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USAGE OF THE HOMOTOPY ANALYSIS METHOD FOR

SOLVING FRACTIONAL VOLTERRA-FREDHOLM

INTEGRO-DIFFERENTIAL EQUATION OF THE SECOND KIND

AHMED A. HAMOUD AND KIRTIWANT P. GHADLE

Abstract. The reliability of the homotopy analysis method (HAM) and reduction in the

size of the computational work give this method a wider applicability. In this paper,

HAM has been successfully applied to find the approximate solutions of Caputo frac-

tional Volterra-Fredholm integro-differential equations. Also, the behavior of the solu-

tion can be formally determined by analytical approximation. Moreover, the study proves

the existence and uniqueness results and the convergence of the solution. This paper

concludes with an example to demonstrate the validity and applicability of the proposed

technique.

1. Introduction

The integro-differential equations of fractional order have attracted more attention of

physicists and mathematicians which provide an efficiency for the description of many prac-

tical dynamical arising in engineering and scientific disciplines such as, physics, biology, elec-

trochemistry, electromagnetic, control theory and viscoelasticity [2, 3, 4, 5, 6, 13, 15, 17]. Re-

cently, many authors focus on the development of numerical and analytical techniques for

fractional integro-differential equations. Al-Samadi and Gumah [1] applied the HAM for solv-

ing fractional SEIR epidemic model, Zurigat et al. [21] applied HAM for system of Caputo frac-

tional integro-differential equations. Yang and Hou [17] applied the Laplace decomposition

method to solve the Caputo fractional integro-differential equations, Mittal and Nigam [15]

applied the Adomian decomposition method to approximate solutions for Caputo fractional

integro-differential equations, and Ma and Huang [13] applied hybrid collocation method to

study integro-differential equations of fractional order. Moreover, properties of the fractional

integro-differential equations have been studied by several authors [1, 18, 19, 21]. The HAM,
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that was first proposed by Liao [11, 12], is implemented to derive analytic approximate so-

lutions of Caputo fractional integro-differential equations and convergence of HAM for this

kind of equations is considered. Unlike all other analytical methods, HAM adjusts and con-

trols the convergence region of the series solution via an auxiliary parameter ħ.

In this paper, we consider Caputo fractional Volterra-Fredholm integro-differential equa-

tions of the form:

c Dαu(x)= a(x)u(x)+ g (x)+

∫x

0
K1(x, t )F1(u(t ))d t +

∫1

0
K2(x, t )F2(u(t ))d t , (1)

with the initial condition

u(0) = u0, (2)

where c Dα is the Caputo’s fractional derivative, 0 < α ≤ 1, u : J −→ R, where J = [0,1] be the

continuous function which has to be determined, g : J −→R and Ki : J × J −→R, are continu-

ous functions. Fi : R−→R, i = 1,2 are Lipschitz continuous functions.

The significance of this paper lies in its contribution as it:

1. Studies the behavior of the solution that can be formally determined by the analytical

approximated method as the HAM.

2. Proves the existence, uniqueness of result us, and convergence of the solution of the Ca-

puto fractional Volterra-Fredholm integro-differential equation.

The rest of the paper is organized as follows: In Section 2, some preliminaries and basic

definitions related to fractional calculus are recalled. In Section 3, HAM is constructed for

solving Caputo fractional Volterra-Fredholm integro-differential equations. In Section 4, the

existence and uniqueness results and convergence of the solution are proved. In Section 5,

the analytical example is presented to illustrate the accuracy of this method. Finally, the paper

concludes with Section 6 which is the report of the study.

2. Preliminaries

Before we derive the HAM of the fractional integration, we first review some basic defini-

tions of fractional calculus, which have been given in [8, 10, 14, 16, 20].

Definition 1. The Riemann-Liouville fractional integral of order α > 0 of a function f is de-

fined as

Jα f (x) =
1

Γ(α)

∫x

0
(x − t )α−1 f (t )d t , x > 0, α ∈R

+,

J 0 f (x) = f (x), (3)

where R
+ is the set of positive real numbers.
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Definition 2. The fractional derivative of f (x) in the Caputo sense is defined by

c Dα f (x) = J n−αDn f (x)

=





1

Γ(n −α)

∫x

0
(x − t )n−α−1 d n f (t )

d t n
d t , n −1<α< n,

d n f (x)

d xn
, α=n,

(4)

where the parameter α is the order of the derivative, in general it is real or even complex. But

in this paper, we will consider α as positive real.

