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AN INVERSE PROBLEM FOR THE NON-SELF-ADJOINT MATRIX
STURM-LIOUVILLE OPERATOR

NATALIA PAVLOVNA BONDARENKO

Abstract. The inverse problem of spectral analysis for the non-self-adjoint matrix Sturm-
Liouville operator on a finite interval is investigated. We study properties of the spectral
characteristics for the considered operator, and provide necessary and sufficient condi-
tions for the solvability of the inverse problem. Our approach is based on the constructive
solution of the inverse problem by the method of spectral mappings. The characteriza-
tion of the spectral data in the self-adjoint case is given as a corollary of the main result.

1. Introduction and main results

Consider the boundary value problem L = L(Q(x), h, H) for the matrix Sturm-Liouville
equation
Y =-Y"+Q(x)Y =Y, x€(0,m), 1)

with the boundary conditions

UY):=Y'(0)-hY(©0)=0, V():=Y'(m)+HY(7)=0. (2)

Here Y(x) = [yk(x)];_17; is a column vector, A is the spectral parameter, and Q(x) =
[Qjk(x)] k=T, where Q;(x) € L2(0,7) are complex-valued functions. We will subsequently
refer to the matrix Q(x) as the potential. The boundary conditions are given by the matrices
h= [hjk]j,kzl,_m’ H= [ij]j’k:L—m, where hj and Hj are complex numbers.

In this paper, we study the inverse problem of the spectral theory for the matrix Sturm-
Liouville operator &, £Y = ¢Y, with a domain

Dom (&) ={Y = [yl yx € W;[0,7], k=1, m, Y satisfies (2)}.

Inverse problems consist in recovering differentail operators from their spectral characteris-
tics. Such problems have many applications in science and engineering.
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Inverse problems for the scalar Sturm-Liouville equation (m = 1) have been studied fairly
completely (see monographs [1, 2, 3, 4]). The matrix case is a natural generalization of the
scalar one. A significant contribution in the inverse problem theory for the matrix operators
was made by Z.S. Agranovich and V.A. Marchenko [5], who studied the matrix Sturm-Liouville
operator on the half-line. For inverse problems on the finite interval, uniqueness theorems
were proved in works [6, 7, 8]. An algorithm for reconstuction of the matrix potential from
the spectral data was presented by V.A. Yurko [9] for the case of the simple spectrum. Then
D. Chelkak and E. Korotayev [10] have given the characterization of the spectral data (nec-
essary and sufficient conditions) for the matrix Sturm-Liouville operator with asymptotically
simple spectrum, which is a strong restriction. Necessary and sufficient conditions and an
algorithm for the solution in the general case, without any restrictions on the behavior of
the spectrum, provided in [11]. Ya.V. Mykytyuk and N.S. Trush [12] obtained characterization
of the spectral data for the potential from the Sobolev class Wz_l. Necessary and sufficient
conditions for solvability of inverse problems for the matrix Sturm-Liouville operators on the
half-line and on the line were provided in [13] and [14], respectively. Inverse problems for

first-order systems in the general form were studied in [15, 16, 17].

All the previous works on the necessary and sufficient conditions for matrix Sturm-
Liouville operators on a finite interval deal with the self-adjoint case: when the matrices Q,
h and H are Hermitian. In this paper, we study the non-self-adjoint case. We develop the
approach of [11], based on the method of spectral mappings [4, 18]. This method allows to re-
duce an inverse problem to a so-called main equation, which is a linear equation in a suitable
Banach space of infinite sequences. The reduction works for non-self-adjoint operators just
as well as for self-adjoint ones. Moreover, by necessity one can prove, that the main equation
is uniquely solvable. However, by sufficiency it is necessary to require its solvability even in
the scalar case (see the example in [4, Section 1.6.3]). For the non-self-adjoint scalar Sturm-
Liouville operator, a constructive solution of the inverse problem by the method of spectral
mappings and necessary and sufficient conditions were obtained by S.A. Buterin, C.-T. Shieh
and V.A. Yurko [19, 20]. In this paper, we generalize their results, and get necessary and suffi-

cient conditions for the spectral data of the matrix Sturm-Liouville operator.

Proceed to the formulation of the main results. Let ¢(x, A) and S(x, 1) be matrix-solutions

of equation (1) under the initial conditions
PO =1In, ¢'0A)=h SON)=0y S§0,1)=I,,

where I, is the identity m x m matrix, 0,, is the zero m x m matrix. The function A(Q) :=
det V(¢) is called the characteristic function of the boundary value problem L. The zeros of

the entire function A(A) coincide with the eigenvalues of L.
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Let w be some m x m matrix. We will write L(Q(x), h, H) € A(w), if the problem L has
a potential from L,(0,7) and h+ H + % JoQ(x)dx = w. In the self-adjoint case, the matrix
h+ H+ % JoF Q(x) dx is diagonalizable by the unitary transform. In the general case, it is not
true, but we restrict ourselves to the class of diagonalizable matrices. Then without loss of

generality we can assume that
Le Aw), wePD={w: w=diaglw,...,0nul}}

One can achieve this condition applying the standard transform.

Before we proceed to asymptotics, let us agree to denote by {x,} different sequences
from I,.

Lemmal. Let L€ A(w), w € 2. The boundary value problem L has a countable set of eigenval-

ues {Anq} and

n=0,q=1,m’

w K
pnq::\/ﬂtnq:n+—q+—", qg=1,m. 3)

Here the eigenvalues are counted with their multiplicities, which they have as zeros of the entire
characteristic function A(1).

Since the matrix w is diagonal, the proof of Lemma 1 repeats the proof of [11, Lemma 1].

Let d(x, 1) = [® k(% M1 jk=T,m be a matrix-solution of equation (1) under the boundary
conditions U(®) = I;;;, V(D) = 0,,. We call ®(x, 1) the Weyl solutionfor L. Put M(A) := D(0,A).
The matrix M(A) = [M(A)] i k=Tm is called the Weyl matrix for L. The notion of the Weyl

matrix is a generalization of the notion of the Weyl function (m-function) for the scalar case
(see [1], [4]). The Weyl functions and their generalizations often appear in applications and
in pure mathematical problems, and they are natural spectral characteristics in the inverse
problem theory for various classes of differential operators.

Using the definition for ®(x, 1) and M(A), one can easily check that

D(x,A) = S(x,A) +@(x, YM(A), (4)
M) = —(V(g) 'V (S). (5)

The matrix-function M(A) is meromorphic in A with poles at the eigenvalues {14} of L. In
general, the poles can be multiple, but we put the following restriction.

