ON FACTOR RELATIONS BETWEEN WEIGHTED AND NÖRLUND MEANS

G. CANAN HAZAR GÜLEÇ AND MEHMET ALI SARIGÖL

Abstract. By \((X, Y)\), we denote the set of all sequences \(\varepsilon = (\varepsilon_n)\) such that \(\sum a_n \varepsilon_n\) is summable \(Y\) whenever \(\sum a_n\) is summable \(X\), where \(X\) and \(Y\) are two summability methods. In this study, we get necessary and sufficient conditions for \(\varepsilon \in (|N, q_n, u_n|_k, |N, p_n|_k), k \geq 1\), using functional analytic techniques, where \(|N, p_n|\) and \(|N, q_n, u_n|_k\) are absolute weighted and Nörlund summability methods, respectively, \([1, 5]\). Thus, in the special case, some well known results are also deduced.

1. Introduction

Let \(A = (a_{nv})\) be an infinite matrix of complex numbers, \(\sum a_v\) be a given infinite series with \(n\)th partial sum \(s_n\) and \((u_n)\) be a sequence of nonnegative terms. Then the series \(\sum a_v\) is called summable \(|A, u_n|_k, k \geq 1\), if (see \([16]\))

\[
\sum_{n=0}^{\infty} u_n^{k-1}|A_n(s) - A_{n-1}(s)|^k < \infty, \quad A_{-1}(s) = 0,
\]

(1.1)

where \(A(s) = (A_n(s))\), the \(A\)-transform sequence of the sequence \(s = (s_n)\), i.e.,

\[
A_n(s) = \sum_{v=0}^{\infty} a_{nv}s_v
\]

converges for \(n \geq 0\). Note that if \(A\) is chosen as the Nörlund matrix (resp. \(u_n = n\)), then the summability \(|A, u_n|_k\) reduces to the absolute Nörlund summability \(|N, p_n, u_n|_k\) \([5]\) (resp. the summability \(|N, p_n|_k\), Borwein and Cass \([2]\)), and also \(|N, p_n|_1 = |N, p_n|\), Mears \([9]\). Further, if \(p_n = (\alpha + n^{-1})\) and \(u_n = n\), then the summability \(|N, p_n, u_n|_k\) is the same as the summability \(|C, \alpha|_k\) in Flett’s notation \([4]\). By a Nörlund matrix we mean one that

\[
a_{nv} = \begin{cases}
p_{n-v}/P_n, & 0 \leq v \leq n \\
0, & v > n,
\end{cases}
\]

(1.2)

Received December 27, 2017, accepted July 23, 2018.
2010 Mathematics Subject Classification. 40C05, 40D25, 40F05, 46A45.
Key words and phrases. Sequence spaces, absolute Nörlund summability, absolute weighted mean summability, summability factors.
Corresponding author: G. Canan Hazar Güleç.
where \((p_n) \) is a sequence of complex numbers with \(P_n = p_0 + p_1 + \cdots + p_n \neq 0 \), \(P_{-(n+1)} = 0 \) for \(n \geq 0 \). Also, if \(A = (a_{n,v}) \) is the weighted matrix (resp. \(u_n = P_n/p_n \)), i.e.,

\[
a_{n,v} = \begin{cases}
 p_v/P_n, & 0 \leq v \leq n \\
 0, & v > n
\end{cases}
\]

then the summability \(|A, u_n|_k \) reduces to the summability \(|\tilde{N}, p_n, u_n|_k \) (resp. the summability \(|\tilde{N}, p_n|_k \), Bor [1]), where \((p_n) \) is a sequence of positive numbers such that \(P_n = p_0 + p_1 + \cdots + p_n \to \infty \) as \(n \to \infty \), Sulaiman [22]. For example, for the summability \(|\tilde{N}, p_n|_k \), the condition (1.1) may be stated as

\[
\sum_{n=1}^{\infty} \left| \frac{1}{P_{n-1}} \left(\frac{p_n}{p_n} \right)^{1/k^*} \sum_{v=1}^{\infty} P_{v-1} a_v \right|^k < \infty.
\]

Throughout this paper, \(k^* \) is the conjugate of \(k > 1 \), i.e., \(1/k + 1/k^* = 1 \), and \(1/k^* = 0 \) for \(k = 1 \).