Hence, we have the following properties:

1. Jα J v f = Jα+v f , α, v > 0.

2. Jαxβ =
Γ(β+1)

Γ(α+β+1)
xα+β, α> 0,β>−1, x > 0.

3. JαDα f (x) = f (x)−
m−1∑

k=0

f (k)(0+)
xk

k !
, x > 0, m −1 <α≤ m.

Definition 3. The Riemann-Liouville fractional derivative of order α> 0 is normally defined

as

Dα f (x) = Dm J m−α f (x), m −1 <α≤m. (5)

Theorem 1 ([20] (Banach contraction principle)). Let (X ,d ) be a complete metric space, then

each contraction mapping T : X −→ X has a unique fixed point x of T in X i.e. T x = x.

Theorem 2. ([9]) (Schauder’s fixed point theorem). Let X be a Banach space and let A a convex,

closed subset of X . If T : A −→ A be the map such that the set {Tu : u ∈ A} is relatively compact

in X (or T is continuous and completely continouous). Then T has at least one fixed point

u∗ ∈ A : Tu∗ =u∗.

3. Homotopy Analysis Method (HAM)

In order to show the basic idea of HAM, consider the following differential equation [7]:

N [u]= 0,

where N is a nonlinear operator, u(x) is unknown function and x is an independent variable.

We can construct a homotopy when considering, N [u]= 0, as follows:

(1−q)L[φ(x; q)−u0(x)]−qħH1(x)N [φ(x; q)]= Ĥ[φ(x; q);u0(x), H1(x),ħ, q], (6)

where u0(x) denotes an initial guess of the exact solution u(x),ħ 6= 0 an auxiliary parameter,

H1(x) 6= 0 an auxiliary function, and L an auxiliary linear operator with the property L[s(x)]= 0
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when s(x) = 0, and using q ∈ [0,1] as an embedding parameter. It should be asserted that we

have great liberty to select the initial guess u0(x), the auxiliary linear operator L, the non-zero

auxiliary parameter ħ, and the auxiliary function H1(x). Enforcing the homotopy Eq.(6) to be

zero, i.e.,

H1[φ(x; q);u0(x), H1(x),ħ, q] = 0, (7)

we have the so-called zero-order deformation equation

(1−q)L[φ(x; q)−u0(x)] = qħH1(x)N [φ(x; q)], (8)

when q = 0, the zero-order deformation Eq.(8) becomes

φ(x;0) = u0(x), (9)

and when q = 1, since ħ 6= 0 and H1(x) 6= 0, the zero-order deformation Eq.(8) is equivalent to

φ(x;1) = u(x). (10)

Thus, according to Eqs.(9) and (10), as the embedding parameter q increases from 0 to

1, φ(x; q) varies continuously from the initial approximation u0(x) to the exact solution u(x).

Such a kind of continuous variation is called deformation in homotopy [11, 21]. Due to Tay-

lor’s theorem, φ(x; q) can be expanded in power series of q as follows

φ(x; q) =u0(x)+
∞∑

m=1

um(x)qm , (11)

where,

um(x) =
1

m!

∂mφ(x; q)

∂qm

∣∣∣
q=0

. (12)

Let the initial guess u0(x), the auxiliary linear parameter L, the nonzero auxiliary param-

eter ħ and the auxiliary function H1(x) be properly chosen so that the power series (11) of

φ(x; q) converges at q = 1, then, we have under these assumptions the solution series

u(x)=φ(x;1) = u0(x)+
∞∑

m=1

um(x). (13)

From Eq.(11) , we can write Eq.(8) as follows:

(1−q)L[φ(x; q)−u0(x)] = (1−q)L[
∞∑

m=1

um(x)qm] (14)

= qħH1(x)N [φ(x; q)],

then,

L[
∞∑

m=1

um(x)qm]−qL[
∞∑

m=1

um(x)qm] = qħH1(x)N [φ(x; q)]. (15)
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By differentiating Eq.(15) m-times with respect to q and evaluating at q = 0, we obtain

{L[
∞∑

m=1

um(x)qm]−qL[
∞∑

m=1

um(x)qm]}(m)
= qħH1(x)N [φ(x; q)](m)

= m!L[um(x)−um−1(x)]

= ħH1(x)m
∂m−1N [φ(x; q)]

∂qm−1

∣∣∣
q=0

.

