (X )− fi−2(X ∗)
xi

x∗
i−2

]

. (2.13)

Recall that x∗
3 = x∗

4 = 0 and m̂12 = m12, and the relation

m21 = m∗
= m12(1−ε12)

x∗
2

x∗
1

, (2.14)

the second term of (2.13) can be evaluated as

4∑

i=3

ki

[

fi (X )− fi−2(X ∗)
xi

x∗
i−2

]

= k3

{
x3[a1 − (x1 +x3)]−m̂21x3 +m12(1−ε12)x4 −x3[a1 − (x∗

1 +x∗
3 )]

}

+k4

{
x4[a2 − (x2 +x4)]+m̂21(1−ε21)x3 −x4[a2 − (x∗

2 +x∗
4 )]−m21(1−ε21)

x∗
1

x∗
2

x4

}

= k3(x3 −x∗
3 )

[
−(x1 −x∗

1 )− (x3 −x∗
3 )

]
+k4(x4 −x∗

4 )
[
−(x2 −x∗

2 )− (x4 −x∗
4 )

]

+x3[−k3m̂21 +k4m̂21(1−ε21)]+x4

[
k3m12(1−ε12)−k4m21(1−ε21)

x∗
1

x∗
2

]
.

By (2.12) and (2.14), we see that the last two terms are equal to zero.

Hence (2.13) becomes

V̇ (X ) = k1(x1 −x∗
1 )

[
−(x1 −x∗

1 )− (x3 −x∗
3 )+m12(1−ε12)

( x2

x1
−

x∗
2

x∗
1

)]

+k2(x2 −x∗
2 )

[
−(x2 −x∗

2 )− (x4 −x∗
4 )+m21(1−ε21)

( x1

x2
−

x∗
1

x∗
2

)]
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+k3(x3 −x∗
3 )

[
−(x1 −x∗

1 )− (x3 −x∗
3 )

]

+k4(x4 −x∗
4 )

[
−(x2 −x∗

2 )− (x4 −x∗
4 )

]
.

To prove that V̇ ≤ 0 in G , we set Wi := xi −x∗
i

for i = 1, . . . ,4 and

Λ1 := k1W1m12(1−ε12)
( x2

x1
−

x∗
2

x∗
1

)
+k2W2m21(1−ε21)

( x1

x2
−

x∗
1

x∗
2

)
,

Λ2 := V̇ (X )−Λ1.

Let us focus on Λ1 first. By simple calculations,

Λ1 = k1m12(1−ε12)W1

[
x2x∗

1 −x2x1 +x2x1 −x1x∗
2

x1x∗
1

]

+k2m21(1−ε21)W2

[
x1x∗

2 −x1x2 +x1x2 −x2x∗
1

x1x∗
1

]

= −k1m12(1−ε12)
x2

x1x∗
1

W 2
1 −k2m21(1−ε21)

x1

x2x∗
2

W 2
2

+

[
k1m12

x∗
1

(1−ε12)+
k2m21

x∗
2

(1−ε21)

]
W1W2.

Due to (2.12) and (2.14), we have

Λ1 =−
k1m12(1−ε12)

x∗
1

(√
x2

x1
W1 −

√
x1

x2
W2

)2

≤ 0; (2.15)

andΛ1 = 0 if and only if
x1

x∗
1

=
x2

x∗
2

.

We now focus onΛ2. Using (2.12), we have

Λ2 := V̇ (X )−Λ1 =−(W1 +W3)2
−k2(W2 +W4)2

≤ 0 (2.16)

and the equality holds if and only if x1 +x3 = x∗
1 and x2 +x4 = x∗

2 . Due to (2.15) and (2.16), we

obtain

V̇ (X ) =Λ1 +Λ2 ≤ 0.