For any real \(\alpha \) and integers \(n \geq 0 \), we define

\[
\Delta^\alpha \epsilon_n = \sum_{v=n}^{\infty} A_{v-n}^{-\alpha-1} \epsilon_v
\]

whenever the series on right side of equality is convergent.

Let \(\epsilon \) be a sequence and \(X \) and \(Y \) be two methods of summability. If \(\Sigma \epsilon_n a_n \) is summable \(Y \) whenever \(\Sigma a_n \) is summable \(X \), then \(\epsilon \) is said to be a summability factor of type \((X,Y) \) and we denote it by \(\epsilon \in (X,Y) \) [3]. The problems of summability factors dealing with absolute Cesàro and absolute weighted mean summabilities were widely examined by many authors (see [1-4], [8-11], [13-21]) and al. For example, for \(\alpha \geq 0 \), \(k > 1 \), the summability factors of type \((|C, \alpha|, |\tilde{N}, p_n|) \), \((|C, \alpha|_k, |\tilde{N}, p_n|) \), \((|C, \alpha|_k, |C, 1|) \) and \((|C, 1|_k, |\tilde{N}, p_n|) \) were characterized by Mohapatra [11], Mazhar [8], Mehdi [10], Sargöl and Bor [17] and Sargöl [18], respectively. In a more recent paper, Sargöl [13] has extended these classes to \(\alpha > -1 \) and arbitrary positive sequence \((p_n) \) in the following form.

Theorem 1.1. Let \(\alpha > -1 \) and \((p_n) \) be arbitrary sequence of positive numbers. Then, necessary and sufficient condition for \(\epsilon \in (|C, \alpha|_k, |\tilde{N}, p_n|), k > 1 \), is

\[
\sum_{m=1}^{\infty} m^{\alpha k^*+k^*-1} \left(\sum_{n=m}^{\infty} \frac{p_n}{P_n P_{n-1}} \left| \sum_{r=m}^{\infty} A_{r-m}^{-\alpha-1} \frac{\epsilon_r}{r} P_{r-1} \right| \right)^{k^*} < \infty.
\]

2. Main results

The purpose of this study is to generalize Theorem 1.1 by using Nörlund mean in place of Cesàro mean. Hence we characterize both classes \((|N, q_n, u_n|_k, |\tilde{N}, p_n|) \) and
Before stating the theorems we recall the following lemmas which plays important role for the proof our theorems.

Lemma 2.1. Let \(1 < k < \infty\). Then, \(A(x) \in \ell\) whenever \(x \in \ell_k\) if and only if
\[
\sum_{v=0}^{\infty} \left(\sum_{n=0}^{\infty} |a_{nv}| \right)^k < \infty,
\]
where \(\ell_k = \{x = (x_n) : \sum |x_n|^k < \infty\}\) [13].

Lemma 2.2. Let \(1 \leq k < \infty\). Then, \(A(x) \in \ell_k\) whenever \(x \in \ell\) if and only if
\[
\sup_{v} \sum_{n=0}^{\infty} |a_{nv}|^k < \infty,
\]
[7].

Now we begin with the theorem characterizing the class \(\left(\mid N, q_n, u_n \mid_k, \mid \bar{N}, p_n \mid \right)\).

Theorem 2.3. Let \(q_0\) be a non-zero number, \((u_n)\) be a sequence of positive terms and \((C_n)\) be a sequence satisfying
\[
\sum_{v=0}^{n} Q_{n-v} C_v = \begin{cases}
1, & n = 0 \\
0, & n \geq 1.
\end{cases}
\]
Then necessary and sufficient condition for \(\epsilon \in \left(\mid N, q_n, u_n \mid_k, \mid \bar{N}, p_n \mid \right)\), \(k > 1\), is
\[
\sum_{m=1}^{\infty} \frac{1}{u_m} \left(\sum_{n=m}^{\infty} \left| \frac{p_n}{P_n P_{n-1}} \sum_{r=m}^{n} P_{r-1} \epsilon_r G_{rm} \right| \right)^k < \infty
\]
\[
G_{nr} = \frac{n}{v=r} C_{n-v} Q_v.
\]