Therefore,

L[um(x)−χm um−1(x)] =ħH1(x)ℜm(
−−−→
um−1(x)), (16)

where,

ℜm(
−−−→
um−1(x)) =

1

(m −1)!

∂m−1N [ϕ(x; q)]

∂qm−1
|q=0, (17)

and

χm =





0 m ≤ 1,

1 m > 1.

Note that the high-order deformation Eq.(16) is governing the linear operator L, and the

term ℜm(−−−→um−1(x)) can be expressed simply by Eq.(17) for any nonlinear operator N .

HAM applied to fractional Volterra-Fredholm integro-differential equation:

We consider Caputo fractional Volterra-Fredholm integro-differential equations given by

(1)-(2), we can define

N [φ(x; q)] = c Dαφ(x; q)−a(x)φ(x; q)− g (x)−

∫x

0
K1(x, t )F1(φ(t ; q))d t

−

∫1

0
K2(x, t )F2(φ(t ; q))d t . (18)

Now we construct the zero-order deformation equation

(1−q)c Dα[φ(x; q)−u0(x)] = qħN [φ(x; q)], (19)

subject to the following initial conditions

u0(x) =φ(0; q) = u0, (20)

where q ∈ [0,1] is the embedding parameter, ħ 6= 0 is an auxiliary parameter, u0(x) is an initial

guess of the solution u(x) and φ(x; q) is an unknown function on the independent variables x

and q . Also we suppose that
c Dα(C ) = 0, (21)
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where C is an integral constant. When the parameter q increases from 0 to 1, then the homo-

topy solution φ(x; q) varies from u0(x) to solution u(x) of the original equation (1). Using the

parameter q , φ(x; q) can be expanded in Taylor series as follows:

φ(x; q) =u0(x)+
∞∑

m=1

um(x)qm , (22)

where um(x) defines as (12).

Assuming that the auxiliary parameter ħ is properly selected so that the above series is

convergent when q = 1, then the solution u(x) can be given by

u(x)= u0(x)+
∞∑

m=1

um(x). (23)

Differentiating (19) and the initial condition (20) m times with respect to q , then setting

q = 0, and finally dividing them by m!, we get the mt h-order deformation equation

c Dα[um(x)−χm um−1(x)] =ħℜm(−−−→um−1(x)), (24)

subject to the following initial conditions,

um(0) = 0, (25)

where,

ℜm(−−−→um−1(x)) =
1

(m −1)!

∂m−1N [φ(x; q)]

∂qm−1
|q=0,

= c Dαum−1(x)−a(x)um−1(x)−

∫x

0
K1(x, t )F1(um−1(t ))d t

−

∫1

0
K2(x, t )F2(um−1(t ))d t − (1−χm )g (x), (26)

and
−→
um = u0,u1, · · · ,um .

Applying the operator Jα to both sides of the linear m-order deformation (24)

um(x) = (χm +ħ)um−1(x)−ħJα[a(x)um−1(x)

+

∫x

0
K1(x, t )F1(um−1(t ))d t +

∫1

0
K2(x, t )F2(um−1(t ))d t + (1−χm )g (x)]. (27)

4. The main results

In this section, we shall give an existence and uniqueness results of (1)− (2) and prove it.

Before starting and proving the main results, we introduce the following hypotheses:
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(A1) There exists two constants LF1
,LF2

> 0 such that, for any u1,u2 ∈C (J ,R)

|F1(u1(x))−F1(u2(x))| ≤ LF1
|u1 −u2|

and

|F2(u1(x))−F2(u2(x))| ≤ LF2
|u1 −u2|

(A2) There exists two functions K ∗
1 ,K ∗

2 ∈C (D,R+), the set of all positive function continuous

on D = {(x, t ) ∈ R×R : 0 ≤ t ≤ x ≤ 1} such that K ∗
1 = sup

x∈[0,1]

∫x
0 |K1(x, t )|d t < ∞, K ∗

2 =

sup
x∈[0,1]

∫x
0 |K2(x, t )|d t <∞.

(A3) The two functions a, g : J →R are continuous.

Lemma 1. Let u0(x) ∈ C (J ,R), then u(t ) ∈ C (J ,R+) is a solution of the problem (1)− (2) iff u

satisfies

u(x) = u0 +
1

Γ(α)

∫x

0
(x − s)α−1a(s)u(s)d s +

1

Γ(α)

∫x

0
(x − s)α−1g (s)d s

+
1

Γ(α)

∫x

0
(x − s)α−1

(∫s

0
K1(s,τ)F1(u(τ))dτ+

∫1

0
K2(s,τ)F2(u(τ))dτ

)
d s,

for x ∈ J .

