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ON THE PLANARITY AND PERFECTNESS OF

ANNIHILATOR IDEAL GRAPHS

REZA NIKANDISH, MOHAMMAD JAVAD NIKMEHR AND SEYEDEH MASOUMEH HOSSEINI

Abstract. Let R be a commutative ring with unity. The annihilator ideal graph of R, de-

noted by ΓAnn(R), is a graph whose vertices are all non-trivial ideals of R and two dis-

tinct vertices I and J are adjacent if and only if I ∩AnnR (J ) 6= {0} or J ∩AnnR (I ) 6= {0}. In

this paper, all rings with planar annihilator ideal graphs are classified. Furthermore, we

show that all annihilator ideal graphs are perfect. Among other results, it is proved that if

ΓAnn(R) is a tree, then ΓAnn(R) is star.

1. Introduction

First we recall some necessary notation and terminology from ring theory and graph the-

ory.

Throughout this paper, R denotes a unitary commutative ring which is not an integral

domain. The sets of all zero-divisors, nilpotent elements, non-trivial ideals, non-trivial nilpo-

tent ideals and minimal prime ideals of R are denoted by Z (R), Nil(R), I(R), IN (R) and Min(R),

respectively. For a subset T of a ring R we let T ∗ = T \ {0}. A non-zero ideal of R is called

essential, if I has a non-zero intersection with any non-zero ideal of R . The ring R is said to

be reduced if it has no non-zero nilpotent element. We say that depth(R) = 0, whenever every

non-unit element of R is a zero-divisor. Also, x ∈ R is called regular, if it is neither unit nor

zero-divisor. For any undefined notation or terminology in ring theory, we refer the reader to

[3, 11].

Let G = (V ,E ) be a graph, where V = V (G) is the set of vertices and E = E (G) is the set of

edges. If x, y are adjacent vertices, then we write x−−y . By G , diam(G) and gr(G), we mean the

complement, the diameter and the girth of G , respectively. A complete bipartite graph with

part sizes m and n is denoted by Km,n . If the size of one of the parts is 1, then the graph is said

to be a star graph. Also, a complete graph and a cycle of order n are denoted by Kn and Cn ,

respectively. For any x ∈ V (G), deg(x) represents the degree of x. The graph H = (V0,E0) is a
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subgraph of G if V0 ⊆V and E0 ⊆ E . Moreover, H is called an induced subgraph by V0, if V0 ⊆V

and E0 = {{u, v} ∈ E |u, v ∈V0}. The subdivision of G is a graph obtained from G by subdividing

some of the edges, that is, by replacing the edges by paths having at most their endvertices

in common. A graph G is said to null if it has no edge. A clique of G is a complete subgraph

of G and the number of vertices in a largest clique of G denoted by ω(G), is called the clique

number of G . The chromatic number of G , denoted by χ(G), is the minimum number of colors

which can be assigned to the vertices of G in such a way that every two adjacent vertices have

different colors. A graph G is said to be weakly perfect if ω(G) = χ(G). Moreover G is called

perfect if every induced subgraph of G is weakly perfect. Let G and H be two arbitrary graphs.

By G ∨ H , we denote the join of G and H . A graph G is said to be planar if it can be drawn

on the plane in such a way that its edges intersect only at their endpoints. For any undefined

notation or terminology in graph theory, we refer the reader to [6, 7].

Assigning a graph to a ring gives us the ability to translate algebraic properties of rings

into graph theory language and vice versa. It leads to arising interesting algebraic and com-

binatorics problems. Therefore, the study of graphs associated with rings has attracted many

researches. There are a lot of papers which apply combinatorial methods to obtain algebraic

results in ring theory (see for instance [1], [4], [12] and [13]). Moreover, for the most recent

study in this direction see [8] and [13]. The annihilator ideal graph of a ring R , denoted by

ΓAnn(R), is a simple graph with the vertex set I(R) and two distinct vertices I and J are ad-

jacent if and only if I ∩AnnR (J) 6= {0} or J ∩AnnR (I ) 6= {0}. This graph was first introduced

and studied in [2]. Some of basic properties of ΓAnn(R) and conditions under which ΓAnn(R) is

complete or complete bipartite may be found in [2]. After that authors in [9] studied the clique

number and chromatic number of ΓAnn(R). In this paper, first we complete the study of basic

properties of ΓAnn(R). And then, the planarity and perfectness of ΓAnn(R) are investigated.