Assumption 1. All the poles of the matrix-function M (A1) are simple.

Note that Assumption 1 corresponds to the case, when the operator does not have as-
sociated functions (see [21]). If there is a finite number of multiple poles, one can use the

approach of [19, 20].
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Define the weight matrices:
Apg = Af:{%sq M(A).

Assumption 2. The sequence of the matrices {a,4} is bounded in a matrix norm: ||a 4|l < C,

foralln=0,g=1,m.

For definiteness, here and below we consider the following matrix norm

m
lAll= max kglla,-m, A=lajKj pot 6)
We say that the boundary value problem L belongs to the class A; »(w), if L € A(w) and L

satisfies Assumptions 1 and 2.

Note that Assumptions 1 and 2 hold in the following cases.

1. The self-adjoint case (see [11]).

2. Assumption 1 obviously holds, when the eigenvalues are simple. Assumption 2 holds
in view of (7), when the eigenvalues are asymptotically simple, i.e. all the values w, are
distinct.

Let {Ay,.4,} k=0 be all the distinct eigenvalues from the collection {14} Put

n=0,g=1,m*

a,nka = Apgy K20, a,nq =0m, (n, q) € {(ng, i)}t k=o0-

Fix the numbers 1 = m; < my <--- < my so that {w, le are all the distinct values in the
collection {wg}jL,. Let Js = {q: wg = wp}, and al¥ = qg g $=1,p.! Analogously to ky,

denote by {K},} different matrix sequences, such that norms of these matrices form sequences

from [,.

Lemma2. Let L€ A)»(w), w € D. Then the following relations hold

2 —_—
! ==219+K,, s=T1p, n=0, @
T
(Im_I(S))anq:Knr nzo; SZW’ 6]6]3, (8)
where
19 = (197 () — 1, j=keJs
jEbk=Lm - Tik T 0 otherwise.

!n the case of multiple eigenvalues, the same weight matrices a ng occur in A multiple times. To count each
residue in the sum only once, we use the notation a;m,
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L (s) &
Puta,:=Y a;’ =Y a’nq.
s=1 q=1

Lemma3. Let L€ A (), w € D. Then the following relation holds

2 K,
ap=—I,+—, n=0. 9
i1 n

The data A := {A,q, @ngt n=0,q=T,m are called the spectral data of the problem L. Consider
the following inverse problem.

Inverse Problem 1. Given the spectral data A, construct Q, h and H.

Let us describe the general strategy of our method. Suppose we know the spectral data
A of some unknown boundary value problem L € A; »(w), w € 9. Choose an arbitrary model
boundary value problem L= L(Q(x), h H) e Aj 2(w) (for example, one can take Q(x) = %w,
h=0,, H=0,,). We agree that if a certain symbol y denotes an object related to L, then the

corresponding symbol 7 with tilde denotes the analogous object related to L.

Denote 1,50 = Ang,  Ang1 = ﬂnq, n=0,q= 1, m. Let Y(x) = [‘P(x'Anqi)]nzo,q:L_m,izo,p
W(x) = [¢(x’A”qi)]nzo,qzl,_m,izo,l' It is shown in Section 4, that for each fixed x € [0, 7], ¥ (x)
satisfies the main equation

¥ (x) =y @)U +Rx) (10)

in a suitable Banach space B of infinite bounded matrix sequences. Here [ is the identity op-
erator in B, and the operator R(x) is constructed by the model problem [ and two collections
of spectral data A, A. Solving the main equation, one can recover the potential Q and the
coefficients of the boundary conditions & and H by Algorithm 1, provided in Section 4. Us-
ing the main equation, we obtain necessary and sufficient conditions for spectral data of the
problem L from A »(w).

We will write {A,4, @ng} .5 g=T;m € Sp, if Anq are complex numbers, a4 are m x m matri-

ces, and for 1,4 = Ay; we always have a,; = ay;.

Theorem 1. Let w € 9. For data {Ayg, gt y=0,q=T,m € Sp to be the spectral data for a certain

problem L € A; »(w) it is necessary and sufficient to satisfy the following conditions.

(A) The asymptotics (3), (7), (8) (9) are valid, and Assumption 2 holds for {anq}.

(R) The ranks of the matrices a4 coincide with the multiplicities of the corresponding values
/’lnq .2

(M) The main equation (10) is uniquely solvable.

2By necessity, the multiplicity of A nq means the number of corresponding linearly independent vector eigen-
functions, equal to the multiplicity of zero of A(1) by Lemma 5. By sufficiency, the multiplicity means the number
of times the value 1,4 occurs in the given collection.
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Condition (M) holds for any choice of a model problem L € A} »(w) by necessity and for at

least one problem L by sufficiency.

Of particular interest are those cases, when the solvability of the main equation can be
proved or easily checked, namely, the self-adjoint case, the case of finite perturbations of the
spectral data and the case of small perturbations [19, 20]. As a corollary of Theorem 1, we
derive a result for the self-adjoint case: Q = Q', h = h', H = H' (the symbol 1 stands for
the conjugate transpose). Finite perturbations and small perturbations can also be studied
analogously to the scalar case. Note that in the self-adjoint case, the problem L always belongs
to the class A; »(w) with a diagonalizable w (see Section 7). Condition (M) can be proved with
help of the simplier condition (E), so we obtain the following result.

Theorem 2. Letw = w' € 9. For data (A, Ang}y=0,q=T,m € SP to be the spectral data for a
certain self-adjoint problem L € A(w) it is necessary and sufficient to satisfy the following con-

ditions.

(A) The asymptotics (3), (7), (8) (9) are valid.

(R) The ranks of the matrices a4 coincide with the multiplicities of the corresponding values
A/nq-

(S) AllAyg arereal, ang = ((an)T, Apg = O0foralln=0,q=1,m.

(E) Forany row vectory(A) that is entire in A, and that satisfy the estimate
y(A) = O(exp(IImVAIm)), Al — oo,
ify(Ang)ang =0 foralln=0, g = 1, m, then YA = 0.3

Note that Assumption 2 in (A) is not necessary in the self-adjoint case, because it follows

from (9) and the condition a;; = 0.

Aswe have already mentioned, the characterization of the spectral data of the self-adjoint
matrix Sturm-Liouville operator was obtained earlier in [11]. But the work [11] contains a
technical mistake in asymptotics of the weight matrices. In this paper, using the method of
[11], we obtain correct necessary and sufficient conditions for the self-adjoint case (Theo-

rem 2) as a corollary of the more general result (Theorem 1).