Our first result is based on the Banach contraction principle.

Theorem 3. Assumes that (A1), (A2) and (A3) hold. If

(
‖a‖∞+K ∗

1 LF1
+K ∗

2 LF2

Γ(α+1)

)
< 1. (28)

Then there exists a unique solution u(t )∈C (J) to (1)− (2).

Proof. By Lemma 1. we know that a function u is a solution to (1)− (2) iff u satisfies

u(x) = u0 +
1

Γ(α)

∫x

0
(x − s)α−1a(s)u(s)d s +

1

Γ(α)

∫x

0
(x − s)α−1g (s)d s

+
1

Γ(α)

∫x

0
(x − s)α−1

(∫s

0
K1(s,τ)F1(u(τ))dτ+

∫1

0
K2(s,τ)F2(u(τ))dτ

)
d s,

Let the operator T : C (J ,R) →C (J ,R) be defined by

(Tu)(x) = u0 +
1

Γ(α)

∫x

0
(x − s)α−1a(s)u(s)d s +

1

Γ(α)

∫x

0
(x − s)α−1g (s)d s

+
1

Γ(α)

∫x

0
(x − s)α−1

(∫s

0
K1(τ, x)F1(u(τ))dτ+

∫1

0
K2(s,τ)F2(u(τ))dτ

)
d s,
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we can see that, if u ∈C (J ,R) is a fixed point of T , then u is a solution of (1), (2).

Now we prove T has a fixed point u in C (J ,R). For that, let u1,u2 ∈ C (J ,R) and for any

x ∈ [0,1] such that

u1(x) = u0 +
1

Γ(α)

∫x

0
(x − s)α−1a(s)u1(s)d s +

1

Γ(α)

∫x

0
(x − s)α−1g (s)d s

+
1

Γ(α)

∫x

0
(x − s)α−1

(∫s

0
K1(s,τ)F1(u1(τ))dτ+

∫1

0
K2(s,τ)F2(u1(τ))dτ

)
d s,

and,

u2(x) = u0 +
1

Γ(α)

∫x

0
(x − s)α−1a(s)u2(s)d s +

1

Γ(α)

∫x

0
(x − s)α−1g (s)d s

+
1

Γ(α)

∫x

0
(x − s)α−1

(∫s

0
K1(s,τ)F1(u2(τ))dτ+

∫1

0
K2(s,τ)F2(u2(τ))dτ

)
d s.

Consequently, we get

|(Tu1)(x)− (Tu2)(x)|

≤
1

Γ(α)

∫x

0
(x − s)α−1 |a(s)| |u1(s)−u2(s)|d s

+
1

Γ(α)

∫x

0
(x − s)α−1

( ∫s
0 |K1(s,τ)| |F1(u1(τ))−F1(u2(τ))|dτ

+
∫1

0 |K2(s,τ)| |F2(u1(τ))−F2(u2(τ))|dτ

)
d s

≤
‖a‖∞

Γ(α+1)
|u1(x)−u2(x)|+

K ∗
1 LF1

Γ(α+1)
|u1(x)−u2(x)|+

K ∗
2 LF2

Γ(α+1)
|u1(x)−u2(x)|

=

(
‖a‖∞+K ∗

1 LF1
+K ∗

2 LF2

Γ(α+1)

)
|u1(x)−u2(x)| ,

From the inequality (28) we have

‖Tu1 −Tu2‖∞ <‖u1 −u2‖∞ .

This means that T is a contraction map. By the Banach contraction principle, we can

conclude that T has a unique fixed point u in C (J ,R). ���

Now, we will study the existence result by means of Schauder’s fixed point theorem.

Theorem 4. Assumes that F1,F2 are continuous functions and (A2), (A3) hold, if

‖a‖∞

Γ(α+1)
< 1. (29)

Then there exists at least a solution u(x)∈C (J ,R) to problem (1)− (2).

Proof. Let the operator T : C (J ,R) →C (J ,R), be defined as in Theorem 3, firstly, we prove that

the operator T is completely continuous.
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(1) We show that T is continuous.