Moreover, V̇ = 0 if and only if

x1

x∗
1

=
x2

x∗
2

, x1 +x3 = x∗
1 , and x2 +x4 = x∗

2 . (2.17)

Hence the set M defined in Proposition 1 is

M := {X | V̇ (X ) = 0}∩G
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=

{
X

∣∣∣
x1

x∗
1

=
x2

x∗
2

, x1 +x3 = x∗
1 , x2 +x4 = x∗

2 , xi ≥ 0 ∀ i

}
.

Finally, we show that the largest invariant set in M is actually {E }. If X (t )= (x1(t ), . . . , x4(t ))

is a solution of (2.1)−(2.4) and falls in M for t ≥ 0. Using (2.17) and equations of xi , it is easy

to see that X (t ) ≡ E for all t ≥ 0. This means that the largest invariant set in M is {E }.

By Proposition 1, E is globally asymptotically stable. Hence the proof of Theorem 2 is

complete. ���

3. Discussion

In this note, we study a sample resident-mutant model with travel loss in two-patch envi-

ronments. If resident and mutant have the same dispersal rate from patch 2 to patch 1 (due to

stream flow), we predict the optimal dispersal rate m∗ > 0 from patch 1 to patch 2 for resident

which is given by

m∗ :=
m12

a1
(1−ε12)

[
a2 + (1−ε12)(1−ε21)m12 −m12

]
. (3.1)

From this formula, we see that in order to m∗ > 0, m12 cannot be to large. If m12 is large

enough such that m∗ < 0, the optimal dispersal rate can be expected to be zero. A biologi-

cal reason can be presented as follows: note that m12 represents the stream speed (see the

assumption (A)), too large m12 will increase the difficult for adult resident to move back to

the upstream. In this situation, species may prefer not to move from the downstream to the

upstream.

Recall that m∗ can be rewritten as

m∗
= m12(1−ε12)

P∗
2

P∗
1

, (3.2)

were P∗
i

(i = 1,2) is given by (2.11). In fact, the formula (3.2) is actually the same as in the

model of DeAngelis et al. [9] (in two-patch environments) although these models are dif-

ferent. On the other hand, if the resident adopts the optimal strategy, i.e., m12 = m∗, (3.2)

indicates that the dispersal in the downstream equation (2.1) is balanced, but the disper-

sal in the upstream equation (2.1) is not. Such phenomenon is also found in [9]. Moreover,

since P∗
1 = a1, we see that the resident in patch patch 1 reaches carrying capacity. However,

P∗
2 = a2+(1−ε12)(1−ε21)m12−m12, and P∗

2 = a2 only for ε12 = ε21 = 0. Thus, as reported in [9],

the spatial distribution of populations which adopt the optimal dispersal rate m∗ is an IFD if

there is no travel loss; while the IFD will not appear anymore if there is travel loss.

Our second result shows that the optimal dispersal rate we predict (if it is positive) is a

global ESS, which means that the resident using this dispersal strategy will not be invaded
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by any mutant adopting any other strategy. This result reveals that a non-ideal free dispersal

strategy can be an ESS.

The explicit formula of m∗ also gives a biological explanation about the evolution of dis-

persal. Note that m∗ is strictly decreasing ε21 (the fraction of loss of population during the

movement from patch 1 to patch 2). This means that if travel loss during the movement from

patch 1 to patch 2 is very high, the species prefers not to move too much. Such result is differ-

ent from the one reported in [9]. Therein, the optimal dispersal strategy m∗ in two-patches

case does not depend on ε21. The main reason is that the model of DeAngelis et al. is a

Predation-Prey model. As reported in [28], when ε21 increases, which means the risk of pre-

dation on the way to patch 2 increases such that the species should prefer not to move to

patch 2; however, if ε21 increases, it can be observed that the equilibrium population of the

predator in patch 2 decreases, which increases the fitness for patch 2. It suggests that species

should move to patch 2. In some sense, the benefit and damage brought from the increment

of ε21 counteract each other. For the model we study, it is not a Predation-Prey model. In fact,

when ε21 increases, the fitness for patch 2 never changes. Hence there is no benefit for species

moving to patch 2 if ε21 is increased. This may explain why m∗ is strictly decreasing ε21.
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