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SINGULAR INTEGRALS RELATED TO HOMOGENEOUS MAPPING
WITH ROUGH KERNELS ON PRODUCT SPACES

H. AL-QASSEM AND M. ALI

Abstract. In this paper, we study the LP mapping properties of singular integral operators related to homogeneous
mappings on product spaces with kernels which belong to block spaces. Our results extend as well as improve some

known results on singular integrals.

1. Introduction

Suppose that $471(d = n or m) is the unit sphere in R? equipped with the normalized
Lebesgue measure do = do () which normalized so that O'(Sd_l) = 1. For a nonzero point
xeR? welet x' = x/|x|. For n,m =2, let Kq (,-) be the singular kernel on R” x R™ given by

Ko (u,v) =Q(u/, V') |lul~" v, (1.1)
where Q € L1(S"! x 71 and satisfies the cancellation conditions

f Q(u,)do (u) =f QG,v)do(v)=0. (1.2)
Sn—l Sm—l

For suitable mappings ® : R” — RY and ¥ : R”* — RM define the singular integral oper-
ator Tp v,o and its related maximal truncated operator Ty , , on the product space R"” x R™
by

Towaf(xy) = p.V_fR" =0,y =¥ 1) Ka (u,v) dudv, (1.3)
T&;,\y,gf(xyy) = sup f f(x—(l)(u),y—‘{’(v))KQ(u, v)dudv (1.4)
£1,62>0| J{lulzey,lvi=er}

for fe RN xRM),
When n= N, m=M, ®(x) =xand ¥(y) = y for (x, y) € R" xR, the operators To = To,v,0

and Tj = Tq*;,\{,,Q become the classical Calder6n-Zygmund singular integral operator and its
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166 H. AL-QASSEM AND M. ALI

corresponding maximal truncated operator on the product space R” x R given by
TQf(x)zp.V.f f(x—u,y-v)Kaqu,v)dudv,
R xR

TS f(x) = sup

£1,62>0

f f(x—uy—-v)Ka(u,v)dudv|.
{lul=ey,lvI=e2}

The study of the L” mapping properties of T and its extensions has attracted the atten-
tion of many authors. We refer the readers to [3], [5], [6], [8], [9], among others. Let us now
recall some known results. R. Fefferman and E. Stein in [9] showed that if Q satisfies certain
Lipschitz conditions, then the operators Tg and Té are bounded in L” (R" xR™) for p € (1,00).
In [5], Duoandikoetxea improved the results in [9] by showing that T is bounded on L” for

l<p<ooifQe L9(8" ! x8™ 1), with g > 1. In [6], Fan, Guo and Pan improved the result
in [5] by showing that the L” (1 < p < oco) continues to hold even Q belongs to the block space
BE;)'I)(S"‘1 x 8"~1) for some g > 1 (for p = 2, this result was proved first by Jiang and Lu in
[10]). In [3], Al-Qassem and Pan proved the L (1 < p < co) boundedness of the more general
class of operators T,y o and Tq’;q,ﬂ ifQe Bg)’l) (8" x 871 for some g > 1 and ®,¥ are
polynomial mappings on R” and R"”, respectively.

Our main purpose in this paper is to investigate the L” boundedness of Ty w o and T&;,‘P,Q
ifQe Bg)'l) (8"~! x §"~1) and ® and V¥ are homogeneous mappings. To state our main result,
we need first the following definition.

Ford = (dy,...,d)) € R!, define the family of dilations {0} ;>9 on R! by

O¢(x1,...,x1) = (tdlxl,..., tdlxl).