Let un be a sequence such that un → u in C (J ,R). Then for each un ,u ∈ C (J ,R) and for

any x ∈ J we have

|(Tun)(x)−(Tu)(x)| ≤
1

Γ(α)

∫x

0
(x − s)α−1 |a(s)| |un(s)−u(s)|d s

+
1

Γ(α)

∫x

0
(x − s)α−1

( ∫s
0 |K1(s,τ)| |F1(un(τ))−F1(u(τ))|dτ

+
∫1

0 |K2(s,τ)| |F2(un(τ))−F2(u(τ))|dτ

)
d s

≤
1

Γ(α)

∫x

0
(x − s)α−1sup

s∈J
|a(s)|sup

s∈J
|un(s)−u(s)|d s

+
1

Γ(α)

∫x

0
(x − s)α−1




sup
s,τ∈J

∫τ
0 |K1(s,τ)|sup

τ∈J
|F1(un(τ))−F1(u(τ))|dτ

+sup
s,τ∈J

∫1
0 |K2(s,τ)|sup

τ∈J
|F2(un(τ))−F2(u(τ))|dτ


d s

≤ ‖a‖∞‖un(.)−u(.)‖∞
1

Γ(α)

∫x

0
(x − s)α−1d s

+K ∗
1 ‖F1(un(.))−F1(u(.))‖∞

1

Γ(α)

∫x

0
(x − s)α−1d s

+K ∗
2 ‖F2(un(.))−F2(u(.))‖∞

1

Γ(α)

∫x

0
(x − s)α−1d s.

Since
∫x

0 (x − s)α−1d s is bounded, lim
n→∞

un(x) = u(x) and F1,F2 are continuous functions, we

conclude that ‖Tun −Tu‖∞ → 0 as n →∞, thus, T is continuous on C (J ,R).

(2) We verify that T maps bounded sets into bounded sets in C (J ,R).

Indeed, just we show that for any λ > 0 there exists a positive constant ℓ such that for

each u ∈Bλ = {u ∈C (J ,R) : ‖u‖∞ ≤λ}, one has ‖Tu‖∞ ≤ ℓ.

Let µ1 = sup
(u)∈J×[0,λ]

F1(u(x))+1, and µ2 = sup
(u)∈J×[0,λ]

F2(u(x))+1.

and for any u ∈Br and for each x ∈ J , we have

|(Tu)(x)| = |u0|+
1

Γ(α)

∫x

0
(x − s)α−1 |a(s)| |u(s)|d s +

1

Γ(α)

∫x

0
(x − s)α−1

∣∣g (s)
∣∣d s

+
1

Γ(α)

∫x

0
(x − s)α−1

(∫s

0
|K1(s,τ)| |F1(u(τ))|dτ+

∫1

0
|K2(s,τ)| |F2(u(τ))|dτ

)
d s

≤ |u0|+‖u‖∞‖a‖∞
xα

Γ(α+1)
+

∥∥g
∥∥
∞

xα

Γ(α+1)
+

K ∗
1 µ1xα

Γ(α+1)
+

K ∗
2 µ2xα

Γ(α+1)

≤

(
|u0|+

‖a‖∞λ+
∥∥g

∥∥
∞
+K ∗

1 µ1 +K ∗
2 µ2

Γ(α+1)

)

:= ℓ.

Therefore, ‖Tu‖≤ ℓ for every u ∈Br , which implies that TBr ⊂Bℓ.
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(3) We examine that T maps bounded sets into equicontinuous sets of C (J ,R).

Let Bλ is defined as in (2) and for each u ∈Bλ, x1, x2 ∈ [0,1], with x1 < x2 we have

|(Tu)(x2)− (Tu)(x1)|

≤
1

Γ(α)

∣∣∣∣
∫x2

0
(x2 − s)α−1a(s)u(s)d s −

∫x1

0
(x1 − s)α−1a(s)u(s)d s

∣∣∣∣

+
1

Γ(α)

∣∣∣∣
∫x2

0
(x2 − s)α−1g (s)d s −

∫x1

0
(x1 − s)α−1g (s)d s

∣∣∣∣

+
1

Γ(α)

∣∣∣∣∣∣

∫x2

0 (x2 − s)α−1
(∫s

0 K1(s,τ)F1(u(τ))dτ+
∫1

0 K2(s,τ)F2(u(τ))dτ
)

d s

−
∫x1

0 (x1 − s)α−1
(∫s

0 K1(s,τ)F1(u(τ))dτ+
∫1

0 K2(s,τ)F2(u(τ))dτ
)

d s

∣∣∣∣∣∣

=
1

Γ(α)