The paper is organized as follows. At first we study algebraic and analytical properties of
the spectral characteristics (Section 2) and prove Lemmas 2 and 3 with asymptotic formulas
for the weight matrices (Section 3). In Section 4, we derive the main equation in a suitable

Banach space and provide a constructive algorithm for the solution of Inverse Problem 1. We

3The letters, denoting the conditions, have the following meanings: (A) Asymptotics, (R) Ranks, (M) solvability
of the Main equation, (S) Self-adjointness, (E) “Entire function condition”. The conditions (C) Completeness, and
(PW) Paley-Wiener class condition, appear later (in Section 5).
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also prove the unique solvability of the main equation, and this finish the proof of the neces-
sity in Theorem 1. Further, in Section 5, we discuss the connection between the conditions
(M), (E), (C) and (PW). Namely, they are connected as follows: (M) = (E) = (PW) < (C). Sec-
tion 6 devoted to the sufficiency in Theorem 1. In Section 7, we collect the results concerning
the self-adjoint case, and prove Theorem 2. We also give a reformulation of Theorem 2, using
the completeness of some system of vector functions (C).

Notation. Along with L we consider the boundary value problem L* = L*(Q(x), h, H) in the

form
0°Z:=-7"+ZQx)=AZ, x€(0,m),

11
U*(2):=7'"00-Z0)h=0, V*(Z):=Z'(m)+ZmH=0, (ay

where Z is a row vector. Let L* = L* (O(x), h, H). We agree that if a symbol y denotes an object

related to L, then y* and 7* denote corresponding objects related to L* and L*, respectively.

We consider the space of complex column m-vectors C" with the norm
1Yl = 1rsr}egﬂlyjl, Y=1yjl—tm

the space of complex mx m matrices C"**"" with the corresponding induced norm (6), and the
space of row vectors C"™ 1. We use the spaces L, ((0, ), C"™), L»((0,7),C"™7) and L, ((0, ), C"**™)
of column vectors, row vectors and matrices, respectively, with entries from L,(0,7). The
Hilbert spaces L ((0,7),C™) and L, ((0,7),C"™7) are equipped with the following scalar prod-
ucts

m
.Zl 7j(0)zj(x)dx,

(Y, Z) = f Yz dx=
0 i=

0
(Y, Z) = f Y(x) Z (2 dx,
0

respectively. Denote (Y, Z)=Y'Z-Y Z'.

Put p := VA, Rep =0, 7 := Im p. In estimates and asymptotics, we use the same symbol C
for different constants independent of x, p, etc.
2. Properties of the spectral data

The results of this section are valid for any boundary value problem L, satisfying Assump-

tion 1. First, we prove an alternative formulation of this assumption.

Lemma 4. Assumption I is equivalent to the condition, that all the poles of the matrix function

(V(p(x, MN7Lin the A-plane are simple.
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Proof. Suppose that A, is a nonsimple pole of (V((p))_l, namely

Ak +eeet A
(A-2Ag)k A=

Vip) ' = +Ag+-, k>1, Ap#Om,

in a neighborhood of 1. The matrix-function V(S(x, 1)) is analytical: V(S(x, 1)) = V(S(x, Ap))
+ d% V(S(x,10))(A—Ag)+---. If A¢ is a simple pole of the Weyl matrix M (1), then A_ V(S(x, A¢))
= 0,,. The matrix-function I = (V(¢)) ! V(¢) is entire, therefore we also have A_; V (¢(x, 1)) =
0. Since the columns of the matrices ¢(x, 1) and S(x, 1) form a fundamental system of solu-
tions of equation (1), every solution 1y (x, A) of this equation can be represented as their linear
combination: ¥ (x, 1) =¢(x, A1) A+S(x, 1) B, and it also satisfies the relation A_;V (y(x, 1¢))=0.
But if we choose the solution ¥ (x, o), satisfying the initial conditions v (7, 1¢) = 0,,,, ¥’ (71, Ag)
=A" o we get AV (y(x, Ao)) # 0. The contradiction shows, that the simplicity of the poles of
(V(¢))~! follows from the simplicity of the poles of M(A). The inverse is obvious. a

Lemma 5. The zeros of the characteristic function A(1) coincide with the eigenvalues of the
boundary value problem L. The multiplicity of each zero Ay of the function A(A) equals to the
multiplicity of the corresponding eigenvalue (by the multiplicity of the eigenvalue we mean the
number of the corresponding linearly independent vector eigenfunctions).

Proof. 1. Let Ay be an eigenvalue of L, and let Y be an eigenfunction corresponding to Ay. Let
us show that Y%(x) = ¢(x,10)Y°(0). Clearly, Y°(0) = ¢(0,1)Y°(0). It follows from U(Y°) =0
that Y°'(0) = hY°(0) = ¢(0,1)Y°(0). Thus, Y°(x) and ¢(x, 19)Y°(0) are the solutions for the
same initial value problem for equation (1). Consequently, they are equal.

2. Let us have exactly k linearly independent eigenfunctions Y, Y2, ..., Y* corresponding
to the eigenvalue Ay. Choose the invertible m x m matrix C such that the first k columns of
¢(x, 1p)C coincide with the eigenfunctions. Consider Y (x, 1) := ¢(x,1)C,

Y(x,A) = [Yq(x, )L)]q:L—m, Yy(x,A0) =Y(x), q = 1, k. Clearly, the zeros of A; (1) := det V(Y) =
det V(¢) - det C coincide with the zeros of A(1) counting with their multiplicities. Note that
A = Ag is a zero of each of the columns V (Y}), ..., V(Y;). Hence, if A is the zero of the deter-
minants A; (A1) and A(A) with the multiplicity p, then p = k.

3. Suppose that p > k. Rewrite A; (A1) in the form

A1) = (A—20) A (M),
V() V(Y)
A= T A=A
In view of our supposition, we have Az(1o) = 0, i.e. there exist not all zero coefficients ag,
g =1, m such that

As(A) =det

W V(¥er1), -, V¥ |-

ko dV(Yy(x,Ao)) u
) aq;—AO + Y agV(¥,(x,Ag) =0. (12)
gq=1 g=k+1
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Ifag=0forg= 1, k, then the function
m
Y )= ) agYqe(x,A)
q=k+1

for A = Ag is an eigenfunction, corresponding to Ao, that is linearly independent with Y9,
g = 1, k. Since the eigenvalue Ay has exactly k corresponding eigenfunctions, we arrive at a
contradiction.