We say that a mapping ® : R” — R/ is homogeneous of degree d if
O(1x) =6(P(x)

holds for all x € R*\{0} and ¢ > 0.
Now, the following is our main result in this paper:

Theorem 1.1. Let Tg y,q and Tq’;'q,'Q be given by (1.3) and (1.4), respectively. Suppose that Q) €
BYV (871 x8™-1) for some g > 1 and satisfies (1.2). Let® :R" — RN and ¥ : R™ — RM be
homogeneous mappings of degrees d = (d,,...,dyn) and h = (hy,..., hy), respectively with d;,
h#0forl<l<Nandl<r< M. Assume that D | Sl and ¥ |S™ ! are real-analytic. Then
there exists a positive constant Cy, > 0 such that

I Towahll, <Col 11, (1.5)

and
175 w001, <Gl 71, 1.6

forany f € LP (R" x R™) with1< p < oo.
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Remarks. (1) We point out that on §n1 x §m=1 for any g > 1 and v > —1, the following
inclusion holds and is proper:

U Lr(sn—l x sm—l) c BE]O,U) (sfl—l x sm—l)‘ (17)

r>1

The question with regard to the relationship between B{**~" (8”1 x8™1) and L(log* L)" L(8" ' x
$™=1) (for @ > 0) remains open.

(2) One observes that Theorem 1.1 represents an improvement over the corresponding
results in [9] and an extension of the main result in [6].

(3) We remark that the one parameter case of Theorem 1.1 was studied by many authors
(see for example, [7], [4], [2]). Also, we point that a similar result to Theorem 1.1 was obtained
in [1] when Q belongs to the class Q € Llog* L) (871 x §"1).

The paper is organized as follows. A few lemmas will be recalled or proved in Section 2.
The proof of Theorem 1.1 can be found in Section 3.

Throughout this paper, the letter C will denote a bounded positive constant that may vary
at each occurrence but independent of the essential variables.

2. Definitions and lemmas

The block spaces originated in the work of M. H. Taibleson and G. Weiss on the conver-
gence of the Fourier series (see [15]) in connection with the developments of the real Hardy
spaces. Below we shall recall the definition of block spaces on $”~! x §”~!, For further back-
ground information about the theory of spaces generated by blocks and its applications to
harmonic analysis one can consult the book [12].

The special class of block spaces BE,O’“) (8" 1 x §™~1) (for v > —1 and g > 1) was introduced
by Jiang and Lu with respect to the study of singular integral operators on product domains
[10].

Definition 2.1. A g-block on 8”1 x 8”1 isan L9 (1 < g < co) function b(x, y) that satisfies
(i) supp(b) < I; (i) 1Bl o <1171,
where || denotes the product measure on " 1x8"1 andIisaninterval on 8" 1 xS™1 je.,
1= {8 v — ] <a} ey €57y~ 5l <
for some a, > 0 and (xg, y) € $" 1 x §™~ 1.

Definition 2.2. The block space B,(JO'U) = Bg)’”) (8"~! x8™~1) is defined by

wop?

(e8]
B = {Q el xsm 0= Zlc b, MY (16,1) < oo},
=

where each C, is a complex number; each b, is a g-block supported on a interval I, on §" 1 x
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§™1 y>—1and
0,0) S w+D |, |7t
M (ic,1) = X |c,[{1+10g* (1, -
p=1
Now, we need to introduce some notations.

Definition 2.3. For each y € NUO0} and an interval I, on "1 x §M~1 with ‘IH| <e 1 we

-1 0
setd, = 108‘1”‘ yw, =2 * and Jiep = [w"f, wf+1). For suitable mappings @ : R"\{0} — RN
and ¥ : R™\{0} — RM and a suitable function BP e 118" x 8" 1) we define the sequence
of measures {0, j,o,w . : k, j € Z} and its corresponding maximal operator oy, ,, u by

LN RMdek,j,q),\I/,u = f f((l)(u),\P(v))KI-]H (u,v)dvdu,

T Jju
To () = sup ||k, 0wl * f],
k,jeZ
where |0t o,y is defined in the same way as o'y, j o,w,., but with b, replaced by |l7)” | .

Our method in proving our main results relies heavily on certain maximal functions and
on certain Fourier transform estimates. So we need to recall some lemmas. We start with the
following lemma due to Ricci and Stein.

Lemma 2.4.((14]) Lety (1) = (a1t™,...,a,t) wherea;, q;€R forl1 <1< n. Let M, be the
maximal operator defined on R" by

fORf(x—y(t))df‘

1
M f(x) =sup —
Yf R>% R
for xe R"™. Then, for1 < p < oo, there exists a constant C), > 0 such that
1], =611,
forall f in LP (R"). The constant Cy, is independent of a; foralll1 <1 < n.

