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ON FACTOR RELATIONS BETWEEN WEIGHTED AND
NÖRLUND MEANS

G. CANAN HAZAR GÜLEÇ AND MEHMET ALI SARIGÖL

Abstract. By (X ,Y ) , we denote the set of all sequences ǫ = (ǫn) such thatΣǫn an is summable
Y whenever Σan is summable X , where X and Y are two summability methods. In
this study, we get necessary and sufficient conditions for ǫ ∈

(∣

∣N , qn ,un

∣

∣

k ,
∣

∣N̄ , pn

∣

∣

)

and
ǫ ∈

(∣

∣N̄ , pn

∣

∣ ,
∣

∣N , qn ,un

∣

∣

k

)

, k ≥ 1, using functional analytic tecniques, where
∣

∣N̄ , pn

∣

∣ and
∣

∣N , qn ,un

∣

∣

k are absolute weighted and Nörlund summability methods, respectively, [1],
[5]. Thus, in the special case, some well known results are also deduced.

1. Introduction

Let A = (anv ) be an infinite matrix of complex numbers, Σav be a given infinite series

with nth partial sum sn and (un) be a sequence of nonnegative terms. Then the series Σav is

called summable |A,un |k , k ≥ 1, if (see [16])

∞
∑

n=0
uk−1

n |An(s)− An−1(s)|k <∞, A−1(s)= 0, (1.1)

where A(s) = (An(s)) , the A-transform sequence of the sequence s = (sn) , i.e.,

An(s)=
∞
∑

ν=0
anνsν

converges for n ≥ 0. Note that if A is chosen as the Nörlund matrix (r esp.un = n), then the

summability |A,un |k reduces to the absolute Nörlund summability
∣

∣N , pn ,un

∣

∣

k [5] (r esp. the

summability
∣

∣N , pn

∣

∣

k , Borwein and Cass [2]), and also
∣

∣N , pn

∣

∣

1 =
∣

∣N , pn

∣

∣ , Mears [9]. Further,

if pn =
(

α+n−1
n

)

and un = n, then the summability
∣

∣N , pn ,un

∣

∣

k is the same as the summability

|C ,α|k in Flett’s notation [4]. By a Nörlund matrix we mean one that

anv =

{

pn−v /Pn , 0 ≤ v ≤n

0, v >n,
(1.2)
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where
(

pn

)

is a sequence of complex numbers with Pn = p0 +p1 +·· ·+pn 6= 0, P−(n+1) = 0 for

n ≥ 0. Also, if A = (anν) is the weighted matrix (r esp.un = Pn/pn), i.e.

anν =

{

pv /Pn , 0 ≤ v ≤ n

0, v > n
(1.3)

then the summability |A,un |k reduces to the summability
∣

∣N̄ , pn ,un

∣

∣

k (r esp. the summability
∣

∣N̄ , pn

∣

∣

k , Bor [1]), where
(

pn

)

is a sequence of positive numbers such that Pn = p0 +p1 +·· ·+

pn →∞ as n →∞, Sulaiman [22]. For example, for the summability
∣

∣N̄ , pn

∣

∣

k , the condition

(1.1) may be stated as
∞
∑

n=1

∣

∣

∣

∣

∣

1

Pn−1

(

pn

Pn

)1/k∗
∞
∑

v=1
Pv−1av

∣

∣

∣

∣

∣

k

<∞.

Throughout this paper, k∗is the conjugate of k > 1, i.e., 1/k +1/k∗ = 1, and 1/k∗ = 0 for

k = 1.

For any real α and integers n ≥ 0, we define

∆
α
ǫn =

∞
∑

v=n

A−α−1
v−n ǫv

whenever the series on right side of equality is convergent.