Otherwise we consider the function

k m
YT, i= ) ag Yy, )+ (A—-2Ap) Y agYy(xA).
q=1 q=k+1

Now we plan to use the simplicity of the poles of (V((p))_l, following from Assumption 1 by
Lemma 4. Recall the following well-known fact (see [5, Lemma 2.2.1]):

The inverse (V ()~ has a simple pole at A = Ay if and only if the relations at A = Ag:

Vip)a=0,

d (13)
aVipa+ V(p)b =0,
where a and b are constant vectors, yield a = 0.

The function Y* has the form Y*(x,1) = V(gp)a+ (A — Ag)V(@)b, a # 0. In view of (12),
the relations (13) are satisfied, and we arrive at a contradiction with Assumption 1. Thus,
As(Ag) #0and p = k. O

Lemma 6. The ranks of the residue-matrices of the Weyl matrix M(A) coincide with the multi-
plicities of the corresponding eigenvalues of L.

Under Assumption 1, the proof of Lemma 6 does not differ from the proof in the self-
adjoint case (see [11, Lemma 4]).

Now let us consider the problem L*, defined by (11). It is easy to check that
(Z,Y)x=0=U"(2D)Y(0) = ZOO)U(Y), (Z,Y)y=rn=V(2)Y(n)-ZmV(Y). (14)

where (Z,Y) =Z'Y - ZY'. If Y(x,A) and Z(x, A) satisfy the equations ¢Y (x,1) = 1Y (x, ),
0" Z(x, ) = uZ(x, 1), respectively, then

d
E<Z(x,,u), YA =A-wZ(x,wY(x,A), (15)

Introduce the matrices ¢* (x, 1), S*(x, 1) and ®* (x, 1), satisfying the equation ¢*Z =17
and the conditions

P 0,0 =S"0,1)=U"@) =1, ¢*ON=h, S 0,1)=V"(@)=0,,.
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Denote M* (1) := ®*(0, ).

In view of (15), the expression (®*(x, 1), ®(x, 1)) does not depend on x. Using (14), we

obtain

(@"(x, 1), @(x, D) x=0 = M(W) = M*(A), (D" (x,1),D(x,A))x=r = Opp.

Hence

M) =M*(A). (16)

and consequently, the spectral data of the problems L and L* coincide.

Lemma 7. Let Ay, Ay be eigenvalues of L, Ay # A1, and a; = ;Is_ef M), i=0,1. The following

relations hold

/A
aofo @* (x,20)p(x,Ag) dx ag = ag,

/A
060/ @*(x,20)@(x, A1) dx ay = 0y,
0

Proof. Using (14) and (15), we derive

m (@™ (x,A0), (x, A7
* ) ) d = l
fo @ (x,Lo)(x, o) dx /11_r)1/%0 o

L V" (x5 AT, A) — @ (, L) V (@(x, 1))
= lim .
A—Ao A—Ao

In view of (5), the product V(¢) M (A) is an entire function of A. Taking its residues at Ay, we
get
V(p(x,Ao)) @ = Op. 17)

Similarly agV* (¢* (x, 19)) = 0,,,. Consequently, we calculate

/A
aofO ©*(x,L0)p(x, 19) dx ay

« . Vipx,A) B I
aop (”’AO)AII—»HAIOTOXAII—%M A0)(V(p(x,A)) " V(S(x, 1)

o™ (1, L) V(S(x, A0)) = —ao{p™ (x,A0), S(x, A0)) x=r

= —Q <(P* (x» /10)» S(x» /10)>x:0 = op.
Similarly one can derive the second relation of the lemma. g

Lemma 8. Let {14, Ang} +— be the spectral data of the problem L, satisfying Assump-

n=0,q=1,m

tions 1 and 2. Then (E) is valid.
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Proof. Let y(A) be a function described in (E). In view of (17), we have

Vipx,Ang))@ng=0m, n=0,qg=1,m. (18)

Since

rank V(p(x,1,4)) +rank a,g = m

and y(Ang)ang =0, we get y(Ang) = CngV(@(x, Ang)), i. €. the row y(A,4) is a linear combina-
tion of the rows of the matrix V(¢(x, 1,4)) (here Cy is a row of coefficients). Consider

F) =y Vg, )"
The matrix-function (V (¢(x, 1)))~! has simple poles in A = Ang, therefore, we calculate

— -1
;Eﬁff,f ) = Y(/lnq)f_{%s (V(p(x, 1))

=Ang

= Cpg lim V(p(x, 1) lim (A - A,e)(V(p(x, 1))~ =0.
A_’Anq /1_’/1nq
Hence, f(A) is entire. It is easy to show that
IV (@, )7 Il < Cslpl ™' exp(~Itlm), pe€Gs,

where Gs = {p: |p—k|=6,k=0,1,2,...,|p| = p*}, § > 0. From this we conclude that || f(1)|| <
F(gl in Gs. By the maximum principle this estimate is valid in the whole A-plane. Using Liou-

ville‘s theorem, we obtain f(1) = 0. Consequently, y(1) = 0. Oa

3. Asymptotics

In this section, we prove Lemmas 2 and 3, providing asymptotic formulas for the weight

matrices .

Lemma9. For |p|— oo, the following asymptotic formulae hold

Vip) = —psinpn- I, +wcospr +x(p), (19)

x(p) = %f Q(t)COSP(n—Zt)dHO(%lT'”))
0

)

sin pnwo N Ko(p) ’
p p

Ko(p) = _%fo sinp(n—Zt)Q(t)dt+O(

1 /A
V(S) =cospm- I+ wO:H+Ef Qv dt, (20)
0

exp(lrln))
—p .
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Proof. The assertion of the lemma immediately follows from the standard asymptotics:

exp(|7|x)

o ) (21)

1 X
(p(x,ﬂt)zcospx-lm+s prl(x)+%f sinp(x—-20)Q(1)dt+ 0O
0

‘PI(X'M:‘PSian'1m+COSPle(x)+%f cOsp(x—Zt)Q(t)dt+0(expgT|X))' (22)
0
where Q;(x) = h+3 [y’ Q1) dt, and

St Ay = S0PX COprf Q(t)dt+—f cosp(x—20Q() dt+ 0 76"?(""‘)),

sin px

S'(x,A) = cospx- I, +

fQ(”‘”‘ipf sin p(x - 2t)Q(t)dt+o(%""”).
0

These formulas can be derived similarly to the scalar ones from [4, Lemma 1.1.2, Theorem
1.1.3]. O

Proof of Lemma 2. Consider the contour

(s) .