2. Complete bipartite annihilator ideal graphs

Let R be a ring. In this section, we show that ΓAnn(R) is tree if and only if it is complete

bipartite if and only if it is star.

We first recall the following useful lemma from [9].

Lemma 2.1. [9, Lemma 2.1] Let R be a ring and I , J ∈ I(R). Then the following statements hold.

(i) If I −−J is not an edge of ΓAnn(R), then AnnR (I )= AnnR (J). Moreover, if R is a reduced ring,

then the converse is also true.

(ii) If I ∩AnnR (I ) 6= {0}, then I is adjacent to every other vertex.

(iii) If AnnR (I )= {0} and AnnR (J) 6= {0}, then I −−J is an edge of ΓAnn(R).

To prove Theorem 2.1, we state the following lemma.
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Lemma 2.2. Let R be a ring. If I and J are adjacent in ΓAnn(R), then the following statements

hold.

(i) If ΓAnn(R) is triangle free, then AnnR (I ) 6= AnnR (J).

(ii) Either I −−K or J −−K , for every K ∈ I(R) \ {I , J }.

Proof. (i) If ΓAnn(R) = K2, then it is not hard to check that I J = 0 and so AnnR (I ) 6= AnnR (J).

Thus assume that ΓAnn(R) has at least three vertices. Since I and J are adjacent, without loss

of generality we may suppose that I ∩AnnR (J) 6= {0}. Thus AnnR (J) 6= {0}. Suppose to the

contrary, AnnR (I )= AnnR (J) and consider the following cases:

Case 1. I 6= AnnR (I ). Since I AnnR (I ) = 0 and JAnnR (I ) = 0, I −−AnnR (I )−−J −−I is a triangle in

ΓAnn(R), a contradiction. If J = AnnR (I ), then J = AnnR (J) and this is similar to Case 2.

Case 2. I = AnnR (I ). If there exists an ideal K with AnnR (K ) = 0, then by part (iii) of Lemma

2.1, I −−L −−J −−I is a triangle, which is impossible. Thus suppose that AnnR (K ) 6= 0, for every

ideal K of R . By part (ii) of Lemma 2.1, I is adjacent to every other vertex ofΓAnn(R). Therefore,

if K ∈ I(R)\{I , J }, then I ∩AnnR (K ) 6= {0} or K ∩AnnR (I ) 6= {0}. If K ∩AnnR (I ) 6= {0}, then I −−K −

−J −−I is a triangle, a contradiction. So let I ∩AnnR (K ) 6= {0}. Hence AnnR (J)∩AnnR (K ) 6= {0},

i.e., I −−AnnR (K )−−J −−I is a cycle of order three, a contradiction. If I = AnnR (K ), for every

vertex K 6= I , then [5, Theorem 2.2] implies that Z (R) = AnnR (x) = AnnR (I ), for some x ∈ R .

Thus I −−K −−J −−I is a triangle, a contradiction.

(ii) Suppose that I −−J is an edge of ΓAnn(R). If I −−K is not an edge of ΓAnn(R), then by part (1)

of Lemma 2.1, AnnR (I )= AnnR (K ). If AnnR (J) 6= AnnR (K ), then J −−K is an edge of ΓAnn(R) by

part (1) of Lemma 2.1, and if AnnR (J) = AnnR (K ), then J −−K is again an edge of ΓAnn(R). ���

Theorem 2.1. Let R be a ring and ΓAnn(R) is a tree. If I and J are adjacent in ΓAnn(R), then

deg(I )= 1 or deg(J) = 1

Proof. Suppose that I is adjacent to J , deg(I )≥ 2 and deg(J) ≥ 2. Let I1 6= J be adjacent to I and

J1 6= I be adjacent to J . Since ΓAnn(R) is a tree, I1 is not adjacent to J and J1 in ΓAnn(R). By part

(i) of Lemma 2.1, AnnR (I1) = AnnR (J), and AnnR (I1) = AnnR (J1). Thus AnnR (J) = AnnR (J1),

which is impossible by part 1 of Lemma 2.2. ���

Now, by Theorem 2.1, one can easily deduce the next result.

Corollary 2.1. Let R be a ring, which is not an integral domain. Then ΓAnn(R) is a star graph if

and only if ΓAnn(R) is a tree.