Proof. Let \((t_n)\) and \((T_n)\) be the sequences of Nörlund mean \((N, q_n)\) and weighted mean \((\bar{N}, p_n)\) of the series \(\sum a_n\) and \(\sum \epsilon_n a_n\), respectively, i.e
\[
t_n = \frac{1}{Q_n} \sum_{v=0}^{n} q_{n-v} s_v = \frac{1}{Q_n} \sum_{v=0}^{n} Q_{n-v} a_v
\]
and
\[
T_n = \frac{1}{P_n} \sum_{v=0}^{n} (P_n - P_{v-1}) \epsilon_v a_v.
\]
Then we define sequences \(y = (y_n)\) and \(\bar{y} = (\bar{y}_n)\) by
\[
y_n = u_n^{1/k^*} (t_n - t_{n-1})
\]
\[
\bar{y}_n = \frac{1}{P_n} \sum_{v=0}^{n} (P_n - P_{v-1}) \epsilon_v a_v.
\]
and
\[\tilde{y}_n = T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^{n} P_{r-1} \epsilon_r a_r, \quad n \geq 1 \text{ and } \tilde{y}_0 = a_0 \epsilon_0. \]

Then, \(\epsilon \in \left[\left. \left| N, q_n, u_n \right| \right|, \left. |N, p_n| \right| \right] \) if and only if \(\tilde{y} \in l \) whenever \(y \in l_k \). On the other hand, since \(q_0 \) is a non-zero, there exists a sequence \((C_n)\) satisfying (2.1) and therefore it follows that
\[t_n = \frac{1}{Q_n} \sum_{v=0}^{n} Q_{n-v} a_v \text{ if and only if } a_n = \sum_{v=0}^{n} C_{n-v} Q_v t_v. \]

Hence we get from (2.4),
\[a_n = \sum_{v=0}^{n} C_{n-v} Q_v \sum_{r=0}^{v} u_{r}^{-1/k^*} y_r \]
\[= \sum_{r=0}^{n} u_{r}^{-1/k^*} \sum_{v=r}^{n} C_{n-v} Q_v y_r = \sum_{r=0}^{n} u_{r}^{-1/k^*} G_{nr} y_r \]
where \(G_{nr} \) is defined by (2.3), and so, for \(n \geq 1 \),
\[\tilde{y}_n = \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^{n} P_{r-1} \epsilon_r a_r \]
\[= \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^{n} P_{r-1} \epsilon_r \sum_{m=1}^{r} u_{m}^{-1/k^*} G_{rm} y_m \]
\[= \frac{p_n}{P_n P_{n-1}} \sum_{m=1}^{\infty} \left(u_{m}^{-1/k^*} \sum_{r=m}^{n} P_{r-1} \epsilon_r G_{rm} \right) y_m \]
\[= \sum_{m=1}^{n} b_{nm} y_m \]
where
\[b_{nm} = \begin{cases} u_{m}^{-1/k^*} \frac{p_n}{P_n P_{n-1}} \sum_{r=m}^{n} P_{r-1} \epsilon_r G_{rm}, & \text{if } m \leq n, \\ 0, & \text{if } m > n. \end{cases} \tag{2.5} \]

Then, \(\tilde{y} \in l \) whenever \(y \in l_k \) if and only if
\[\sum_{m=1}^{\infty} \left(\sum_{n=m}^{\infty} |b_{nm}| \right)^{k^*} < \infty \]
by Lemma 2.1, which is same as the condition (2.2). This completes the proof. \(\square \)

It may be remarked that in the special case \(q_n = A_n^{-1} \) and \(u_n = n \), Theorem 2.3 reduces to Theorem 1.1. In fact, in this case it is obvious that \(\left| N, q_n, u_n \right| \right| = \left| C, a \right| \right\|. \) Also, we recall the following well known equality of Bosanquet and Das [3], for \(\alpha \neq -1, -2, \ldots, v \geq 1, \)
\[\sum_{r=v}^{n} A_r^\alpha A_{n-r}^{-\alpha - 2} = \frac{v A_v^\alpha A_{n-v}^{-\alpha - 1}}{n}, \tag{2.6} \]
Now, it is easy to see that \(C_0 = A_0^{-a-2} = 1 \), \(C_n = A_n^{-a-2} \) and \(A_n^{a} = 0 \) for \(n \geq 1 \), and so, since