Let ǫ be a sequence and X and Y be two methods of summability. If Σǫn an is summable

Y whenever Σan is summable X , then ǫ is said to be a summability factor of type (X ,Y ) and

we denote it by ǫ ∈ (X ,Y ) [3] . The problems of summability factors dealing with absolute

Cesàro and absolute weighted mean summabilities were widely examined by many authors

(see [1-4], [8-11] , [13-21]) et al. For example, for α≥ 0, k > 1, the summability factors of type
(

|C ,α| ,
∣

∣N̄ , pn

∣

∣

)

,
(

|C ,α|k ,
∣

∣N̄ , pn

∣

∣

)

, (|C ,α|k , |C ,1|) and
(

|C ,1|k ,
∣

∣N̄ , pn

∣

∣

)

were characterized by

Mohapatra [11], Mazhar [8], Mehdi [10], Sarıgöl and Bor [17] and Sarıgöl [18], respectively. In

a more recent paper, Sarıgöl [13] has extended these classes to α >−1 and arbitrary positive

sequence
(

pn

)

in the following form.

Theorem 1.1. Let α>−1 and
(

pn

)

be arbitrary sequence of positive numbers. Then, necessary

and sufficient condition for ǫ ∈
(

|C ,α|k ,
∣

∣N̄ , pn

∣

∣

)

,k > 1, is

∞
∑

m=1
mαk∗+k∗−1

(

∞
∑

n=m

pn

PnPn−1

∣

∣

∣

∣

∞
∑

r=m

A−α−1
r−m

ǫr

r
Pr−1

∣

∣

∣

∣

)k∗

<∞. (1.4)

2. Main results

The purpose of this study is to generalize Theorem 1.1 by using Nörlund mean in place

of Cesàro mean. Hence we characterize both classes
(∣

∣N , qn ,un

∣

∣

k ,
∣

∣N̄ , pn

∣

∣

)

and
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(∣

∣N̄ , pn

∣

∣ ,
∣

∣N , qn,un

∣

∣

k

)

, which gives us more than we need. In the special cases, some well

known results are also deduced.

Before stating the theorems we recall the following lemmas which plays important role

for the proof our theorems.

Lemma 2.1. Let 1 < k <∞. Then, A(x) ∈ ℓ whenever x ∈ ℓk if and only if

∞
∑

v=0

(

∞
∑

n=0

|anv |

)k∗

<∞,

where ℓk =
{

x = (xν) : Σ |xν|
k <∞

}

[13].

Lemma 2.2. Let 1 ≤ k <∞. Then, A(x) ∈ ℓk whenever x ∈ ℓ if and only if

sup
v

∞
∑

n=0

|anv |
k
<∞,

[7].

Now we begin with the theorem characterizing the class
(∣

∣N , qn,un

∣

∣

k ,
∣

∣N̄ , pn

∣

∣

)

.

Theorem 2.3. Let q0 be a non-zero number, (un) be a sequence of positive terms and (Cn) be a

sequence satisfying
n
∑

v=0
Qn−vCv =

{

1, n = 0

0, n ≥ 1.
(2.1)

Then necessary and sufficient condition for ǫ ∈
(
∣

∣N , qn,un

∣

∣

k ,
∣

∣N̄ , pn

∣

∣

)

, k > 1, is

∞
∑

m=1

1

um

(

∞
∑

n=m

∣

∣

∣

∣

pn

PnPn−1

n
∑

r=m

Pr−1ǫr Gr m

∣

∣

∣

∣

)k∗

<∞ (2.2)

where

Gnr =

n
∑

v=r

Cn−vQv . (2.3)

Proof. Let (tn) and (Tn) be the sequences of Nörlund mean
(

N , qn

)

and weighted mean
(

N̄ , pn

)

of the series Σan and Σǫn an , respectively, i.e

tn =
1

Qn

n
∑

ν=0
qn−νsν =

1

Qn

n
∑

ν=0
Qn−νaν

and

Tn =
1

Pn

n
∑

ν=0
(Pn −Pν−1)ǫνaν.

