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THE RECIPROCAL COMPLEMENTARY WIENER NUMBER

OF GRAPHS

RAMIN NASIRI, ALI NAKHAEI AND ALI REZA SHOJAEIFARD

Abstract. The reciprocal complementary Wiener number (RCW ) of a connected graph G

is defined as the sum of weights 1
D+1−dG (x,y) over all unordered vertex pairs in a graph G,

where D is the diameter of G and dG (x, y) is the distance between vertices x and y . In this

paper, we find new bounds for RCW of graphs, and study this invariant of two important

types of graphs, named the Bar-Polyhex and the Mycielskian graphs.

1. Introduction

Throughout this work, we are concerned with undirected simple graphs. The vertex and

edge sets of a graph G are denoted by V (G) and E (G), respectively. For x, y ∈V (G), the distance

dG (x, y) between the vertices x and y is equal to the length of a shortest path that connects x

and y . The diameter D = D(G) of G is the greatest distance between any pair of vertices of G .

Also, the girth of each graph is the length of a shortest cycle contained in it.

Let G be a n-vertex graph with the vertex-set V (G) = {v1, v2, . . . , vn} and diameter D. The

reciprocal complementary distance matrix RC D = [r ci j ] of G is an n×n matrix such that r ci j =
1

D+1−dG (vi ,v j )
if i 6= j , and 0 otherwise ([11]c). Ivanciuc et al. [9, 10] defined the reciprocal

complementary Wiener number of the gragh G as:

RCW (G) =
∑

1≤i< j≤n

r ci j =
∑

{vi ,v j }⊆V (G)

1

D +1−dG (vi , v j )
· (1)

The reciprocal complementary Wiener number has been successfully applied in the structure-

property modeling of the molar hear capacity, standard Gibbs energy of formation and va-

porization enthalpy of 134 alkanes C6-C10 [9]. Cai and Zhou [5] determined the trees with

the smallest, the second smallest and the third smallest RCW , and the unicyclic and bicyclic

graphs with the smallest and the second smallest RCW . Zhou et al. [20] gave some prop-

erties, especially various upper and lower bounds and the Nordhaus-Gaddum-type result of
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this invariant. Moreover, the unique tree with 4 ≤ D ≤ n −3 and minimum RCW , the non-

caterpillars with the smallest, the second smallest and the third smallest value of the recipro-

cal complementary Wiener number are characterized [21]. In [16], some bounds for RCW of

line graphs are presented. Recently, we study the reciprocal complementary Wiener number

of various graph operations like join, cartesian product, composition, strong product, dis-

junction, symmetric difference, corona product, splice and link of graphs [14].

The Wiener index is one of the oldest distance-based invariants and of the most studied

topological quantities, both from a theoretical point of view and applications. This number

is the sum of all distances between pairs of vertices of a graph G [18]. We refer the reader to

[7, 13, 19] for more information and results on this quantity.

For a graph G , recall that the first Zagreb index M1(G) equals to the sum of squares of

the vertex degrees of G , and the second Zagreb index M2(G) equals to the sum of product of

degree of pairs of adjacent vertices of G , i.e.

M1(G) =
∑

x∈V (G)

d 2
G (x), M2(G) =

∑

x y∈E(G)

dG (x)dG (y).

Let d (G ,k) be the number of vertex pairs at distance k in a graph G . Brückler et al. [3]

introduced a general distance-based topological index as

Q(G) =
∑

k≥0

f (k)d (G ,k) , (2)

where f is a function such that f (0) = 0. Q is an additive function of increments associated

with pairs of vertices of G . By choosing f (k) = k , k2

2 + k
2 , 1

k , k3

6 + k2

2 + k
3 , and 1

D+1−k the Q-index

is equal to the Wiener, hyper-Wiener, Harary, Tratch-Stankevich-Zefirov indices and the re-

ciprocal complementary Wiener number, respectively. In other words, we have:

RCW (G) =
D
∑

k=1

d (G ,k)

D +1−k
· (3)

In this work, we first present some new bounds for RCW of graphs. Then, we study the

reciprocal complementary Wiener number of the Bar-Polyhex and the Mycielskian graphs.