The following result follows immediately from the Lemma 2.4.

Lemma 2.5. Lety (1) = (a1t?,...,a,t7™), 9(s) = (b1s™,...,byms'™) where a;, q;, bs and
rseRforl<l<nandl <s<m.Let. /gy bethe maximal operator defined on R" x R™ by

1
My of (x,y)= sup
r f ) Ry,Ry>0 R1R2

Ry rRe
fo fo flx=y@,y-9)drdr

for (x,y) e R" xR™. Then, for1 < p < oo, there exists a constant Cp > 0 such that

I-#y011, = Col I,
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forall f in LP (R" xR™). The constant C), is independent of a; and bs for all1 < | < n and
l<s=m.
Let':R* — Rbe a generalized polynomial defined by

T(0) ="+ ppt™ 4o pp t @1
where »,..., 1, are real parameters and ay, ..., a, are real numbers.

Lemma 2.6.([13]) Lety € C'10,1] andT be given by 2.2) with ay,...,a, aredistinct positive
(not necessarily integers) exponents. If

p
1(A) :f MOy () dt,

a

then

asts

B
|I(A)|5C|/1|‘E{ supﬁ|w(t)|dt+f |w'(t)|dt},

where A € R\ {0}, e =min{l/ay,1/n} and C does not depend on iy, ..., 11, aslongas0<a < f <
1.

By Lemma 2.6 and the change of variable t — 1/¢ we immediately get the following:
Lemma 2.7. Lety € C'1,2] andT be given by (2.2) with ay, ..., a, are distinct negative (not

necessarily integers) exponents. If

B
1) =f MOy (ndr,1<a<pf<2,

then

B
|I(/1)|5C|/1|‘5{ sup |(p(t)|dt+f |(p'(t)|dt},

ast<f

where L e R\ {0}, 6 =min{-1/ay,1/n},@ () = t‘zw(llt) and C does not depend on iy, ..., ly.
By an argument which is similar to the proof of lemma 3 in [13] we get the following:
Lemma 2.8. Lety € C' ([1/2,1]) and
A =t + pupt® + o+ et + g b

where Uy, ..., U, are real parameters and ay,..., a, are distinct positive exponents. Let

p
I(A) :f MOy () dr,

AeR\{0}and1l/2<a <P <1. Then

B
|I(A)|5C|/1|‘E{ supﬁ|w(t)|+f |w'(t)|dt},

asts
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with e =min{l/ay,1/n}, where C does not depend on py, ..., 1, and A.
We shall need the following lemma from [4]:

Lemma 2.9. For j € {1,2}, let U; be a domain inR"i and K; a compact subset of U;. Let g(-,)
be a real-analytic function on Uy x Uz such that g(-,y) is a nonzero function for every y € Us.
Then there exist a positive constant d = 6 (h, Ky, K») such that

sup | |g(x,)|° dx <oo.
yeEK, K

By tracking the constants in the proof of Lemma 1 in [5] we have the following:

Lemma 2.10. Let A> 0 and let {vk,j} be a sequence of Borel measures on R x R™. Suppose
that

sup [|vie;| = fl|l = A|fll,
k,jeZ

qo

forsome qo > 1 and for every f in L9 (R" x R™). Then the inequality

1/2

=

(2.2)

(kz |gk.i*

,j€Z

1/2
Asup IIVk,fII)
k,jeZ

1/2
( > v gk,j|2)

k,jeZ

Po pPo

holds for |1/ po — 1/2| = 1/(2qo) and for arbitrary functions {g. j} on R" x R™.

The proof of Theorem 1.1 relies heavily on the following lemma which is a generalization
of aresult of J. Duoandikoetxea [5]. A proof of this lemma can obtained directly from Lemma
2.10 and Theorem 16 in [3].

Lemma 2.11. Let M, N € N and let {U;Cl';) 1k, je€Z,0<1<N,0<s< M} bea family of Borel
measures on R x R™ with ag’]M) =0 andog\;’s) =0fork, jeZ. Let{a;, bs:0<I<N-1,0<s<
M-1}c[2,00),{b(]),d(s):0<I<N-1,0=s<M-1}cN,{a; fs:0<I<N-1,0<s<M-1} ¢
R*, and let LV € LR",R’D) and Q¥ € LR™,R4®) be for0<I<N-1and0<s<M-1,
where L(R",RN) denotes the space of linear transformations from R" into RN. Suppose that
for some C > 0 and B > 1, the following hold fork, j€Z, 0<1<N-1,0<s<M-1 and
& mneER xR™:

: (1,9 2.