Theorem 2.2. Let R be a ring, which is not an integral domain. Then ΓAnn(R) is a complete

bipartite graph if and only if ΓAnn(R) is a star graph.
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Proof. One side is clear. To prove the other side, suppose that ΓAnn(R) is a complete bipartite

graph and V1, V2 are two parts of ΓAnn(R). We claim that |Vi | = 1 for some 1 ≤ i ≤ 2. Suppose to

the contrary |Vi | ≥ 2 for every 1 ≤ i ≤ 2. Thus ΓAnn(R) contains a cycle. But gr(ΓAnn(R))∈ {3,∞}

(see [2, Theorem 5]), which is a contradiction. ���

Corollary 2.2. Let R be a ring, which is not an integral domain. Then the following statements

are equivalent:

(i) ΓAnn(R) is a complete bipartite graph;

(ii) ΓAnn(R) is a star graph;

(iii) ΓAnn(R) is a tree.

By Corollary 2.2, we observed that gr(ΓAnn(R)) =∞ if and only if ΓAnn(R) is a star graph.

3. Planar annihilator ideal graphs

One of the most of important invariant in graph theory is the planarity. Our focus in this

section is on the planarity of the annihilator ideal graphs. First, we need a celebrated theorem

due to Kuratowski.

Theorem 3.1. ([6, Theorem 10.30]) A graph is planar if and only if it contains no subdivision

of either K5 or K3,3.

In what follows, we first study reduced rings.

Proposition 3.1. Let R be a reduced ring with |Min(R)| ≥ 3. Then gr(ΓAnn(R))= 3.

Proof. Suppose that R is a reduced ring with at least three minimal ideal. Assume to the

contrary, gr(ΓAnn(R)) 6= 3. Thus ΓAnn(R) is a star graph and so ω(ΓAnn(R)) <∞. By the proof of

[2, Proposition 20], Min(R)= {p1, . . . ,pk }. By using of [11, Lemma 3.55], p2p3 . . .pk −−p1p3 . . .pk −

−p2p3 · · ·pk−1 −−p2p3 . . .pk is a triangle in ΓAnn(R), a contradiction. ���

Corollary 3.1. Let R be a reduced ring with |Min(R)| ≥ 3. Then ΓAnn(R) is not a star graph.

Proposition 3.2. Let R be reduced ring with |Min(R)| = 2. Then the following statements hold.

(i) If depth(R) 6= (0), then gr(ΓAnn(R))= 3.

(ii) If depth(R)= (0), then gr(ΓAnn(R))=∞.

Proof. (i) Suppose that R is a reduced ring, Min(R) = {p1,p2} and depth(R) 6= (0). Thus p1 −

−R x−−p2−−p1 is a triangle in ΓAnn(R), where x is an regular element of R , by part (3) of Lemma

2.1, which is a contradiction.
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(ii) It is clearly by [9, Theorem 4.3]. ���

In [9, Theorem 4.3], it is prove that, if R is a reduced ring with |Min(R)| = 2 and depth(R)=

0, then ΓAnn(R)∼= K2. It is easy to see that in this case R ∼= F1 ×F2 by [2, Theorem 24].

By using this fact and Corollary 2.2, we obtain the following result.

Theorem 3.2. Let R be a reduced ring. Then ΓAnn(R) is a star graph if and only if R ∼= F1 ×F2,

where F1 and F2 are fields.

Remark 3.1. Let R be a reduced ring. By Theorem 3.2, if ΓAnn(R) is a star graph, then R must

be an Artinian ring. If R is an Artinian ring, then ΓAnn(R) is a complete graph (see [2, Theorem

10 (1)]), and it is planar if and only if |I(R)| ≤ 4, by Kuratowski’s Theorem. Therefore, from now

on, we may assume that R is not an Artinian ring.

Theorem 3.3. Let R be a reduced ring. Then ΓAnn(R) is not planar.

Proof. Suppose that R is a reduced ring. By [9, Theorem 2.1], ΓAnn(R) is a complete n-partite

graph. Assume thatΓAnn(R) is not complete graph and n ≥ 2. We consider the following cases:

case1. If n = 2, then ΓAnn(R) is a complete bipartite graph. By Corollary 2.2, ΓAnn(R) is a star

graph. Remark 3.1 leads to a contradiction.

case2. If n ≥ 3, then ΓAnn(R) contains K3,3 as a subgraph, and hence it is not planar. ���

Example 3.1. Let R ∼= F ×D, where F is a field and D is an integral domain which is not a field.