Then we define sequences y =
(

yn

)

and ỹ =
(

ỹn

)

by

yn = u1/k∗

n (tn − tn−1) (2.4)
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and

ỹn = Tn −Tn−1 =
pn

PnPn−1

n
∑

r=1
Pr−1ǫr ar , n ≥ 1 and ỹ0 = a0ǫ0

Then, ǫ ∈
(∣

∣N , qn,un

∣

∣

k ,
∣

∣N̄ , pn

∣

∣

)

if and only if ỹ ∈ l whenever y ∈ lk . On the other hand, since

q0 is a non-zero, there exists a sequence (Cn) satisfying (2.1) and therefore it follows that

tn =
1

Qn

n
∑

v=0
Qn−v av if and only if an =

n
∑

v=0
Cn−vQv tv .

Hence we get from (2.4),

an =

n
∑

v=0
Cn−vQv

ν
∑

r=0
u−1/k∗

r yr

=

n
∑

r=0
u−1/k∗

r

n
∑

v=r
Cn−vQv yr =

n
∑

r=0
u−1/k∗

r Gnr yr

where Gnr is defined by (2.3), and so, for n ≥ 1,

ỹn =
pn

PnPn−1

n
∑

r=1
Pr−1ǫr ar

=
pn

PnPn−1

n
∑

r=1
Pr−1ǫr

r
∑

m=1
u−1/k∗

m Gr m ym

=
pn

PnPn−1

n
∑

m=1

(

u−1/k∗

m

n
∑

r=m

Pr−1ǫr Gr m

)

ym

=

n
∑

m=1
bnm ym

where

bnm =











u−1/k∗

m pn

PnPn−1

∑n
r=m Pr−1ǫr Gr m , m ≤ n

0, m > n.

(2.5)

Then, ỹ ∈ l whenever y ∈ lk if and only if

∞
∑

m=1

(

∞
∑

n=m

|bnm |

)k∗

<∞

by Lemma 2.1, which is same as the condition (2.2). This completes the proof. ���

It may be remarked that in the special case qn = Aα−1
n and un = n, Theorem 2.3 reduces

to Theorem 1.1. In fact, in this case it is obvious that
∣

∣N , qn,un

∣

∣

k = |C ,α|k . Also, we recall the

following well known equality of Bosanquet and Das [3], for α 6= −1,−2, . . . , v ≥ 1,

n
∑

r=v

Aα

r A−α−2
n−r =

v Aα
v A−α−1

n−v

n
, (2.6)
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Now, it is easy to see that C0 = A−α−2
0 = 1, Cn = A−α−2

n and Aα
−n = 0 for n ≥ 1, and so, since

Gr m =

r
∑

ν=m

Aα

ν A−α−2
r−ν =

m Aα
m A−α−1

r−m

r
,1 ≤ r ≤ v, and 0 for r > v,

by using (2.6), we get the matrix B = (bnm) as

bnm =











m1/k Aα
m pn

PnPn−1

n
∑

r=m
A−α−1

r−m

ǫr

r
Pr−1, m ≤n

0, m >n.

So by Aα
n ∼ nα/Γ (α+1) for α>−1 [4], it follows from applying Lemma 2.1 to the matrix B that

(2.2) is the same as (1.4), as asserted.

Note that 1 ∈ (X ,Y ) leads us to a comparison of summability fields of methods X and

Y , where 1 = (1,1, . . .) . So taking ǫn = un = 1 for all n ≥ 1 in Theorem 2.3 we get the following

result.

Corollary 2.4. If k > 1, then, 1 ∈
(∣

∣N , qn

∣

∣

k ,
∣

∣N̄ , pn

∣

∣

)

if and only if

∞
∑

m=1

(

∞
∑

n=m

∣

∣

∣

∣

pn

PnPn−1

n
∑

r=m

Pr−1Gr m

∣

∣

∣

∣

)k∗

<∞. (2.7)

This result also extends the following result of Kayashima [6] to k > 1.

Corollary 2.5. If
(

pn

)

and
(

qn

)

are positive and nonincreasing sequences and
(

qn+1/qn

)

is

nondecreasing, then 1 ∈
(∣

∣N , qn

∣

∣ ,
∣

∣N̄ , pn

∣

∣

)

.