\[
G_{rm} = \sum_{v=m}^{r} A_v^a A_{r-v}^{-a-2} = \frac{mA_m^{a} A_{r-m}^{-a-1}}{r}, 1 \leq r \leq v, \text{ and } 0 \text{ for } r > v,
\]

by using (2.6), we get the matrix \(B = (b_{nm}) \) as

\[
b_{nm} = \begin{cases}
\frac{m^{1/k} A_m^{a} p_n}{p_n^{1} p_{n-1}^{1}} & \text{if } m \leq n \\
0 & \text{if } m > n.
\end{cases}
\]

So by \(A_n^{a} \sim n^{a}/\Gamma (\alpha + 1) \) for \(\alpha > -1 \) [4], it follows from applying Lemma 2.1 to the matrix \(B \) that (2.2) is the same as (1.4), as asserted.

Note that \(1 \in (X, Y) \) leads us to a comparison of summability fields of methods \(X \) and \(Y \), where \(1 = (1, 1, \ldots) \). So taking \(\epsilon_n = u_n = 1 \) for all \(n \geq 1 \) in Theorem 2.3 we get the following result.

Corollary 2.4. If \(k > 1 \), then \(1 \in (|N, q_n|_k, |\bar{N}, p_n|) \) if and only if

\[
\sum_{m=1}^{\infty} \left(\sum_{n=m}^{\infty} \frac{p_n^{1}}{p_n^{1} p_{n-1}^{1}} \right)^{k^{*}} < \infty. \tag{2.7}
\]

This result also extends the following result of Kayashima [6] to \(k > 1 \).

Corollary 2.5. If \(\{p_n\} \) and \(\{q_n\} \) are positive and nonincreasing sequences and \(\{q_{n+1}/q_n\} \) is nondecreasing, then \(1 \in (|N, q_n|, |\bar{N}, p_n|) \).

Theorem 2.6. Let \(k \geq 1 \) and \(\{u_n\} \) be a sequence of nonnegative terms. Then, \(\epsilon \in (|\bar{N}, p_n|, |N, q_n, u_n|_k) \) if and only if

\[
\sup_{v} \left\{ u_n^{1/k^*} \left| \frac{\epsilon v^q P_v}{Q v^q P_v} \right| \right\} < \infty \tag{2.8}
\]

and

\[
\sup_{n=1}^{\infty} \left| u_n^{1/k^*} \left(\Omega_{nv}^q \epsilon v^q P_v - \Omega_{n+1}^q \epsilon v^q P_{v+1} P_v \right) \right|^{k} < \infty, \tag{2.9}
\]

where

\[
\Omega_{nv}^q = \frac{Q_{n-v}^{q} Q_{n-1}}{Q_{n-1}^{q}}, Q_{-1} = 0. \tag{2.10}
\]

Proof. As in proof of Theorem 2.3, we define sequences \(y = (y_n) \) and \(\tilde{y} = (\tilde{y}_n) \) by \(y_0 = \epsilon_0 a_0 \),

\[
y_n = u_n^{1/k^*} (t_n - t_{n-1}) = u_n^{1/k^*} \sum_{v=0}^{n} \left(\frac{Q_{n-v}^{q} Q_{n-1} - Q_{n-v-1}^{q} Q_{n-1}}{Q_{n-1}^{q}} \right) \epsilon v^q a_v, n \geq 1 \tag{2.11}
\]
\[\bar{y}_0 = a_0, \bar{y}_n = T_n - T_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{r=1}^{n} P_{r-1} a_r, \ n \geq 1 \] (2.12)

