A NOTE ON COMMON FIXED POINTS BY ALTERING DISTANCES

R. P. PANT, K. JHA AND A. B. LOHANI

Abstract. The purpose of this paper is to provide answer to an open problem due to Sastry et al. [1].

1. Introduction

Recently, Sastry et al. [1] obtained conditions for the existence of unique common fixed point for weakly commuting pairs of self mappings in a complete metric space, by altering distances between points. Also, Sastry proved a common fixed point theorem, introducing the notion of certain control function in order to alter distance between the points. Sastry et al. [1] established a unique common fixed point theorem for four self mappings by applying the following notions:

Definition 1.1. A control function ψ is defined as $\psi : \Re^+ \to \Re^+$ which is continuous at zero, monotonically increasing, $\psi(2t) \leq 2\psi(t)$ and $\psi(t) = 0$ if, and only if t = 0. It is noted that this function ψ need not be sub-additive.

Definition 1.2. Two self mappings A and S of a metric space (X, d) are called weakly commuting if $d(ASx, SAx) \leq d(Ax, Sx)$ for each x in X. This condition implies that ASx = SAx whenever Ax = Sx.

Definition 1.3. Two self mappings A and S of a metric space (X, d) are called ψ -compatible if $\lim_{n} \psi(d(ASx_n, SAx_n)) = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_{n} Ax_n = \lim_{n} Sx_n = t$ for some t in X.

Sastry et al. [1] proved the following theorem:

Theorem (2.4. of [1]) Let (A, S) and (B, T) be weakly commuting pairs of self mappings of a complete metric space (X, d) and function ψ be as in definition (1.1) satisfying

(i) $AX \subset TX$, $BX \subset SX$ and

(ii) there exists h in [0,1) such that $\psi(d(Ax, By)) \leq hM_{\psi}(x, y)$ for all x, y in X.

Received January 4, 2002.

 $^{2000\} Mathematics\ Subject\ Classification.\ 47 H10.$

Key words and phrases. Complete metric space, Cauchy sequence, compatible maps, weakly commuting maps and common fixed points.

⁵⁹

Suppose that A and S are ψ -compatible and S is continuous. Then A, B, S and T have a unique common fixed point.

This theorem is valid if we assume B and T are ψ -compatible and T is continuous, instead of similar restrictions on A and S.

On the basis of theorem 2.4 of [1], Sastry posed the following open problem:

Is theorem 2.4 of [1] valid if we replace continuity of S by continuity of A or continuity of T by continuity of B?

In the present paper, we prove a common fixed point theorem which provides an affirmative answer to the above question on the existence of fixed point. Also, we state the following lemma (2.3 of [1]) which is used in the main theorem.

Lemma 1.4. Let $f : \Re^+ \to \Re^+$ be increasing, continuous at the origin and vanishing only at zero. Then $\{t_n\} \subset \Re^+$ and $f(t_n) \to 0$ implies that $t_n \to 0$.

2. Main Theorem

Theorem 2.1. Let (A, S) and (B, T) be weakly commuting pairs of self mappings of a complete metric space (X, d) and function ψ be as in definition (1.1) satisfying

- (i) $AX \subset TX$, $BX \subset SX$ and
- (ii) there exists h in [0,1) such that $\psi(d(Ax, By)) \leq hM_{\psi}(x, y)$ for all x, y in X.

Suppose that A and S are ψ -compatible and A is continuous. Then A, B, S and T have a unique common fixed point.

Proof. Let x_0 be any fixed point in X. Define sequences $\{x_n\}$ and $\{y_n\}$ in X given by the rule

$$y_{2n} = Ax_{2n} = Tx_{2n+1}$$
 and $y_{2n+1} = Bx_{2n+1} = Sx_{2n+2}$. (2.1.1)

This can be done by virtue of (i). Then applying the same proof as that in the theorem 2.1 of Sastry et al. [1], we can show that $\{y_n\}$ is a Cauchy sequence. Since X is a complete metric space, there is a point z in X such that

$$y_{2n} = Ax_{2n} = Tx_{2n+1} \to z$$
 and $y_{2n+1} = Bx_{2n+1} = Sx_{2n+1} \to z.$ (2.1.2)

Now, suppose that (A, S) is ψ -compatible then we have

$$Ax_{2n} \to z$$
 and $Sx_{2n} \to z$ implies that $\lim_{n} \psi(d(ASx_{2n}, SAx_{2n})) = 0.$ (2.1.3)

Also, since A is continuous, so by (2.1.2), we get

$$AAx_{2n} \to Az \quad \text{and} \quad ASx_{2n} \to Az \quad \text{as} \quad n \to \infty.$$
 (2.1.4)

We claim that $\lim_{n} SAx_{2n} = Az$. Using (2.1.3), we get $\psi(d(SAx_{2n}, Az)) \leq \psi(d(SAx_{2n}, Az)) + d(ASx_{2n}, Az)) \rightarrow 0$ as $n \rightarrow \infty$. Thus, using the above lemma (1.4), $d(SAx_{2n}, Az)$