2. Preliminaries and Lemmas

In this section, we first recall some basic analytical inequalities will be used in this re-

search. Then, we prove an effective lemma which will be used for establishing various bounds

on the reciprocal complementary Wiener number of graphs.
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Lemma 2.1 ([2]). If ai and bi are real numbers such that there exist the real numbers m1, M1,m2

and M2 with m1 ≤ ai ≤ M1, m2 ≤ bi ≤ M2, i = 1,2, . . . l , then

∣

∣

∣

∣

∣

1

l

l
∑

i=1

ai bi −
1

l 2

l
∑

i=1

ai .
l

∑

i=1

bi

∣

∣

∣

∣

∣

≤
1

l 2

⌊

l 2

4

⌋

(M1 −m1)(M2 −m2),

where ⌊x⌋ is the largest integer equal to or less than x.

Lemma 2.2 ([6]). If ai and bi are real numbers such that ai 6= 0, and m ≤ bi

ai
≤ M, i = 1,2, . . . l ,

then

l
∑

i=1

b2
i +mM

l
∑

i=1

a2
i ≤ (M +m)

l
∑

i=1

ai bi (Diaz-Metcalf inequality),

with equality if and only if for all i , 1≤ i ≤ l , either bi = mai or bi = M ai .

Lemma 2.3 ([4, 15]). If ai and bi are positive real numbers such that m1 ≤ ai ≤ M1, m2 ≤ bi ≤
M2, i = 1,2, . . . l , then

∑l
i=1

a2
i

∑l
i=1

b2
i

(
∑l

i=1 ai bi )2
≤

1

4

(
√

M1M2

m1m2
+

√

m1m2

M1M2

)2

(Pólya-Szegö inequality),

with equality if and only if ν= nM1m2

M1m2+M2m1
is an integer and if ν of the ai are equal to m1 and

the others equal to M1, with the corresponding bi being M2,m2 respectively.

Lemma 2.4 ([17]). If ai and bi are positive real numbers such that m1 ≤ ai ≤ M1, m2 ≤ bi ≤ M2,

i = 1,2, . . . l , then

∑l
i=1

a2
i

∑l
i=1 ai bi

−
∑l

i=1 ai bi
∑l

i=1 b2
i

≤
(
√

M1

m2
−

√

m1

M2

)2

(Shisha-Mond inequality).

For an (n,m)-graph G , it is clear that d (G ,0) represents the number of vertices of G . Also,

the number of vertex pairs at unit distance is equal to the number of edges. Thus, d (G ,0) = n

and d (G ,1) = m. In the following lemma, the numbers of pairs of vertices at distance two and

three are specified.

Lemma 2.5 ([1, 8]). Let G be an (n,m)-graph with h hexagons and g (G) > 4. Then

(i) d (G ,2) =
M1(G)

2
−m,

(ii) d (G ,3) = M2(G)−M1(G)+m −3h.
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Lemma 2.6. Let G be a connected n-vertex graph with diameter D. Also, let D ⊆ {1,2, . . . ,D},

S = {{x, y} ⊆V (G)|dG (x, y) ∈D} and S
c be the complement of S . Then

RCW (G) ≥
[(n

2

)

−ns

]2

∑

{x,y}∈S dG (x, y)+ (D +1)
[(n

2

)

−ns

]

−W (G)

+
∑

{x,y}∈S

1

D +1−dG (x, y)
,

where ns = n(S ), and equality holds if and only if dG (x, y) =D, for all {x, y}∈S
c .

Proof. We prove the lemma by applying the Cauchy-Schwarz inequality. More precisely,

RCW (G) =
∑

{x,y}∈S c

1

D +1−dG (x, y)
+

∑

{x,y}∈S

1

D +1−dG (x, y)

≥
[(n

2

)

−ns

]2

(D +1)
[(n

2

)

−ns

]

−
∑

{x,y}∈S c dG (x, y)
+

∑

{x,y}∈S

1

D +1−dG (x, y)

=
[(n

2

)

−ns

]2

∑

{x,y}∈S dG (x, y)+ (D +1)
[(n

2

)

−ns

]

−W (G)
+

∑

{x,y}∈S

1

D +1−dG (x, y)
. ���

3. Bounds on RCW

For a given graph G , assume that V (G) = {v1, v2, . . . , vn} is the vertex-set of graph G . For

convenience, we may denote dG (vi , v j ) by di j . We are now ready to present some bounds for

the reciprocal complementary Wiener number of graphs.

Theorem 3.1. Let G be an (n,m)-graph with diameter D and having h hexagons, and g (G) > 4.