2 1
Y {)L A=n’+ ,u, [U—wm|=R: —Emlnlw]—wkl}
ik

Then for sufficiently large n, by virtue of (3) and the residue theorem,

aly = f M(A)dA. (23)
2ni

Further in this proof, we fix s = 1, p and a sufficiently large n, and consider only A =

(s)

n?+ ,u €y, . Taking a square root, we get

p=vi=nt o KW 24)
nn

n

Here and below {x,(u)} denotes different sequences, depending on y, but is majorized by a

constant sequence from /,, independent of y:
Vs lu—wm| =R, |kp(Wl <k, Y K5 <oo.
n

Similarly, {K}, (1)} denotes sequences of matrices, whose norms form scalar sequences {x ,, (11)}.

It follows from (19) and (20), that for A € Y,

Vip)==D"(—plp+o+K,(w), VS =ED"|1n+ ol
Substitute this into (5):

M) = (Ul — o+ Ky ()™ [ Ly +

Ky (1) )
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Since |u—wg4|= R forall g = 1, m, the inverse M (W) = (uly, - )1 is bounded, and
1
M) - M) = Kn (), — f (M) - My() dA = Ko
271 Jy

We calculate

1 2 1 2
— | Mywdr==-— Im—w) tdu==19.
2mi Jyo oW T 2mi |u_wm8|:R(H m= ) dp T

Together with (23), this gives (7).

By (3) and (19), V((p(x,/lnq)) = (—1)"(w—wam+Kn). By Assumption 2, [|a,4Il < C. Using
these facts together with (18), we obtain (& — wgIm)@ng = K;. This relation yields (8). O

Lemma 10. Let a matrix A be such that || Al| < R. Then

1
— In—A) Ydu=1,,.
2mi |y|:R(IJ " ) H=tm

Proof. The matrix-function F(u) = (ul,— A7 Lis analytic outside the circle |u| < R. Therefore,

1
— F(u) du=— Res F(u).
27mi Jjp=r Wy #:eo% )

The Laurent series )

1 A A
F(,u):—(lm+—+—2+---
u L

converge uniformly when |u| = R > || All. Therefore

EtzeosoF(u) =—1Ip,

that yields the assertion of the lemma. O

Proof of Lemma 3. Note that in fact, the asymptotics
2
a, = ;Im+Kn, n=0,

are already proved. In order to improve the estimate, we will work with the remainder «(p) in
(19).

Substituting the representation

1 X
(p’(x,/l) = —psinpx-I;;+cospxQ(x) + Ef cosp(x—=20)Q(r)dt
0

sinpx [* 1 r*
+ / Q(t)Ql(t)dt__/ sinp(x=20)Q(1) Q1 () dt
2p Jo 2p Jo

exp(lrlx))

X t
+$f0 cosp(x—t)Q(t)fO sinp(t—25)Q(s)dsdt+0 p2
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1 X
Ql(x):=h+—f Q(ndt,
2Jo

and (21) into V(¢) = ¢'(w,A) + Hp(w, 1), we arrive at (19) with

K(p) = %fo cosp(n—Zt)Q(t)dt+¥(%fo Q(t)Ql(t)dt+HQ1(n))

1 T
+$fo sinp(m —21) (HQ() - Q(NQ1 (1) dt

1 /4 t
+—f cosp(r — t)Q(t)f sinp(t—2s)Q(s)dsdt+ O(w). (25)
2p Jo 0 p
Consider the contour
2 2
Yni=qA: A=n"+ el lul = 3llwl .
Further in this proof, we fix a sufficiently large n, such that
1
a,=—| MQ)dA. (26)

27 Jy,

2
and consider only A = n? + = € y,,. Then the square root of A takes the form (24).
b2

Substitute (24) into (25). Then the first integral in (25) equals

l/ cosn(n—Zt)Q(t)dt+M,
2 Jo n

and all the other terms are

Ky
’iu). Then by (5), (19), (20), we get

-1
M(/l):(ulm—w+Ln+K"(H)) (Im+K"(H)), AEYn,
n n

where L, is a matrix sequence independent of y, and {||L,|l} € l,. Thus, for large n, |L,| +

-1 _
K, (u)/nll < llwll and the inverses (,uIm —w+L,+ @) and (,uIm -—w+ Ln) ! are bounded

for |u| = 3llw|l. Therefore

1

— MQA)d
271 =3l

Y K,
= — Iy—w+L du+—.
K= o lul=3llwll Him n) - du n

Applying Lemma 10 to the right-hand side and changing du to dA, we arrive at (9). g

4. Solution of Inverse Problem 1

Let the spectral data A of the boundary value problem L € A »(w), w € 2, be given.
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Denote “ L o) .
D(x,ﬂt,u)=<(p x’f_’(ﬁ ol >=f0 O (t,we(t, A dt. @7

We choose an arbitrary model boundary value problem L= L(Q(x) hH) e A 2(w) (for
example, one can take Qx) = —a), h=0,, H=0,,. Note that for this choice of the model
problem w = @, therefore the eigenvalues /lnq and the weight matrices @, of L satisfy the

same asymptotic formulae (3), (7), (8) and (9), as 1,4 and a 4. Put

én—Zmnq pnq|+22|pnq pnms|+ZZ|pnq pnmA|+Z al —al+lla, - anl,

s=1gqej; s=1qeJ;
(28)
then
Q:= (Z (n+ 1)5,,)2) <oo, Y &p<oo. (29)
n=0 n=0
Denote
Aan = Anq; Anql = jnq; Pngo =Pnqg> Pngl = ﬁnq» “;lqo = a,rzqr alnql = &lnq;

Pngi(X) =9 Angi)s  Pngi(X) = P Angi)s ;) =@ (X, Angi)s @i (X) = @7 (X, Angi),
n=0, g=1,m, i=0,1.

By the standard way (see [4, Lemma 1.6.2]), using Schwarz’s lemma, we get

Lemma 11. The following estimates are valid for x € [0,n], n,k=0,q,l,r=1,m,i,j,s=0,1:

10ngi N <=C, N@Qngi(X) = @ni; (N < Clpngi — Pnijl,
Clpkij = Pkrs!

D(x, Apgis i)l <
I D(x, Angi kl])” n—kl+1

C
In—kl+1’ ”D(x’/lnqi’/lklj) _D(X’Anqi»/lkrs)” =

The analogous estimates are also validfor(i)nqi(x), D(x, Angi Aklj), as well as for similar matrix

functions, related to the problems L*, L*.

The next theorem plays a crucial role in the derivation of the main equation of the inverse
problem. It can be proved similarly to [9, Lemma 1] by the contour integral method.