It is not hard to see thatΓAnn(R) is a complete 3-partite graph and contains K3,3 as a subgraph.

Thus ΓAnn(R) is not planar.

In the rest of this section, we assume that R is a non-reduced ring. Note that by [2, Lemma

8], the subgraph induced by nilpotent ideals of R is complete in ΓAnn(R). Therefore, we study

non-reduced rings with at most four nilpotent ideals.

Theorem 3.4. Let R be a non-reduced ring. If 3 ≤ |IN (R)| ≤ 4, then ΓAnn(R) is not planar.

Proof. Assume to the contrary ΓAnn(R) is a planar. Thus by part (2) of Lemma 2.1, ΓAnn(R) is a

finite graph and R is an Artinian ring, a contradiction. ���

Corollary 3.2. Let R be a non-reduced ring. If |IN (R)| ≥ 3, then ΓAnn(R) is not planar.

By Corollary 3.2, we need only to study non-reduced rings, where |IN (R)| ≤ 2.

To prove Theorem 3.5, the following lemma is needed.

Lemma 3.1. Let R be a non-reduced ring and ΓAnn(R) be planar. If ΓAnn(R) is an infinite graph,

then R is indecomposable.
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Proof. Suppose to the contrary, R ∼= R1 ×R2, for some rings R1 and R2. With no loss of gener-

ality, we may assume that I ∈ IN (R1). If |IN (R2)| =∞, then the vertices of the set {R1 × (0), I ×

(0), I ×R2} and {(0)×R2, (0)× J1, (0)× J2} form K3,3 in ΓAnn(R), where J1, J2 ∈ I(R2), a contra-

diction. If |IN (R1)| =∞, then the vertices of the set {(0)×R2, I × (0), I ×R2} and {R1 × (0),K1 ×

(0),K2 × (0)} form K3,3, where K1,K2 ∈ I(R1), a contradiction. ���

Recall that the annihilating-ideal graph of a ring R , denoted by AG(R), is a graph with the

vertex set A(R)∗ :=A(R) \ {(0)}, where A(R) be the set of ideals of R with non-zero annihilator

and two distinct vertices I , J are adjacent if and only if I J = 0. By [5, Theorem 2.1], for every

ring R , the annihilating-ideal graph AG(R) is a connected graph and diam(AG(R)) ≤ 3. More-

over, if AG(R) contains a cycle, then gr(AG(R)) ≤ 4. By using this fact the following theorem is

proved.

Theorem 3.5. Let R be a Noetherian non-reduced ring with depth(R) = 0 such that |IN (R)| = 1.

Then the following statements are equivalent:

(1) AnnR (Z (R)) is a prime ideal, I 6∈ IN (R) and I ∩AnnR (Z (R))= (0), for every I 6= Z (R);

(2) ΓAnn(R) is planar.

Proof.

(1) ⇒ (2) It is clear, by [9, Theorem 4.7 (2)].

(2) ⇒ (1) Suppose that ΓAnn(R) is planar. Assume that R has exactly one nilpotent ideal. It is

easy to see that, Nil(R) is the only nilpotent ideal of R , (Nil(R))2 = (0) and Nil(R) is adjacent

to every other vertex of ΓAnn(R) (see [2, Lemma 4]). We show that I J 6= (0), for every I , J 6=

Nil(R), where I , J ∈ I(R). Assume to the contrary, I J = (0). Thus there exists x ∈ I \ Nil(R)

and y ∈ J \ Nil(R), where x y = 0. By Lemma 3.1, R is indecomposable and so xi 6= xi+1 and

y i 6= y i+1, for 0 ≤ i ≤ 2. Hence the vertices of the set {R x,R x2,R x3} and {R y,R y2,R y3} form

K3,3 in ΓAnn(R), a contradiction. Therefore, AnnR (Z (R)) = Nil(R) and AG(R) ∼= K1 ∨K∞. Thus

AnnR (Z (R)) 6= (0) and it is a prime ideal of R (see [9, Theorem 4.7 (1)]). So Z (R) is a vertex

of ΓAnn(R). Finally, we show that ΓAnn(R) ∼= K2 ∨K∞. It is clear that Z (R) is adjacent to every

other vertex. Let I −−J be an edge of ΓAnn(R), where I , J 6= Z (R) and I , J 6= Nil(R). Then either

I ∩Nil(R) 6= {0} or J ∩Nil(R) 6= {0}. With loss of generality, we may assume that I ∩Nil(R) 6= {0}.