Then

(i) RCW (G) ≥
m

D
+

M1(G)−2m

2(D −1)
+

M2(G)−M1(G)+m −3h

D −2
+

(n
2

)

+ M1(G)
2

+3h −M2(G)−m

D −3
,

(ii) RCW (G) ≤
m

D
+

M1(G)−2m

2(D −1)
+

M2(G)−M1(G)+m −3h

D −2
+

(

n

2

)

+
M1(G)

2
+3h −M2(G)−m.

Proof. By (3) and Lemma 2.5 and by noticing that d (G ,1) =m, we have

RCW (G) =
d (G ,1)

D
+

d (G ,2)

D −1
+

d (G ,3)

D −2
+

D
∑

k=4

d (G ,k)

D +1−k

=
m

D
+

M1(G)−2m

2(D −1)
+

M2(G)−M1(G)+m −3h

D −2
+

D
∑

k=4

d (G ,k)

D +1−k
.

The proof is completed by considering the following relations.

D
∑

k=4

d (G ,k)

D −3
≤

D
∑

k=4

d (G ,k)

D +1−k
≤

D
∑

k=4

d (G ,k),
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and
D
∑

k=4

d (G ,k)=
D
∑

k=1

d (G ,k)−d (G ,1)−d (G ,2)−d (G ,3)

=
(

n

2

)

+
M1(G)

2
+3h −M2(G)−m. ���

Theorem 3.2. Let G be an (n,m)-graph with diameter D. Then

(i) RCW (G) ≥
(n

2

)2

(D +1)
(n

2

)

−W (G)
,

(ii) RCW (G) ≥
[(n

2

)

−m
]2

(D +1)
(n

2

)

−mD −W (G)
+

m

D
.

The equalities in parts (i ) and (i i ) hold if and only if D = 1 and D ∈ {1,2}, respectively.

Proof. The proof of parts (i ) and (i i ) are completed by choosing D as a empty set and D = {1},

respectively, in Lemma 2.6. ���

Theorem 3.3. Let G be an (n,m)-graph with diameter D and having h hexagons, and g (G) > 4.

Then

(i) RCW (G) >
(n2 −n −M1(G))2

(2D +2)(n2 −n −M1(G))+4(M1(G)−m −W (G))
+

m

D
+

M1(G)−2m

2D −2
,

(ii) RCW (G) >
α

2

(2D +2)α+4(3M2(G)+2m −2M1(G)−9h −W (G))
+

m

D
+

M1(G)−2m

2D −2

+
M2(G)−M1(G)+m −3h

D −2
.

Where α=n2 +M1(G)+6h −2M2(G)−2m −n.

Proof. Similar to the proof of Theorem 3.2, we apply Lemma 2.6 to prove this proposition. By

setting D = {1,2}, the inequality in the first part is gained. Also, to prove the second part of

lemma, it is enough to consider the set D = {1,2,3}. ���

Theorem 3.4. Let G be an (n,m)-graph with diameter D. Then

RCW (G) ≤ ⌊
(n

2

)2

4
⌋

(D −1)2 +D
(n

2

)2

D
[

(D +1)
(n

2

)

−W (G)
] .

Proof. Set a−1
i j

= bi j = D +1−di j , 1 ≤ i < j ≤ n, and l =
(n

2

)

in Lemma 2.1. So, M1 = m2 = 1 and

M2 =m−1
1 = D. Also, define

C (ā, b̄) :=
1

l

∑

1≤i< j≤n

ai j bi j −
1

l 2

∑

1≤i< j≤n

ai j .
∑

1≤i< j≤n

bi j .
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Therefore,

C (ā, b̄) =
1

(n
2

)

∑

{vi ,v j }⊆V (G)

1−
1

(n
2

)2

∑

{vi ,v j }⊆V (G)

(D +1−di j )
∑

{vi ,v j }⊆V (G)

1

D +1−di j

= 1−
1

(n
2

)2
RCW (G)

[

(D +1)

(

n

2

)

−W (G)

]

.

By applying Theorem 3.2 (i ) one can see that the value of C (ā, b̄) is less than or equal to zero.