Theorem 3. The following relations hold

oo m
P, ) =@M+ 3 D (Prio(X0) @)y Dx, A, Akio) — i (X)) D(x, A, Ak)) - (30)
k=0i=1

oo m
D, A, 1) =D(x, A, ) = ) D (DX, Agro, ;o D(x, A, Agero) = D(x, Akt () @y D(x, A, Akin)) -
k=01=1

Both series converge absolutely and uniformly with respect to x € [0,7] and A, u on compact

sets.
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Analogously one can obtain the following relation

- o m L (@), D(x, 1))
P, ) =@, )+ ) Y Y (1 prijay,; ) : 3D
k=01=1j=0 —Vklj

It follows from Theorem 3 that

o m
Pngi(X) = Pngi(x) + Z Z (Pkio (x)a;CmD(x» Angir Akio) = @in (x)a;dlD(x» Angi> Aen)), (32)

k=01=1
~ © m ~
apy 1D Angi Anr ) = @y, ;D6 Angiy Anr) = 3 D (@, 1D Akio, Agr )@ 1o D (X, Angiy Akio)
k=01=1

—a%er(x, Akll»/lnrj)alkll]j(xy Anqi) Akll)) (33)

forn,n=0,q,r=1,m,i,j=0,1.

For each fixed x € [0, 7], the relation (32) can be considered as a system of linear equa-
tions with respect to ¢,4;(x), n =0, g = 1,m, i = 0,1. But the series in (32) converges only
“with brackets”. Therefore, it is not convenient to use (32) as a main equation of the inverse
problem. Below we will transfer (32) to a linear equation in a corresponding Banach space of
sequences.

Introduce collections G,, = {ani}q:L—m’i:M, n = 0. Fix n and, for convenience, renu-
merate the elements of the collection: G,, = {gi}?inl. Consider a finite-dimensional space
B(Gp) = {f: G, — C™ ™} of matrix-functions f, such that f(g;) = f(g;) if g&; = gj, with the
norm

I fllB(G, =max{m,aX||f(gi)||,4 max | f(g:)— f(gj)ll-gi —gj|_1}~
i L,j: 8i#&j

Introduce a Banach space of infinite row vectors
B={f ={fu)neo: fn€BG), Iflp:= SnliIO) I fnllB(G,) <oot.
Fix x € [0, 7]. Lemma 11 gives the following estimates:
lpe, gD <C, llolx, &) —px, gDl <Clgi-gjl, & 8j€Gn
where the constant C does not depend on n. Therefore, ¢(x, p?) forms an element of B:
P(x, 0718 = {9(x,07)1G,3n=0 € B, 9%, 026, = (00X Angi)} o1 i=0.1-

Denote ¥(x) := ¢(x, %), ¥(x) := ¢(x, p*);5. Then (32) and (33) can be transformed into the
following relations in the Banach space B:

¥ (x) =y x) I +R(x), (34)
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R(x) - R(x) = R(x)R(x), (35)

where I is the identity operator in B, and R(x), R(x) are linear operators, acting from B to B.*
The explicit form of R(x) and R(x) can be derived from (32) and (33). Further we investigate
the operator R(x), the same properties for R(x) can be obtained symmetrically.

According to (32) and (33), the operator R(x) acts on an arbitrary elementy = {y}32 € B
in the following way:

WR(X)n = Y WikRkn(x), Rin: B(Gy) — B(Gp), k,n=0, (36)
k=0

WkRkn () (Pngi) = Y (Wi (Ok10)Xio DX, Angis Akio) = Wi (k1) @y DX, Angis Akiy) . (37)
=1

Lemma 12. The series in (36) converge in B(G,)-norm and the operator R(x) is bounded and,
moreover, compact on B.

Proof. Let y = {Wk}io:o € B. Fix x € [0,7] and n,k = 0. Denote ¥y;; := Wi(Oki})s Mngik :=
(W k Ri,n(x)) (0 ngi)- Let us show that

CérllvilBGo

THT o dThmi=ol, (38)

”nnqi,k” =

where ¢ was defined in (28) and the constant C does not depend on n and k.

Using (37), we derive

m
Mngik =) [(Wklo — Wi Xy DX, Angir Akio)
1=1

+ W11 Ay (DX Angin Akto) = D, Angis Akin)) + Wien (@ — @ ) DX Angis Akin) |-

Since

lvinll < lWklGy, 1Wkio—Viknll <lokio—ernllvilsey < Skllvillsey, [=1,m,

a0l < C, and D(x, Angi, Arij) satisfy estimates of Lemma 11, one easily obtain the estimate
(38) for the first two terms.

Recall that J; = {g: wg = o}, s =1, p, are indices in groups with equal terms w, in
asymptotics (3). Continue to work with the third term:

m
lZ Vin (@hgo — @) DX Angi, Akin)
=1

4The action of operators R(x) and R(x) is, in fact, a multiplication of an infinite row vector to an infinite
matrix. It is more convenient to write operators to the right of operands, to keep the correct order in elementwise
multiplication, which is the noncommutative multiplication of m x m matrices.
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= Z [Z (Wkll _kasl)(a;(fl() - alkll)D(x, Anqir/’lkll)

s=1"1eJ;

+ Y Wiema (@ — Aoy DX Angis Akin) = DX, Angin Akmg1))
leJs

W ima (@) = &) DX, Angis Mem,1)

Applying the estimate

lWin —Vimall <1okn — PkmallVil By < Sklvilsey, €T

estimates for a’klj and Lemma 11, we arrive at (38) for the first two terms again and continue
to investigate the third one.

P
Y Wima @ = @) Dx, Angis Akmg1)

s=1

p
=Y Wima— v @ - @)D, Angi Akm,1)
s=1

P
+

Yin (@) = &) (D, Angir Akem,1) = DO Angi, A1) + Y1 (@ = @) DX, Angis Ainn)-
s=1

Now we use the estimates

- lvillBGo

1V kma =Ykl < 1Pkma — eVl BGy < e

la —aPd N <ké, Nag—apl <&
(following from (7), (9) and similar asymptotics for &,4) and Lemma 11. Finally we arrive
at (38).
Analogously one can obtain the estimate

CSkllvklBGolPngi — Pnijl
In—kl+1

”T]nqt,k_nnl],k” S y qu: 1; m; l;] :Orl

Together with (38), this gives

Cék
R X _ S E—— k,nZOJ 39
” k,n( )”B(Gk) B(Gy) |n_k|+1 ( )

where the constant C does not depend on n and k. Substitute (39) into (36) and use (29):
o Gk
lwR()lIp = sup | RO ,| < lwlip| Y ——=—|=<Clyls.
n=0 k:0|n_k|+1
Hence |R(x)|| p—p < 0co.
The operator R(x) can be approximated by a sequence of finite-dimensional operators
in B. Indeed, let R;z 2(%) = R (%) forall n =0, 0 < k < s, and all the other components of

R*(x) equal zero. It is easy to show using (39), that Shrglo |R°(x) — R(x)llg—p = 0. Therefore the
operator R(x) is compact. O
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Theorem 4. For each fixed x € [0, 7], the operator I + R(x) has a bounded inverse operator, and

equation (34) is uniquely solvable in the Banach space B.