Then, \(\epsilon \in (|\tilde{N}, p_n|, |N, q_n, u_n|) \) iff \(y \in l_k \) whenever \(\tilde{y} \in l \). On the other hand, from (2.12) we write
\[
a_n = \frac{p_n}{P_n} \bar{y}_n - \frac{p_{n-1}}{P_{n-1}} \bar{y}_{n-1}, \ n \geq 1 \text{ and } a_0 = \bar{y}_0
\]
Hence, by (2.11) we get
\[
y_n = u_n^{1/k^*} \sum_{v=1}^{n} \Omega^q_{nv} \epsilon_v a_v = u_n^{1/k^*} \sum_{v=1}^{n} \Omega^q_{nv} \epsilon_v \left(\frac{P_v}{P_v} \tilde{y}_v - \frac{P_{v-1}}{P_{v-1}} \tilde{y}_{v-1} \right)
\]
\[
= u_n^{1/k^*} \left\{ \Omega^q_{n\infty} \epsilon_n \frac{p_n}{P_n} \bar{y}_n + \sum_{v=1}^{n-1} \left(\Omega^q_{nv} \epsilon_v \frac{P_v}{P_v} - \Omega^q_{n,v+1} \epsilon_{v+1} \frac{P_{v-1}}{P_v} \right) \tilde{y}_v \right\}
\]
\[
= \sum_{v=1}^{n} c_{nv} \tilde{y}_v
\]
where
\[
c_{nv} = \begin{cases}
 u_n^{1/k^*} \left(\Omega^q_{nv} \epsilon_v \frac{p_n}{P_n} - \Omega^q_{n,v+1} \epsilon_{v+1} \frac{P_{v-1}}{P_v} \right), & 1 \leq v \leq n - 1 \\
 u_n^{1/k^*} \Omega^q_{n\infty} \epsilon_n \frac{p_n}{P_n}, & v = n \\
 0, & v > n.
\end{cases}
\]
So \(y \in l_k \) whenever \(\tilde{y} \in l \) if and only if
\[
\sup_v \sum_{n=v}^{\infty} |c_{nv}|^k < \infty
\]
by Lemma 2.2 or, equivalently,
\[
\sup_v \left\{ u_v^{1/k^*} \left| \frac{\epsilon_v P_v}{Q_v P_v} \right| \right\} < \infty, \ v \geq 1
\]
and
\[
\sup_v \sum_{n=v+1}^{\infty} \left| u_n^{1/k^*} \left(\Omega^q_{nv} \epsilon_v \frac{P_v}{P_v} - \Omega^q_{n,v+1} \epsilon_{v+1} \frac{P_{v-1}}{P_v} \right) \right|^k < \infty.
\]
Thus the proof is completed.

\[\Box \]

Corollary 2.7. If \(k \geq 1 \), then, \(1 \in (|\tilde{N}, p_n|, |N, q_n|) \) if and only if
\[
\sup_v \left\{ u_v^{1/k^*} \left| \frac{P_v}{Q_v P_v} \right| \right\} < \infty
\]
(2.13)
and
\[
\sup_v \sum_{n=v+1}^{\infty} \left| u_n^{1/k^*} \left(\Omega^q_{nv} \frac{P_v}{P_v} - \Omega^q_{n,v+1} \frac{P_{v-1}}{P_v} \right) \right|^k < \infty.
\]
(2.14)
Proof. Put $\epsilon_n = 1$ and $u_n = n$ for all $n \geq 1$ in Theorem 2.6.

This result, for $k = 1$, reduces to the following theorem of Kayashima [6].

Corollary 2.8. If (p_n) and (q_n) are positive and nondecreasing sequences and (q_{n+1}/q_n) is nonincreasing, then $1 \in (\bar{N}, p_n, |N, q_n|)$.

Proof. By considering that (p_n) and (q_n) are positive and nondecreasing sequences, we have

$$\frac{p_n}{Q_n p_n} \leq \frac{n + 1}{Q_n} \leq q_0^{-1} \text{ for all } n \geq 0.$$

Also, by hypotheses on the sequence (q_n), it converges to a number, $\lim \frac{q_{n+1}}{q_n} = \sigma$ say. So, there exists a nonincreasing null sequence (x_n) such that $q_{n+1} = \sigma + x_n q_n$ for all $n \geq 0$, where $\sigma \geq 1$. Then, it can be written that

$$Q_n = q_0 + \sigma Q_{n-1} + \sum_{v=1}^{n} q_{v-1} x_{v-1}$$

which gives

$$\frac{Q_n}{Q_{n-1}} = \frac{q_0}{Q_{n-1}} + \sigma + Z_n \to \sigma \text{ as } n \to \infty \quad (2.15)$$

where

$$Z_n = \frac{1}{Q_{n-1}} \sum_{v=1}^{n} q_{v-1} x_{v-1}$$

Since (x_n) is nonincreasing, it is easily seen that (Z_n) is nonincreasing, which implies that (Q_n/Q_{n-1}) is nonincreasing. So it follows that, for $0 \leq v \leq n$,

$$\Omega_n^q = \frac{Q_{n-1}}{Q_n} \left(\frac{Q_n}{Q_{n-1}} - \frac{Q_n}{Q_{n-1}} \right) \geq 0$$