Theorem 2.6. Let k ≥ 1 and (un) be a sequence of nonnegative terms. Then,

ǫ ∈
(∣

∣N̄ , pn

∣

∣ ,
∣

∣N , qn ,un

∣

∣

k

)

if and only if

sup
ν

{

u1/k∗

ν

∣

∣

∣

∣

ǫνPv

Qv pν

∣

∣

∣

∣

}

<∞ (2.8)

and

sup
ν

∞
∑

n=v+1

∣

∣

∣

∣

u1/k∗

n

(

Ω
q
nνǫν

Pν

pν

−Ω
q
n,ν+1ǫν+1

Pν−1

pν

)∣

∣

∣

∣

k

<∞, (2.9)

where

Ω
q
nν =

Qn−ν

Qn
−

Qn−ν−1

Qn−1
,Q−1 = 0. (2.10)

Proof. As in proof of Theorem 2.3, we define sequences y =
(

yn

)

and ỹ =
(

ỹn

)

by y0 = ǫ0a0,

yn = u1/k∗

n (tn − tn−1) = u1/k∗

n

n
∑

ν=0

(

Qn−ν

Qn
−

Qn−ν−1

Qn−1

)

ǫνaν,n ≥ 1 (2.11)
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ỹ0 = a0, ỹn = Tn −Tn−1 =
pn

PnPn−1

n
∑

r=1
Pr−1ar , n ≥ 1 (2.12)

Then, ǫ ∈
(
∣

∣N̄ , pn

∣

∣ ,
∣

∣N , qn ,un

∣

∣

k

)

iff y ∈ lk whenever ỹ ∈ l . On the other hand, from (2.12) we

write

an =
Pn

pn
ỹn −

Pn−2

pn−1
ỹn−1,n ≥ 1 and a0 = ỹ0

Hence, by (2.11) we get

yn = u1/k∗

n

n
∑

ν=1
Ω

q
nνǫνaν = u1/k∗

n

n
∑

ν=1
Ω

q
nνǫν

(

Pν

pν

ỹν−
Pν−2

pν−1
ỹν−1

)

= u1/k∗

n

{

Ω
q
nnǫn

Pn

pn
ỹn +

n−1
∑

ν=1

(

Ω
q
nνǫν

Pν

pν

−Ω
q
n,ν+1ǫν+1

Pν−1

pν

)

ỹν

}

=

n
∑

ν=1
cnν ỹν

where

cnν =















u1/k∗

n

(

Ω
q
nνǫν

Pν

pν
−Ω

q
n,ν+1ǫν+1

Pν−1

pν

)

, 1 ≤ν≤ n −1

u1/k∗

n Ω
q
nnǫn

Pn

pn
, ν= n

0, ν> n.

So y ∈ lk whenever ỹ ∈ l if and only if

sup
ν

∞
∑

n=v

|cnν|
k
<∞

by Lemma 2.2 or, equivalently,

sup
ν

{

u1/k∗

ν

∣

∣

∣

∣

ǫνPv

Qv pν

∣

∣

∣

∣

}

<∞, ν≥ 1

and

sup
ν

∞
∑

n=v+1

∣

∣

∣

∣

u1/k∗

n

(

Ω
q
nνǫν

Pν

pν

−Ω
q
n,ν+1ǫν+1

Pν−1

pν

)
∣

∣

∣

∣

k

<∞.

Thus the proof is completed. ���

Corollary 2.7. If k ≥ 1, then, 1 ∈
(
∣

∣N̄ , pn

∣

∣ ,
∣

∣N , qn

∣

∣

k

)

if and only if

sup
ν

{

v 1/k∗

∣

∣

∣

∣

Pv

Qv pν

∣

∣

∣

∣

}

<∞ (2.13)

and

sup
ν

∞
∑

n=v+1

∣

∣

∣

∣

n1/k∗

(

Ω
q
nν

Pν

pν

−Ω
q
n,ν+1

Pν−1

pν

)∣

∣

∣

∣

k

<∞. (2.14)
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Proof. Put ǫn = 1 and un = n for all n ≥ 1 in Theorem 2.6.