→ 0 as $n \to \infty$, and so $\lim_n SAx_{2n} = Az$. Also, since $AX \subset TX$, for each n, there exists w_{2n} in X such that $AAx_{2n} = Tw_{2n}$ and $AAx_{2n} = Tw_{2n} \to Az$. Thus, $AAx_{2n} \to Az$, $SAx_{2n} \to Az$, $ASx_{2n} \to Az$ and $Tw_{2n} \to Az$ as $n \to \infty$. Again, we claim that $\lim_n Bw_{2n} \to Az$. If not, then there exists $\varepsilon > 0$ and a subsequence $\{n_k\}$ such that $d(AAx_{2n_k}, Bw_{2n_k}) > \varepsilon$ and $\psi(d(SAx_{2n_k}, ASx_{2n_k})) < \varepsilon$ for all n_k . Therefore,

We claim that Az = Sz. For this, using (ii), we get

$$\begin{split} \psi(d(Sz, Bw_{2n})) &\leq h M_{\psi}(z, w_{2n}) \\ &= h \max\{\psi(d(Sz, Tw_{2n})), \psi(d(Az, Sz)), \psi(d(Bw_{2n}, Tw_{2n})), \\ & [\psi(d(Az, Tw_{2n})) + \psi(d(Bz, Sw_{2n}))]/2\}, \\ &= h \max\{\psi(d(Sz, Tw_{2n})), \psi(d(Az, Sz)), [\psi(d(Sz, Bw_{2n}))]/2\}. \end{split}$$

Letting $n \to \infty$, we get $\psi(d(Sz, Az)) \leq h \max\{\psi(d(Sz, Az)), [\psi(d(Sz, Az))]/2\} = h\psi(d(Sz, Az))$, a contradiction.

Thus we have

$$Az = Sz. (2.1.5)$$

Since $AX \subset TX$, there exists some w in X such that Az = Tw. Therefore, we have

$$Az = Sz = Tw. (2.1.6)$$

Moreover, we show that Az = Bw. Suppose on the contrary that $Az \neq Bw$. Then, using (ii), we get

$$\begin{split} &\psi(d(Az,Bw)) \\ &\leq h M_{\psi}(z,w) \\ &= h \max\{\psi(d(Sz,Tw)), \psi(d(Az,Sz)), \psi(d(Bw,Tw)), [\psi(d(Az,Tw)) + \psi(d(Bz,Sw))]/2\}, \\ &= h \max\{\psi(d(Bw,Az)), [\psi(d(Bw,Az))]/2\}, \\ &= h \psi(d(Bw,Az)), \quad \text{a contradiction.} \end{split}$$

Therefore,
$$Az = Bw$$
. Hence $Az = Sz = Tw = Bw$. (2.1.7)

Since A and S are weakly commuting, we have by (2.1.7), ASz = SAz and hence

$$AAz = ASz = SAz = SSz \tag{2.1.8}$$

and by the weakly commuting property of B and T, we get

$$BBw = BTw = TBw = TTw. \tag{2.1.9}$$

We now show that AAz = Az. Suppose that $AAz \neq Az$ then by (ii), we get

$$\psi(d(Az, AAz)) = \psi(d(Bw, AAz)) \le hM_{\psi}(Az, w) = h\psi(d(Az, AAz)),$$

(using (2.1.7) and (2.1.8)), a contradiction. Hence AAz = Az. Also, we have AAz = SAz. Therefore, Az is a common fixed point of A and S. Again, suppose that $BBw \neq Bw$. Then using (ii), we get

$$\psi(d(Bw, BBw)) = \psi(d(Az, BBw)) \qquad (by (2.1.6))$$

$$\leq hM_{\psi}(z, Bw)$$

$$= h\psi(d(Bw, BBw)), \qquad (by using (2.1.7) and (2.1.9))$$

$$< \psi(d(Bw, BBw)), \qquad a \text{ contradiction.}$$

Hence BBw = Bw and since TBw = BBw, we have Bw being a common fixed point for B and T. Finally, since Az = Bw, we have Az as a common fixed point for A, B, S and T. Moreover, the uniqueness of a common fixed point follows from (ii).

This completes the proof of the theorem.

The proof is similar when the pair (B,T) is assumed ψ -compatible and B is continuous.

References

 K. P. R. Sastry, S. V. R. Naidu, G. V. R. Babu and G. A. Naidu; Generalization of common fixed point theorems for weakly commuting mappings by altering distances; Tamkang Journal of Mathematics 31(2000), 243-250.

Department of Mathematics, Kumaon University, D. S. B. Campus, Nainital-263002, Uttaran-chal, India.

Permanent Affiliation: Department of Mathematical Sciences, Kathmandu University, P. O. Box 6250, Kathmandu, Nepal.

Department of Mathematics, Kumaon University, D. S. B. Campus, Nainital-263002, Uttaran-chal, India.