Then ΓAnn(R) contains K3,,3 as a subgraph, a contradiction. Thus ΓAnn(R) ∼= K2 ∨K∞. Now, [9,

Theorem 4.7 (2)] completes the proof. ���

Remark 3.2. We note that |IN (R)| 6= 2, in Theorem 3.5. By part (1) of Theorem 3.5 and [9,

Theorem 4.7 (2)], it is clear that if |IN (R)| = 2, then ΓAnn(R) ∼= K3 ∨K∞. Thus ΓAnn(R) contains

K3,3 as a subgraph, and so ΓAnn(R) is not planar.

Theorem 3.6. If R is not a Noetherian ring and depth(R)= 0, then ΓAnn(R) is not planar.
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Proof. Let I = Ann(I ), for every I ⊆ Z (R). Then Z (R) = Nil(R). and hence ω(ΓAnn(R)) = ∞.

Thus ΓAnn(R) is not planar. Suppose that there exists I ∈ I(R) such that I ⊆ Z (R) and I 6=

Ann(I ). Since R is not Noetherian, it is enough to consider the following cases:

Case1. Suppose that Ann(I )= (0). Since R is a non-reduced ring, by [2, Lemma 4], there exists

J ∈ I(R), where J 2 = (0) and J is adjacent to every other vertex in ΓAnn(R). Assume that K ,L

are two ideals of R , where K L = (0) (we can suppose that, x, y ∈ Z (R) such that x y = 0 and put

K = R x,L =R y). Since J 2 = (0), then by part (2) of [10, Lemma 2.1], Ann(J) is an essential ideal

of R . If Ann(J) 6= J , then the vertices {I , J ,Ann(J),K ,L} form K5 in ΓAnn(R). Thus ΓAnn(R) is not

planar. If Ann(J) = J , then the vertices of the set {I , J , I + J } and {K ,L, J +K } form K3,3. Then

ΓAnn(R) is not planar.

Case2. Suppose that Ann(I ) 6= (0). By [10, Lemma 21 (1)], I +Ann(I ) is an essential ideal of R .

If Ann(J) 6= J , then the vertices {I , J ,Ann(J), I +Ann(I ),Ann(I )} form K5. Thus ΓAnn(R) is not

planar. If Ann(J) = J , then {I , J , I + J+Ann(I ), I +Ann(I ),Ann(I )} form K5 in ΓAnn(R). Therefore

ΓAnn(R) is not planar. (Note that by [14, Theorem 17.3], I + J +Ann(I ) is an essential ideal of

R). ���

Example 3.2.

(1) Let R =Z2[X ,Y ]/(X 2, X Y ) and let x = X + (X 2 +X Y ), y = Y + (X 2 +X Y ) ∈ R . Then Z (R)=

(x, y)R , AnnR (Z (R)) = Nil(R) = (x)R = {0, x} is a prime ideal of R . It is not hard to check

that ΓAnn(R)∼= K2 ∨K∞ and ΓAnn(R) is planar.

(2) Let D = Z2[X ,Y , Z ], I = (X 2,Y 2, X Y , X Z ,Y Z )D be an ideal of D, and let R = D/I . Let x =

X + I , y =Y + I and z = Z + I be elements of R . Then Nil(R)= R(x, y) and Z (R)= R(x, y, z).

It is not hard to see that ΓAnn(R) ∼=K4 ∨K∞ and K5 is a subgraph of ΓAnn(R). Thus ΓAnn(R)

is not planar.

Theorem 3.7. Let R be a non-reduced ring with depth(R) 6= 0. Then ΓAnn(R) is not planar.