This result, for k = 1, reduces to the following theorem of Kayashima [6].

Corollary 2.8. If
(

pn

)

and
(

qn

)

are positive and nondecreasing sequences and
(

qn+1/qn

)

is

nonincreasing, then 1 ∈
(∣

∣N̄ , pn

∣

∣ ,
∣

∣N , qn

∣

∣

)

.

Proof. By considering that
(

pn

)

and
(

qn

)

are positive and nondecreasing sequences, we have

Pn

Qn pn
≤

n +1

Qn
≤ q−1

0 for all n ≥ 0.

Also, by hypotheses on the sequence
(

qn

)

, it converges to a number, limn qn+1/qn =σ say. So,

there exists a nonincreasing null sequence (xn) such that qn+1 = (σ+xn)qn for all n ≥ 0, where

σ≥ 1. Then, it can be written that

Qn = q0 +σQn−1 +

n
∑

v=1
qv−1xv−1

which gives
Qn

Qn−1
=

q0

Qn−1
+σ+Zn →σ as n →∞ (2.15)

where

Zn =
1

Qn−1

n
∑

v=1
qv−1xv−1

Since (xn) is nonincreasing, it is easily seen that (Zn) is nonincreasing, which implies that

(Qn/Qn−1) is nonincreasing. So it follows that, for 0 ≤ v ≤ n,

Ω
q
nν =

Qn−v−1

Qn

(

Qn−v

Qn−v−1
−

Qn

Qn−1

)

≥ 0

Further,

Cnv =Ω
q
nν

Pν

pν

−Ω
q
n,ν+1

Pν−1

pν

≥ 0.

In fact, if qn−v /Qn −qn−v−1/Qn−1 ≥ 0, then it is clear that Cnv ≥ 0, since

Cnv =
Pν

pν

(

qn−v

Qn
−

qn−v−1

Qn−1

)

+Ω
q
n,ν+1. (2.16)

If qn−v /Qn −qn−v−1/Qn−1 < 0, then, it can be deduced from the condition on
(

qn

)

that

qn−v

Qn
−

qn−v−1

Qn−1
≥

qn−v−1

Qn

(

qn−m

qn−m−1
−

Qn

Qn−1

)

≥
qn−m

Qn
−

qn−m−1

Qn−1
, 0 ≤ m ≤ v,
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which implies

v

(

qn−v

Qn
−

qn−v−1

Qn−1

)

≥

v−1
∑

m=0

(

qn−m

Qn
−

qn−m−1

Qn−1

)

=−Ω
q
nv .

Also, since
(

pv

)

is a positive nondecreasing sequence, we can write Pv ≤ v pv for all v ≥ 1,

which gives us, by (2.17),

Pν

pν

(

qn−v

Qn
−

qn−v−1

Qn−1

)

≥−
Pν

v pν

Ω
q
nv ≥−Ω

q
nv .

This means that Cnv ≥ 0 for 0≤ v ≤ n. Hence, by considering (2.15), we have

sup
v

∞
∑

n=v+1

∣

∣

∣

∣

Pν

pν

Ω
q
nν−

Pν−1

pν

Ω
q
n,ν+1

∣

∣

∣

∣

= sup
v

lim
m

m
∑

n=v+1

(

Pν

pν

Ω
q
nν−

Pν−1

pν

Ω
q
n,ν+1

)

≤ sup
v

lim
m

[

Pν

pν

(

Qm−v

Qm
−

q0

Qv

)

−
Pv−1Qm−ν−1

pvQm

]

= sup
v

[

Pν

pν

(

1

σv
−

q0

Qv

)

−
Pv−1

pvσ
v−1

]

<∞,

which completes the proof. ���

Further the following result of [12] is obtained form Corollary 2.7 by choosing qn = 1 for

n ≥ 1.

Corollary 2.9. If k ≥ 1, then, 1 ∈
(∣

∣N̄ , pn

∣

∣ , |C ,1|k
)

if and only if

sup
ν

Pv

v 1/k pν

<∞.
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