Proof. It follows from (35), that for each fixed x € [0,7], (I — R(x))(I + R(x)) = I. Symmetri-
cally, one gets (I + R(x))(I - R(x)) = I. Hence the operator (I + R(x))~! exists, and it is a linear
bounded operator by Lemma 12. O

Equation (34) is called the main equation of Inverse Problem 1. Theorem 4 together with
Lemmas 1, 2, 3 and 6 gives the necessity part in Theorem 1.

Now turn to the problem L*, defined in (11). Take the model problem L* = L* (Q(x), h, B
with the same potential Q as the problem L has. By virtue of (16), the problems L and L* (sim-
ilarly, L and L*) have the same spectral data. Symmetrically to (32), we obtain the relations

oo m
Prngi () = @1, () + ZZ(D(x,Akm,Anq,-)a;cm(pzlo(x)—D(x,Akn,Anqi)a;m(pz“(x)), (40)
k=01=1

for each fixed x € [0,7], n =0, g=1,m, i =0, 1. Similarly to B, introduce the Banach space B*

of column vectors. Then ¢* = {W}Z}‘fc‘lo» WZ = [(pzlj 1o, =01 satisfy the linear equation
T+R )y (0 =¢* ) A1)

in B* for each fixed x € [0,7]. Here ¥*(x) and R*(x) are constructed symmetrically to ¥ (x)
and R(x) by the model problem L* and the spectral data A, A.

Lemma 13. For each fixed x € [0, 1], equation (41) is uniquely solvable in the Banach space B*

ifand only if equation (34) is uniquely solvable.

Proof. Fix x € [0,7]. In view of Lemma 12, the operators R(x) and R*(x) are compact in the
corresponding Banach spaces. Therefore it is sufficient to consider homogeneous equations
Y I+ R(x)=0and (I + R* (x))y* (x) = 0. Let us prove only the “if” part, since the “only if”

part can be proved symmetrically.

Suppose the equation y(x) (I +R(x)) = 0 is uniquely solvable. Then there exists a bounded
inverse operator P(x) = (I + R(x))~! of the following form

oo m
WP ngi = Y Y (Wki0Prio,ngi (X) = Wit Prin ngi (X)),
k=01=1

P(x) = [P n ()] im0 = [Prtjngi®), w=1Iwr;l€B, nk=0g,1=1,m,i,j=0,1.

It follows from (1//15(x)) € B, that

”Prst,nqz(x)_ﬁrst,nl](x)”Sclpnql_pnl]|r rrnzor S;q;l:]-rmy tyl;J:Orl (42)
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For simplicity, assume that all the values {1,4;} are distinct (the general case requires
minor modifications). The relation P(x)(I + R(x)) = I yields

0o n

Prst,nqi(x) + Z (Prst,klo(x)alklOD(x; Anqir/lklo) = Prstkn (x)alkllD(x; Anqi;Akll)) = 5rst,nqir
k=01=1

(43)

nr=0, s,qg=1m, ¢i=0,1,

where 6rssngi = Im, if (1,5, 1) = (n, q, 1), and 65t ngi = 0 Otherwise.

Lety*(x) = [y;‘lql. (x)] be a solution of the equation (I + R*(x))y* (x) = 0:

oo m
Ygi G+ 2 3 (D6 Ak10, Angi) @i goY k1o () = DO Akiny Angt) @ Vi (¥) = O, (44)
k=01=1

>0,g=1,m,i=0,1. Then

S

18
Mz
M-

(—l)iﬁrst,nqi (x)a;zqujlqi (x)

3
Il
—
~
Il
(=}

+
Mse §
NgE

1 . P -
1 .ZO(—I)”]Prst,nqi(x)a’nqiD(x,)Lklj,ﬂtnqi)a'kljyzlj (x)=0,,, r=0,s=1,m,t=0,1.
1,j=

=~
~
Il

n,

o
{

»

Convergence of the series can be proved with help of (42). Using (43), we obtain

co m 1 . oco m 1 . 5

2 2 2 D Prstngi (000 ngi G+ 3 D 3 (=1 Brst kit = Prs it (0 51 (X) = Om.

n=0qg=1i=0 k=01=1j=0

Consequently, Oc'klj}’,’;lj (x)=0,,forallk=0,1 = 1,m, j =0, 1. In view of (44), we conclude that

Y*(x) =0, so the homogeneous equation (I + R*(x))y* (x) = 0 is uniquely solvable. a
Note that in the proof of Lemma 13 we do not use the fact, that A is the spectral data of L,

but use only properties (A) and (R). Therefore this lemma can be used in the sufficiency part.

The main equation gives us a constructive solution of Inverse problem 1. Solving (34), we
find the vector ¥ (x), i.e. the matrix-functions ¢ 4; (x).

Denote
e0(X) =) Y (@Prio(X) Ay 10Pri0(X) —@rn (X)) Py (1), €(x) = —2€((x). 45)
k=01=1

Lemma 14. The series in (45) converges absolutely and uniformly on [0, ], the function gq(x)

is absolutely continuous, and €(x) € L, ((0, ), C"™*"™).