∣∣∣∣∣

∫x2

0 (x2 − s)α−1a(s)u(s)d s −
∫x1

0 (x2 − s)α−1a(s)u(s)d s

+
∫x1

0 (x2 − s)α−1a(s)u(s)d s −
∫x1

0 (x1 − s)α−1a(s)u(s)d s

∣∣∣∣∣

+
1

Γ(α)

∣∣∣∣∣

∫x2

0 (x2 − s)α−1g (s)d s −
∫x1

0 (x2 − s)α−1g (s)d s

+
∫x1

0 (x2 − s)α−1g (s)d s −
∫x1

0 (x1 − s)α−1g (s)d s

∣∣∣∣∣

+
1

Γ(α)

∣∣∣∣∣∣∣∣∣∣∣∣

∫x2

0 (x2 − s)α−1
(∫s

0 K1(s,τ)F1(u(τ))dτ+
∫1

0 K2(s,τ)F2(u(τ))dτ
)

d s

−
∫x1

0 (x2 − s)α−1
(∫s

0 K1(s,τ)F1(u(τ))dτ+
∫1

0 K2(s,τ)F2(u(τ))dτ
)

d s

+
∫x1

0 (x2 − s)α−1
(∫s

0 K1(s,τ)F1(u(τ))dτ+
∫1

0 K2(s,τ)F2(u(τ))dτ
)

d s

−
∫x1

0 (x1 − s)α−1
(∫s

0 K1(s,τ)F1(u(τ))dτ+
∫1

0 K2(s,τ)F2(u(τ))dτ
)

d s.

∣∣∣∣∣∣∣∣∣∣∣∣

Consequently,

|(Tu)(x2)− (Tu)(x1)|

≤
1

Γ(α)

( ∫x2

x1
(x2 − s)α−1 |a(s)| |u(s)|d s

+
∫x1

0 (x1 − s)α−1 − (x2 − s)α−1 |a(s)| |u(s)|d s

)

+
1

Γ(α)

( ∫x2

x1
(x2 − s)α−1

∣∣g (s)
∣∣d s

+
∫x1

0 (x1 − s)α−1 − (x2 − s)α−1
∣∣g (s)

∣∣d s

)

+
1

Γ(α)




∫x2

x1
(x2 − s)α−1

( ∫s
0 |K1(s,τ)| |F1(u(τ))|dτ

+
∫1

0 |K2(s,τ)| |F2(u(τ))|dτ

)
d s

+
∫x1

0 (x1 − s)α−1 − (x2 − s)α−1

( ∫s
0 |K1(s,τ)| |F1(u(τ))|dτ

+
∫1

0 |K2(s,τ)| |F2(u(τ))|dτ

)
d s




= I1 + I2 + I3,

where

I1 =
1

Γ(α)
(

∫x2

x1

(x2 − s)α−1 |a(s)| |u(s)|d s +

∫x1

0
(x1 − s)α−1

− (x2 − s)α−1 |a(s)| |u(s)|d s)

≤
(x2 −x1)α

Γ(α+1)
‖a‖∞λ+

xα
1

Γ(α+1)
‖a‖∞λ+

(x2 −x1)α

Γ(α+1)
‖a‖∞λ−

xα
2

Γ(α+1)
‖a‖∞λ
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=
‖a‖∞λ

Γ(α+1)

(
2(x2 −x1)α+ (xα

1 −xα
2 )

)

≤
‖a‖∞λ

Γ(α+1)
2(x2 −x1)α , (30)

I2 =
1

Γ(α)

(∫x2

x1

(x2 − s)α−1
∣∣g (s)

∣∣d s +

∫x1

0
(x1 − s)α−1

− (x2 − s)α−1
∣∣g (s)

∣∣d s

)

≤
(x2 −x1)α

Γ(α+1)

∥∥g
∥∥
∞
+

xα
1

Γ(α+1)

∥∥g
∥∥
∞
+

(x2 −x1)α

Γ(α+1)

∥∥g
∥∥
∞
−

xα
2

Γ(α+1)

∥∥g
∥∥
∞

=

∥∥g
∥∥
∞

Γ(α+1)

(
2(x2 −x1)α+ (xα

1 −xα
2 )

)

≤

∥∥g
∥∥
∞

Γ(α+1)
2(x2 −x1)α , (31)

and

I3 =
1

Γ(α)