Hence, by Lemma 2.1 we have

RCW (G)

[

(D +1)

(

n

2

)

−W (G)

]

−
(

n

2

)2

≤ ⌊
(n

2

)2

4
⌋

(D −1)2

D
,

as desired. ���

Theorem 3.5. Let G be an (n,m)-graph with diameter D. Then

RCW (G) ≤
W (G)

D
.

With equality if and only if G ∼= Kn .

Proof. By considering a−1
i j

= bi j =
√

D +1−di j in Lemma 2.2, we can consideer m = 1 and

M = D. The inequality is achieved by applying Diaz-Metcalf inequality. Also, equality only

occurs when either di j = D or di j = 1, for all i , 1 ≤ i ≤ l . Which in both cases we conclude that

G must be a complete graph. ���

Theorem 3.6. Let G be an (n,m)-graph with diameter D. Then

(i) RCW (G) ≤
(D +1)2

(n
2

)2

4D
[

(D +1)
(n

2

)

−W (G)
] ,

(ii) RCW (G) ≤
(

n

2

)[

(
p

D −1)2

D
+

(n
2

)

(D +1)
(n

2

)

−W (G)

]

.

Each of the equalities holds if and only if G ∼= Kn .

Proof. By considering a−1
i j

= bi j =
√

D +1−di j in Lemmas 2.3 and 2.4, we can set M1 = m2 = 1

and M2 = m−1
1 =

p
D . Our main proof will consider two separate parts as follows.

1. Applying Pólya-Szegö inequality, we have

(

n

2

)−2

RCW (G)

[

(D +1)

(

n

2

)

−W (G)

]

≤
(D +1)2

4D
.

Therefore,

RCW (G) ≤
(D +1)2

(n
2

)2

4D
[

(D +1)
(n

2

)

−W (G)
] .

Which completes the proof of the first part.
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2. And finally, by using Shisha-Mond inequality, we can see that

RCW (G)
(n

2

) −
(n

2

)

(D +1)
(n

2

)

−W (G)
≤

(
p

D −1)2

D
.

Hence,

RCW (G) ≤
(

n

2

)[

(
p

D −1)2

D
+

(n
2

)

(D +1)
(n

2

)

−W (G)

]

.

This completes the proof. ���

4. RCW of the Bar-Polyhex and Mycielski graphs

In this section, we study the reciprocal complementary Wiener number of the Bar-Polyhex

and the Mycielski graphs.

The Bar-Polyhex graph, is composed of exclusively of hexagonal rings that are face bounded

by six-membered cycles in the plane. Any two rings have either one common edge or have no

common vertices. We denote by Gn , the Bar-Polyhex with n hexagons (see Figure 1).

H1 H2 H3 H4 Hn

Figure 1: The Bar Polyhex graph Gn with n hexagons.

For a simple graph G with vertex set V (G) = {v1, v2, . . . , vn} and edge set E (G), let U be a

copy of V (G) (i.e. U = {ui : vi ∈V (G), i = 1,2, . . . ,n}) and let w be a new vertex. The Mycielskian

or Mycielski graph of G , denoted by µ(G), is the graph with vertex set V
(

µ(G)
)

=V (G)∪U∪{w }

and the edge set

E
(

µ(G)
)

= E (G)∪ {vi u j : vi v j ∈ E (G)}∪ {wui : ui ∈U }, {i , j } ⊆ {1,2, . . . n}.

If the Bar-Polyhex graph has only one hexagon (n = 1), then by a simple calculation one

can see that RCW (G1) = RCW (C6) = 8. In the following result, we obtain the reciprocal com-

plementary Wiener number of Bar-Polyhex graph Gn , for n ≥ 2.

Proposition 4.1. Let Gn be a Bar-Polyhex graph with n ≥ 2 hexagonals. Then

RCW (Gn) =
32n4 +12n3 −18n2 −3n +1

n(2n −1)(2n +1)
−2

2n−2
∑

k=1

1

k

>
92n3 −18n2 −27n +1

n(2n −1)(2n +1)
−8.
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Proof. For k = 0,1, · · · ,D = 2n +1, the number of vertex pairs at distance k is obtained from

the following (see [12]).

d (Gn ,k)=



































4n +2 k = 0,

5n +1 k = 1,

8n −2 k = 2,

9n −6 k = 3,

8n +6−4k k ≥ 4.