W |oi?| = cB?

Bs

b Q)| 7

. _bs
pIP QU ()| 7

Bs
B .
’

) o9& m| = CB2|afPLO O] F

ap
(i) [0 m -6V m| < CB?|afP 10 @

%y
(iv) (agj;;’@,n)—éﬁjj“’(é,n)|scBZ|afBL“) ©] 7 |bI"QW (n)
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W) ‘O’(l S)(é‘ n) — A(l+1 S)(é ) - A(l S+1)(£ ) +&(l+1 3+1)(é” )‘

. Bs

wi) ‘ (ls+1)(€’n) A(l+ls+1)(f’m‘SCBZla;cBL(l)(mfl;

. Bs
i) ‘U(Hls)(f’m A(l+1s+1)(f,‘r))‘SCBZ|b£BQ(S)(T]) B
|a””

or every 1 < p < oo, there exists a Cp, > 0 independent of {(L),Q¥ :0<I<N-1,0<s<
ry p p 14
M —1} such that

(viii) “sup,C jez f|“p <CB? ||f||p for1 < p<ooand forevery f in L” R"x R™). Then

Z 0(0 0

k,jeZ

holds for all f in LP (R" x R™).

<CpB*||f],, (2.3)
p

Lemma 2.12. Let N,M € N, let b, be a function on $"~' x 8"~ satisfying (i) “BH “ <
1/q' !

2l
Let ® : R" — RY and ¥ : R — RM be homogeneous mappings of degrees d = (d, ..., dy)
and h = (hy,..., hy), respectively with d;, hs >0 for1 <1< N and1 < s < M. Assume that
@S land ¥ |S™ ! are real-analytic and that there are z, Z;, wy and W) € N such that z; <
ZisN,{l:1<sl<sNandd;=di}=1{1,....Z21},, yuy <th <M, {s:1<s< M and hs; = h;} =
{1,..., 01}, {®1,..., @4} forms a basis for span{®y,..., @z} and {¥1,..., Yy, } forms a basis for
span{¥i,...,¥Yy,}. Then there exist L € L(R?',R%), Qe LR™ ,R™) and positive constants «a,
B and C such that

for some q > 1 and an interval I, on $"~' x 8"~ with ‘Iﬂ‘ < e ! and (ii) H b, “1 <1

B

oM Qg m| " 24

_a
- 8| O

|6k 7.0, m| < CO? ‘(uﬂ
forall ¢,m) e RN xRM, wherel; & = (&1,...,¢z ) and g, = (01,...,M@,)-

Proof. Let ¢ = ({y,...,¢n) and n = (11,...,nM) be arbitrary but fixed. By assumptions,
there exist two linear transformations L = (Ly,...,L;) € L(R*,R*) and Q = (Q1,...,Qu,) €
L(R%1,R¥1) such that

Z1 z1 W wq

Y E@ix0) =) L[5 O)P(x) and Y s ¥s(y) = Y, QMg m) Ws(p). (2.5)

=1 I=1 s=1 s=1
Thus we have

5 1 " dt
(G j0utem| = o, | boy|[ et Sl ooy,
§n=1xgm-1 Vo,
where .
He(t,0) = Z{lqn(x) tdla)(k+1)d1+ Z ED; (x)tdw(’““)ds (2.6)
=1 s=Z1+1
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Let g:S8"! x8%~! — Rbe given by

21
glx,u) =) wd(x),
I=1
where xe€ 8" L and u = (uy,..., Uz) € §2~1 Since {®@;, ... , @2, } is linearly independent, g(:, u)
is a nonzero function for every u € $¥'~!. By Lemma 2.9, there exists a 1 > 0 such that

sup | |g(x, )| do(x) < co. @2.7)

uesa-1J8"

By letting e = min{1/d,,1/N,5,/4q'},(2.8), (i), using Lemma 2.6 and Hélder’s inequality we get