∫x2

x1
(x2 − s)α−1

( ∫s
0 |K1(s,τ)| |F1(u(τ))|dτ

+
∫1

0 |K2(s,τ)| |F2(u(τ))|dτ

)
d s

+
∫x1

0 (x1 − s)α−1 − (x2 − s)α−1

( ∫s
0 |K1(s,τ)| |F1(u(τ))|dτ

+
∫1

0 |K2(s,τ)| |F2(u(τ))|dτ

)
d s

≤

(
K ∗

1 µ1 +K ∗
2 µ2

)

Γ(α+1)

(
2(x2 −x1)α+ (xα

1 −xα
2

)
)

≤

(
K ∗

1 µ1 +K ∗
2 µ2

)

Γ(α+1)
2(x2 −x1)α , (32)

we can conclude that the right-hand side of (30), (31) and (32) is independently of u ∈Bλ and

tends to zero as x2−x1 → 0. This leads to |(Tu)(x2)− (Tu)(x1)|→ 0 as x2 → x1. i.e. the set {TBλ}

is equicontinuous.

From I1 to I3 together with the Arzela–Ascoli theorem, we can conclude that T : C (J ,R) →

C (J ,R) is completely continuous.

Finally, we need to investigate that there exists a closed convex bounded subset Bλ̃ =

{u ∈ C (J ,R) : ‖u‖∞ ≤ λ̃} such that TBλ̃ ⊆ Bλ̃. For each positive integer λ̃, then Bλ̃ is clearly

closed, convex and bounded of C (J ,R). We claim that there exists a positive integer λ̃ such

that TBǫ ⊆ Bǫ. If this property is false, then for every positive integer λ̃, there exists uλ̃ ∈ Bλ̃

such that (Tuλ̃) ∉ TBλ̃, i.e.
∥∥Tuλ̃(t )

∥∥
∞

> λ̃ for some xλ̃ ∈ J where xλ̃ denotes x depending on

λ̃. But by using the previous hypotheses we have

|u0|+‖u‖∞‖a‖∞
tα

Γ(α+1)
+

∥∥g
∥∥
∞

tα

Γ(α+1)
+

K ∗
1 µ1xα

Γ(α+1)
+

K ∗
2 µ2xα

Γ(α+1)

≤

(
|u0|+

‖a‖∞λ+
∥∥g

∥∥
∞
+K ∗

1 µ1 +K ∗
2 µ2

Γ(α+1)

)

λ̃ <
∥∥Tuλ̃

∥∥
∞
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= sup
x∈J

∣∣(Tuλ̃)(x)
∣∣

≤ sup
x∈J




|u0|+

∣∣∣ 1
Γ(α)

∫x
0 (x − s)α−1a(s) |u(s)|d s

∣∣∣+
∣∣∣ 1
Γ(α)

∫x
0 (x − s)α−1g (s)d s

∣∣∣+ 1
Γ(α)∫x

0 (x − s)α−1
(∫s

0 |K1(s,τ)| |F1(u(τ))|dτ+
∫1

0 |K2(s,τ)| |F2(u(τ))|dτ
)

d s



d s

≤ sup
x∈J

{
|u0|+‖u‖∞ ‖a‖∞

xα

Γ(α+1)
+

∥∥g
∥∥
∞

xα

Γ(α+1)
+

K ∗
1 µ1xα

Γ(α+1)
+

K ∗
2 µ2xα

Γ(α+1)

}

≤ sup
x∈J

(
|u0|+

‖a‖∞ λ̃+
∥∥g

∥∥
∞
+K ∗

1 µ1 +K ∗
2 µ2

Γ(α+1)

)
.

Dividing both sides by λ̃ and taking the limit as λ̃→+∞, we obtain

1 <
‖a‖∞

Γ(α+1)
,

which contradicts our assumption (29). Hence, for some positive integer λ̃, we must have

TBλ̃ ⊆Bλ̃.

An application of Schauder’s fixed point theorem shows that there exists at least a fixed

point u of T in C (J ,R). Then u is the solution to (1)− (2) on J , and the proof is completed. ���

Theorem 5. If the series solution u(x) =
∑∞

m=0 um(x) obtained by the m-order deformation is

convergent, then it converges to the exact solution of the fractional Volterra-Fredholm integro-

differential equation (1)− (2).

Proof. We assume
∑∞

m=0 um(x) converges to u(x) then

lim
m→∞

um(x) = 0.