Further,

$$C_{n,v} = \Omega_n^q \frac{P_v}{P_n} - \Omega_{n,v+1}^q \frac{P_{v+1}}{P_n} \geq 0.$$

In fact, if $q_{n-v}/Q_n - q_{n-v-1}/Q_{n-1} \geq 0$, then it is clear that $C_{n,v} \geq 0$, since

$$C_{n,v} = \frac{P_v}{P_n} \left(\frac{q_{n-v}}{Q_n} - \frac{q_{n-v-1}}{Q_{n-1}} \right) + \Omega_{n,v+1}^q.$$

If $q_{n-v}/Q_n - q_{n-v-1}/Q_{n-1} < 0$, then, it can be deduced from the condition on (q_n) that

$$\frac{q_{n-v}}{Q_n} - \frac{q_{n-v-1}}{Q_{n-1}} \geq \frac{q_{n-v-1}}{Q_n} \left(\frac{q_{n-m}}{Q_n} - \frac{Q_n}{Q_{n-1}} \right) \geq \frac{q_{n-m}}{Q_n} - \frac{q_{n-m} - 1}{Q_{n-1}} \text{ for all } m \leq v,$$
which implies

\[
\nu \left(\frac{q_{n-v}}{Q_n} - \frac{q_{n-v-1}}{Q_{n-1}} \right) \geq \sum_{m=0}^{v-1} \left(\frac{q_{n-m}}{Q_n} - \frac{q_{n-m-1}}{Q_{n-1}} \right) = -\Omega_n^q.
\]

Also, since \((p_v)\) is a positive nondecreasing sequence, we can write \(P_v \leq v p_v\) for all \(v \geq 1\), which gives us, by (2.17),

\[
\frac{P_v}{p_v} \left(\frac{q_{n-v}}{Q_n} - \frac{q_{n-v-1}}{Q_{n-1}} \right) \geq -\frac{P_v}{v p_v} \Omega_n^q \geq -\Omega_n^q.
\]

This means that \(C_{n,v} \geq 0\) for \(0 \leq v \leq n\). Hence, by considering (2.15), we have

\[
\sup_v \sum_{n=v+1}^{\infty} \left| \frac{P_v}{p_v} \Omega_n^q - \frac{P_v-1}{p_v} \Omega_{n,v+1}^q \right| = \sup_v \lim_m \sum_{n=v+1}^{m} \left(\frac{P_v}{p_v} \Omega_n^q - \frac{P_v-1}{p_v} \Omega_{n,v+1}^q \right)
\]

\[
\leq \sup_v \lim_m \left[\frac{P_v}{p_v} \left(\frac{Q_{m-v}}{Q_m} - \frac{q_0}{Q_v} \right) - \frac{P_v-1}{p_v} \frac{Q_{m-v-1}}{Q_m} \right]
\]

\[
= \sup_v \left[\frac{P_v}{p_v} \left(\frac{1}{\sigma^v} - \frac{q_0}{Q_v} \right) - \frac{P_v-1}{p_v} \sigma^{v-1} \right] < \infty,
\]

which completes the proof. \(\square\)

Further the following result of [12] is obtained form Corollary 2.7 by choosing \(q_n = 1\) for \(n \geq 1\).

Corollary 2.9. If \(k \geq 1\), then, \(1 \in (\tilde{N}, p_n, |C, 1|_k)\) if and only if

\[
\sup_v \frac{P_v}{v^{1/k} p_v} < \infty.
\]

References

Department of Mathematics, Pamukkale University, TR-20007 Denizli, Turkey.

E-mail: gchazar@pau.edu.tr

Department of Mathematics, Pamukkale University, TR-20007 Denizli, Turkey.

E-mail: msarigol@pau.edu.tr