—€
do(x)do(y)

~ 21
|6k, j.0,wu& M| < CB”L 1‘by(x,y) I;Lz(l'lzlf)q)l(x)

n—1ygm-

—€
Wk (1, é)|

<CO w i |b
B Iz

H HLLI(SH x§m-1

-1/q —-€
< co,wc 1| ok a0 . 2.8)

By combining the last estimate with the trivial estimate |67, .o, (S, DI CHi we get

—e/0
|6 0w uEm] < CO2 |k Lans, o . 2.9)
7 et

Similarly, we have
. ) -Bl6
|6k, j.00,0(Em)| < CO2 (w{f” Q(len)( " (2.10)

Combining the last two estimates yields the desired estimate. The proof is complete.
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3. Proof of Theorem 1.1

Assume that Q € Bg)'l) (8"1 x §™~1) for some g > 1 and satisfies (1.2). Thus Q can be

oo
writtenas Q= Y C b,
4=1 (g

sl and Mg)'l) ({Cu}) < co. To each block function bu(-, ), let [)u (-,+) be a function defined by

where C, € C, b, is a g-block supported on an interval I, on Sl x

b,(x,y) = b,(x,) —‘/;H b,(u,y)do(u)

—f b”(x, vdo(v) +f b”(u, vydo(wdo(v).
§gm-1 gn-1xgm-1

LetD = {,u € N:‘Iu‘ < e‘l}.Let l~)0 =Q- ) Cui)u.Thenitis easy to verify that, for all u € DU{0},

Bﬂ satisfies the following: D)
fSH bu ) dor 1) = fsmfl b, (,v) do (v) = 0; -
|2, “q = C‘Iu‘_w: (3.2)
= (3.3

where |IO| = e~? and C is a positive constant independent of y. Using the assumption that
Q) satisfies the vanishing conditions (1.2), and the definition of b”, we deduce that Q can be
written as

Q= )Y C,b,
ueDU{0}

which in turn implies

Towa(f)= Y CuTowp, (),

peDUI0}

Towalf)s X |Cu‘T;q;j,ﬂ (f)-

peDUI0}

Therefore, to prove (1.5)-(1.6), it suffices to prove the following inequalities:

705, (], = 82111, 6

Tows, /) Hp =GO 11, 3.5)

for 1 < p <ooand p e DU {0}. Let us start with proving (3.4). By assumptions on ® and ¥, we
have ® = (®y,...,0x) :R* - RN and ¥ = (¥1,..., ¥p/) : R” — RM are homogeneous mappings
of degrees d = (dy,...,dy) and h = (hy,..., hy), respectively such that ® | $”~! and W | §"*!
are real-analytic and d;, hy #0for 1 </ < N and 1 < s < M. In view of Lemmas 2.6-2.8, we
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shall only prove (3.4) only for the case d,...,dn, hi,..., hyr > 0 because the argument for the
other cases will be similar and requires only minor modifications. Now, we use an argument
employed in [4] and [1]. By a simple reordering of the mappings ®;,...,®y,¥y,..., ¥ we
may assume that there are z;, Z;, wy and i e Nsuch that z; <z <N, {l:1 <1< N and
di=di}=1{1,....Z1}, wiswi =M, {s:1<s<Mand h; =} =11,..., w1}, {®1,...,P;} forms
a basis for span{®y,...,®z } and {V¥1,..., ¥y, } forms a basis for span{¥i,..., ¥ 3,}.
LetTo=®,T1 =(0,...,0,®z+1,...,0n), L (&) = L (115, ) foré e RN, Yo =¥, Y1 = (0,...,0, ¥, +1,--., ¥ 1), QO () =
Q(Mg,n) forneRM, and 0" =0 i1, v, for I, s € {0, 1}. By invoking (3.1)-(3.3) and Lemma

k,ju
2.12 we get
o) @m| = co? for Lse 10,15 (3.6)
k,] Il y —_ ) ) ) :
fo
609 &m)| = o w10 )| |wf’“ QU (n)| " 3.7)