Proof. If Nil(R) = Z (R), then by [9, Theorem 2.3], ω(ΓAnn(R)) =∞. Thus ΓAnn(R) contains K5

as a subgraph and so ΓAnn(R) is not planar. We may suppose that Nil(R) 6= Z (R). By Theorem

3.4, it is sufficient to study rings R with at most two nilpotent ideals. First assume that R has

exactly two nilpotent ideal, say I and J . Let z, y ∈ Z (R) \ Nil(R) such that z y = 0. Thus the

vertices of {I , J ,R x,R y,R z} form K5 in ΓAnn(R), where x is an regular element of R . Hence

ΓAnn(R) is not planar. Now, suppose that R has exactly one nilpotent ideal. It is easy to see

that Nil(R) is the only nilpotent ideal of R , (Nil(R))2 = (0) and Nil(R) is adjacent to every other

vertex of ΓAnn(R). If Nil(R) 6= Ann(Nil(R)), then the vertices of {Nil(R),Ann(Nil(R)),R x,R y,R z}

form K5, where x is an regular element of R . If Nil(R) = Ann(Nil(R)), then by [14, Theorem

17.3], Nil(R)+R x is an essential ideal of R . Thus the vertices of {R x2,R x +Nil(R),R x} and

{Nil(R),R y,R z} form K3,3 in ΓAnn(R), for some regular element x in R . Therefore ΓAnn(R) is

not planar. ���
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We are now in a position to characterize all rings with planar annihilator graphs.

Corollary 3.3. Let R be a ring. Then the following statements hold.

(1) Suppose that R is an Artinian ring. Then ΓAnn(R) is planar if and only if R has at most four

non-trivial ideals.

(2) Suppose that R is not an Artinian ring. Then

(i) If R is a reduced ring, then ΓAnn(R) is not planar.

(ii) If R is a non-reduced ring, then ΓAnn(R) is planar if and only if the following state-

ments hold.

(a) R is Noetherian ring.

(b) depth(R)= 0.

(c) R has exactly one nilpotent ideal.

(d) AnnR (Z (R)) is a prime ideal of R and for every I 6= Z (R) and I 6∈ IN (R),

I ∩AnnR (Z (R))= (0).

4. Every annihilator ideal graph is perfect

Let R be a ring. In this section, we show that ΓAnn(R) is a perfect graph.

We first recall the strong perfect graph theorem.

Lemma 4.1 ([7]). A graph G is perfect if and only if neither G nor G contains an induced odd

cycle of length ≥ 5.

Lemma 4.2. Let R be a ring. ThenΓAnn(R) does not contain Cn (n > 4) as an induced subgraph.

Proof. Assume to contrary, ΓAnn(R) contains an induced cycle Cn : I1 −−I2 −−·· ·−−In −−I1, for

n > 4. Since Cn is an induced cycle, neither I1 and I3 nor I1 and I4 are adjacent. By part (1) of

Lemma 2.1, Ann(I1) = Ann(I3), Ann(I1) =Ann(I4). As I3 and I4 are adjacent, I3 ∩Ann(I4) 6= {0}

or I4 ∩Ann(I3) 6= {0}. We consider the following two cases:

Case 1. If I3∩Ann(I4) 6= {0}, then I3 ∩Ann(I1) 6= {0} and so I1 is adjacent to I3, a contradiction.

Case 2. If I4∩Ann(I3) 6= {0}, then I4 ∩Ann(I1) 6= {0} and so I1 is adjacent to I4, a contradiction.

���

Lemma 4.3. Let R be a ring. Then ΓAnn(R) does not contain C2n+1 (n ≥ 2) as an induced sub-

graph.

Proof. Assume to the contrary, ΓAnn(R) contains an induced cycle I1−−I2−−·· ·−−I2n+1−−I1, for

n ≥ 2. Since I1 is adjacent to I3 and also I2 is adjacent to I4 in ΓAnn(R), by part (1) of Lemma

2.1, Ann(I1) =Ann(I2) = Ann(I3). By a similar argument, we conclude:

Ann(I1) = ·· · = Ann(I2n+1) (4.1)
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As I3 and I4 are adjacent in ΓAnn(R), we deduce that I3∩Ann(I4) = {0}. Thus by the equality (1),

I3∩Ann(I1) = {0}. Also I1 and I2 are adjacent in ΓAnn(R). Hence I1∩Ann(I2) = {0}. Again by the

equality (1), I1∩Ann(I3) = {0}. Therefore, I1 and I3 are adjacent in ΓAnn(R) and I1−−I2−−I3−−I1

is triangle, a contradiction. ���

We close this paper with the following result.

Theorem 4.1. Let R be a ring. Then ΓAnn(R) is a perfect graph.

Proof. The result follows from Lemmas 4.1, 4.2 and 4.3. ���
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