We can write,

n∑

m=1

c Dα[um(x)−χm um−1(x)] = c Dαu1(x)+ (c Dαu2(x)−c Dαu1(x))

+(c Dαu3(x)−c Dαu2(x))+·· ·

+(c Dαun(x)−c Dαun−1(x))

= c Dαun(x). (33)

Hence, from Eq.(33)

lim
n→∞

un(x)= 0. (34)

So, using Eq.(34), we have

∞∑

m=1

c Dα[um(x)−χmum−1(x)] =
∞∑

m=1

[c Dαum(x)−χm
c Dαum−1(x)] = 0.
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Therefore from Eq.(34), we can obtain that

∞∑

m=1

c Dα[um(x)−χm um−1(x)] =ħ
∞∑

m=1

ℜm−1(−−−→um−1(x)) = 0.

Since ħ 6= 0 and we have
∞∑

m=1

ℜm−1(−−−→um−1(x)) = 0. (35)

By substituting ℜm−1(−−−→um−1(x)) into the relation (35) and simplifying it, we have

ℜm−1(
−−−→
um−1(x)) =

∞∑

m=1

[c Dαum−1(x)−a(x)um−1(x)−

∫x

0
K1(x, t )F1(um−1(t ))d t

−

∫1

0
K2(x, t )F2(um−1(t ))d t − (1−χm )g (x)],

= c Dα(
∞∑

m=1

um−1(x))−a(x)
∞∑

m=1

um−1(x)

−

∫x

0
K1(x, t )[

∞∑

m=1

F1(um−1(t ))]d t

−

∫1

0
K2(x, t )[

∞∑

m=1

F2(um−1(t ))]d t −
∞∑

m=1

(1−χm )g (x),

= c Dαu(x))−a(x)u(x)−

∫x

0
K1(x, t )F1(u(t ))d t

−

∫1

0
K2(x, t )F2(u(t ))d t − g (x). (36)

From Eq.(35) and Eq.(36), we have

c Dαu(x)= g (x)+a(x)u(x)+

∫x

0
K1(x, t )F1(u(t ))d t +

∫1

0
K2(x, t )F2(u(t ))d t ,

therefore, u(x) must be the exact solution of Eq.(1) and the proof is complete. ���

5. Illustrative example

In this section, we present the analytical technique based on HAM to solve Caputo frac-

tional Volterra-Fredholm integro-differential equation.

Example 1. Let us consider Caputo fractional Volterra-Fredholm integro-differential equa-

tion:

c D0.75[u(x)]=
6x2.25

Γ(3.25)
−

x2ex

5
u(x)+

∫x

0
ex t u(t )d t +

∫1

0
(4− t−3)u(t )d t , (37)

with the initial condition

u(0) = 0.
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From (18), (37) can be written as

N [φ(x; q)] = c D0.75φ(x; q)−
6x2.25

Γ(3.25)
+

x2ex

5
φ(x; q)−

∫x

0
ex tφ(t ; q)d t

−

∫1

0
(4− t−3)φ(t ; q)d t .

Now, using the mt h-order deformation equation (24) and initial conditions (25), and re-

cursive equation (27) we can write

um(x) = (χm +ħ)um−1(x)+ħJ 0.75[
x2ex

5
um−1(x)− (1−χm )

6x2.25

Γ(3.25)

−

∫x

0
ex t um−1(t )d t −

∫1

0
(4− t−3)um−1(t )d t ]

Then,

u0(x) = 0,

u1(x) = −ħx3,

u2(x) = −ħ(1+ħ)x3,

u3(x) = −ħ(1+ħ)2 x3,

...

un(x) = −ħ(1+ħ)n−1 x3,

...

thus the HAM series solution can be written as

um(x) =
m∑

n=0

un(x) =−ħ[1+ (1+ħ)+ (1+ħ)2 +·· ·+ (1+ħ)m−1]x3.

The approximate solution of (37) when −2 <ħ< 0 is

u(x)=
∞∑

n=0

un(x) =−ħ[1+ (1+ħ)+ (1+ħ)2 +·· · ]x3 =−ħ

(
1

1− (1+ħ)

)
x3 = x3.

6. Conclusions

Homotopy analysis technique has been successfully applied to derive approximate ana-

lytical solutions for Caputo fractional Volterra-Fredholm integro-differential equations. Also,

we proved the existence and uniqueness of the solution. Moreover, the obtained results show

that we can control of the convergence district of homotopy analysis technique by controlling

the auxiliary parameter ħ. The convergence theorem and the illustrative example establish

the precision and efficiency of this technique.
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