Also,
b,(x,

1
(0,0) &0
|Uk ] ﬂ(f’n) k ] ﬂ(f’n)‘ = "/1‘/‘0# fs‘n—lxsm—l

1
f ottt 4
Vo, r

where H; (¢, x) is given by (2.7). By a similar argument as that employed in the proof of (2.9)
we get

. j+1 . j+1 ds
|e—ln-Y0(wZ, sy) _ e_m'Yl(wit sy) da(x)do(y)—,
N

-1/q4"

600 €m -0 & m| = co,u

(j+1)h1 ~0) kd N
k.jop Tk w,Q (n)||wu 1L(Hzl(’r)|

4

which when combined with the trivial estimate ‘Ugco ]OL(f ) —06 ECO ;L(f , 17)‘ < Cﬂi yields

ﬁ_o
‘US?JOL(‘E - AS?;L({ 77)| < CH? |wkd1L(0) (5)‘ |w1h1 Q(o)( )‘ . (3.8)

Similarly, we get

W | i O ‘5_0
#lolMQ (TI)‘ !

_ A0 2 _

k,u kw(g‘,n)| =Co, |a)” ; 3.9)
a9

|U§<0]1L(<f ) — ASCIJIL(f,n)‘ < Cﬂi ‘wf’ilL(o) (§)|9u : (3.10)
1,0) i8)) 2| i ) (o]0

o € m -6l @m)| < ot |l (n)|* ; (3.11)

609 €m =6 0D € - L0 € m+ e D @)

w o
< Co2 |t L @) (wihlo(o) (m|" (3.12)
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Now, by a similar argument as that employed above, we can find additional mappings I', ...,
Tk from R”\ {0} to RV, Y,,...,Y; from R\ {0} to RM, {a;,Bs:1<I<K-1,1<s<]-1}c
(0,00), appropriate linear transformations {L”), Q(S) :1<[<K-1,1<s<]-1}, two sets of
distinct real numbers {dy, : 1< < K-1}, {hy,:1<s<J-1}with{dy, :1<I<K-1}={d;:
2<l< Ni\{di}, thys:1<s<]J—-1} = {hs:2 < s < M}\{h} and a finite family of measures

{o EC;) :2=< 1<K, 2 < s < J} with the following properties:
'k =1(0,...,0),Y;=(0,...,0);

a9 (¢, m) =0k, jur,y, for2<sl/<Kand2<s<J;

Tk.j
UECKiS) =o") —ofor2<l<Kand2<s<];
paz k,ju
‘U(I,S) (é ,’7)| < C92 (3.13)
k:j:ll ’ = u’ .
I 2 1 h g_s
o & m|= oo, 10 @) ™ (aﬂ »QY ()] (3.14
_gl+Le 2| Kdu ) ng Jhus ((5) ‘57
o9 €m - m)| < o |w, " L0 @™ i@ ()] 5 @)
(L,s) (l 1) 2 ) jh (8) ﬂs
S A(L,s+ ul JNys S .
6409 € m -850 m] < 00 [w, ™ L0 @ (w Q¥ ()| (3.16)
(I,s+1) A(l+1 s+1) 2
o m -l ile e m| < co?|w, (3.17)
(I+1,s) (l 1,s+1) 2 jh (8) Bﬂ_s
+1,s ~(l+1,s+ Jhvs NS .
oL@ m =6t b e | < 002wl ()| (3.18)
(1,s) A(l s+1)  a(l+1,s) , a(l+1,s+1)
‘Ukju("r’m Tk Ukju Tk (5,17)‘
2| kdu (1) % Jhos ((8) in
= CO; |wu L (E)( |w# QW (m) |+ (3.19)
forl<s/<K-1land1<s=<J-1.By(3.3) and applying Lemma 2.5 we obtain
(1,s) 2
sup o2 1| pscpeu 171, (3.20)
forl<p<oo,0<l<K-1land0<s<J-1.By(3.6)-(3.20), Lemma 2.11 we have
0,0) 2
| Taves, 1], ” N A I (3.21)

p

for1 < p<ooand f € LP (R" x R") which completes the proof of (3.4).
A proof of (3.5) can be constructed by the above estimates and employing a similar argu-
ment employed in the proof of Theorem B in [3]. Details will be omitted.
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