Therefore, by relation (3) we have

RCW (Gn) =
D=2n+1

∑

k=1

d (Gn ,k)

D +1−k

=
5n +1

2n +1
+

8n −2

2n
+

9n −6

2n −1
+

D
∑

k=4

8n +6−4k

2n +2−k

=
32n4 +12n3 −18n2 −3n +1

n(2n −1)(2n +1)
−2

2n−2
∑

k=1

1

k

>
92n3 −18n2 −27n +1

n(2n −1)(2n +1)
−8. ���

Proposition 4.2. Let G be an (n,m)-graph with diameter D and having h hexagons, and

g (G) > 4. Then

RCW
(

µ(G)
)

=
1

12

(

14n2 +18h −3n −13m −6M1(G)−6M2(G)
)

.

Proof. By the definitions of the Mycielski graph of G , we obtain that

dµ(G)(x, y) =



































































dG (vi , v j ) x = vi , y = v j , dG (vi , v j )≤ 3,

4 x = vi , y = v j , dG (vi , v j )≥ 4,

2 x = vi , y = ui ,

dG (vi , v j ) x = vi , y = u j , i 6= j , dG (vi , v j ) ≤ 2,

3 x = vi , y = u j , i 6= j , dG (vi , v j ) ≥ 3,

2 x = vi , y = w,

2 x = ui , y = u j , i 6= j ,

1 x = ui , y = w.

and

D
(

µ(G)
)

=















2 D = 1or 2,

3 D = 3,

4 D ≥ 4.
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Hence,

RCW
(

µ(G)
)

=
∑

{x,y}⊆V (µ(G))

1

D
(

µ(G)
)

+1−dµ(G)(x, y)

=
∑

{x,y}⊆V (µ(G))

1

5−dµ(G)(x, y)

=
∑

{vi ,v j }⊆V (G)

dG (vi ,v j )≤3

1

5−dG (vi , v j )
+

∑

{vi ,v j }⊆V (G)

dG (vi ,v j )≥4

1

+
∑

{vi ,u j }⊆V (µ(G))
i 6= j , dG (vi ,v j )≤2

1

5−dG (vi , v j )
+

∑

{vi ,u j }⊆V (µ(G))
i 6= j , dG (vi ,v j )≥3

1

2

+
∑

{vi ,ui }⊆V (µ(G))

1

3
+

∑

{vi ,w}⊆V (µ(G))

1

3
+

∑

{ui ,u j }⊆U

1

3
+

∑

{ui ,w}⊆V (µ(G))

1

4

=
1

6
n2 +

3

4
n +S1 +S2 +S3 +S4. (4)

Where, S1 to S4 are the sums of the first four above terms, in order. We shall calculate S1 to S4

separately. By Lemma 2.5 we have

S1 =
∑

{vi ,v j }⊆V (G)

dG (vi ,v j )≤3

1

5−dG (vi , v j )
=

3
∑

k=1

d (G ,k)

5−k
=

m

12
−

M1(G)

3
+

M2(G)

2
−

3

2
h, (5)

S2 =
∑

{vi ,v j }⊆V (G)

dG (vi ,v j )≥4

1 =
(

n

2

)

−
3

∑

k=1

d (G ,k)=
(

n

2

)

−m +
M1(G)

2
−M2(G)+3h, (6)

S3 =
∑

{vi ,u j }⊆V (µ(G))
i 6= j , dG (vi ,v j )≤2

1

5−dG (vi , v j )

=
∑

{vi ,u j }⊆V (µ(G))
vi v j ∈E(G)

1

4
+

∑

{vi ,u j }⊆V (µ(G))
dG (vi ,v j )=2

1

3

=
m

2
+

2

3
d (G ,2)

=
M1(G)

3
−

m

6
, (7)

S4 =
∑

{vi ,u j }⊆V (µ(G))
i 6= j , dG (vi ,v j )≥3

1

2
=

(

n

2

)

−
2

∑

k=1

d (G ,k)=
(

n

2

)

−
M1(G)

2
. (8)

Using (5), (6), (7) and (8) in (4), we conclude that

RCW
(

µ(G)
)

=
1

12

(

14n2 +18h −3n −13m −6M1(G)−6M2(G)
)

. ���
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5. Concluding Remarks

In this paper, some new bounds for the reciprocal complementary Wiener number of

graphs are presented. Also, this invariant for two types of graphs is studied. It would be of

interest to study its behavior also on various classes of connected graphs with simple connec-

tivity patterns and cycle structure.
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