Proof. Here we use ideas similar to the proof of Lemma 12. Group the terms of (45) in the

following way:

m
IZ (Pri0D) @y Prio(X) = Qi1 () Ay Prpy (X))

—
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m m
=Y (@ki0(X) = Qi1 Ay 1o P10 ) + D Qi ()&l (@10 (X) = @Fpy (X))
I=1 =1

p
+ ) 2 @k () = P () (@ gy — @) P (X)
s=11leJ;

p
+2 D Plema (0@ — @) ( Py () = Py ()
s=11leJ;

p
+ ;upkmsl(x) — )@y -a)e;,, ()

p
+ Zl Pr11 (@) = &) (P01 () = Py (0) + @11 () (@ — AR Py (). (46)
s=
It follows from (28), (29) and Lemma 11, that the series in (45) converges absolutely and uni-
formly on [0, 7]:

leg()l = C ) & <oo.
k=0

Let us analyze the derivative of the first term in (46):
/ L d I =%
§'0) 1= (k10 ()~ Piir (D)@ P )
= (@100 = Py CN Xy 10 P10 ) + (@10 (X) = Pt () Xy 1o ™ s (X)

The other terms can be treated similarly. Using asymptotics (3), (21) and (22) together with

Schwarz’s lemma, one gets

K (%) o _
Pheto ) = Pheyy () = —cos kxy s X + kk+ o Prpo0) = coskx+O0(k™),
. K (x) - .
Pr10(X) — g (x) = —sinkx ky-i]ill XD+ (klj- 02’ 0% 110(X) = —ksinkx + O(1),

where y; = (k+1)(0r10—pPri1), IYri} € b2, Ki(x) denotes various sequences of matrix functions,
continuous on [0, 7], such that {m)?x |K(x)|I} € Io. Then

K. (x)

1 _ !
S'(x) =—cos ka}/klxaklo + il

By the Riesz-Fischer theorem,

o0
x ) cos2kxy sy € La((0,m),C™*™).

k=0
.2 Ki(x) . .
The series Y, 1 converges absolutely and uniformly with respect to x € [0,7]. Hence
k=0
e(x) € Lo ((0, ), C"™>My, Oa

The next lemma gives formulas for recovering the potential Q(x) and the coefficients of

the boundary conditions & and H.
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Lemma 15. The following relations hold

Q) =Q(x)+&(x), h=h—-g0), H=H+em), (47)

Proof. The proof is similar to [11, Lemma 8]. Differentiating (30) twice with respect to x and
using (27) and (45) we get

™Mz

o] 1 . ~
@'(x,1) —g0(DP(x,A) = ' (x, ) + kZOl Z()(—l)f¢;,j(x)aksz(x, A Ak,
= ]:
1

3 L

@"(x,A) = ¢"(x, 1) + kZOlZl ZO(—l)f[<p’,;l].(x)a’klj13(x,A,Aklj)
=0l=1j=

+2(p'klj(x)a'klj(i)zlj(x)(ﬁ(x, /1) + (Pklj(x)alklj ((rbltl] (x)q")(x, A))l]

We replace here the second derivatives, using equation (1), and then replace ¢(x, 1), using
(30). This yields

oco m 1 .
Qup(x, 1) = QP M)+ 3 3 Y (=1 [prrj (0 a)y (@ (%), Pl )
k=01=1j=0

+2(,0;d] (x)a;clj(f);:lj(x)(f)(xy A) + (Pklj (x)a;clj ((le](x)(f)(x; /1)),]

Cancelling terms with ¢’(x, 1) we arrive at Q(x) = Q(x) +e(x).

Further,

oco m 1 X
¢'0,1) = (h+ePO) =U@)+ }_ > > (-1 Ulprip)ay;;DO,A,Akij) = 0.
k=01=1j=0

Since ¢(0,A) = I,,, ¢'(0, 1) = h, we obtain h = 1 — £4(0).

Similarly, using (31) one can get

= co m 1 R , ((i),’;lj(x),@(x, A»lx:n
' (m, ) + (H=ego(m)@m, ) = V(@ + }_ > Y -1 Viprjay,;
k=01=1j=0 A= Akij
For j =0 we have V((pklo)a;do =0. Forj=1

(@5 0), DA e = V(@)D 0, 1) — @y (1) V(D).

Recall that V(@) = 0,,, V(®) = 0, and &} ;, V*(@7,,) = 0. Consequently, we arrive at &' (7, 1)+
(H —go(m))®(, 1) = 0,,. Together with V(®) = 0,,, this yields H = H + £(r). O

Thus, we obtain the following algorithm for the solution of Inverse Problem 1.

Algorithm 1. Given the data A.
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1. Choose I € A(w), and calculate W (x) and R(x).
2. Find ¥ (x) by solving equation (34), and calculate ¢,4; (x).
3. Construct Q(x), h and H by (47).

5. Conditions (M), (E), (C) and (PW)

In this section, we establish the connection between the solvability of the main equation
(M), the condition (E) and the completeness of some system of functions (C). The condition

(C) and its equivalent reformulation (PW) will be given further in this section.
Let w € 9 and data A € Sp satisfy conditions (A) and (R) of Theorem 1. Let L be an arbi-

trary problem from the class A; 2 (w).

Lemma 16. (E) follows from (M).

Proof. Let y(1) be a row vector, entire in A and satisfying the relations y(1) = O(exp(|t|x)),
Y(Ango)@ngo =0foralln=0, g=1,m.

Schwarz’s lemma together with asymptotics (3) yields
||Y(/1nqz)—7/(/1nl])|| 5C|ani_pnlj|» nzo) q)l: lymy i)jzoy 1. (48)

Consider the function

FA =y + ) ). [y(ﬂtkzo)a;doli(n,a,ﬂtklo) —YAk)ay; D, A, Agnn) (49)
k=01=1

In order to prove the convergence of the series in (49), we apply the following formal transfor-

mation
FA) =y + Y| X (yAgio) =y Aen)) &y 1o DT, A, Agro)

k=0Ll=1

m
+ Y YA @y (DT, A, Aggo) = DG, A, Agan)
=1

p ~
+3 > 0rAei) =Y Qi) (@ — @) DT, A, Ar)

s=11le];

p ~ ~
+ 3 2 YA, ) (@)gp — @) ) (DT, A, Agin) = D, A,y Agm,1))

s=11le];

p ~
+ Zl(ymkmsl) YA (@ = @)D, A, A1)
s=

p ~ ~
+ L YA @ = @) (DA, Akm,n) = Do, A, Ak

s=1
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+y(A)(@r — @D, A A |- (50)

By virtue of (28), (48) and the estimates

IDGT, A, Ai) |l < Cexp(zim), DT, A, Akij) = D(x, A, Aigill < Clprsj — prgil exp(lzim),
Rep=0,k=0,l,g=1,m,i,j=0,1,
we get

oo
I7I < Iy + Cexp(ltim) ) &
k=0
Taking (29) into account, we conclude that the series in (49) converges to an entire function,
satisfying the estimate ¥(1) = O(exp(|7|m)).
Substitute A = 1,41 into (49) and multiply the resultby a;,41 . Definition (27) and Lemma 7
yield

ang1, ifang =agnandal, #0m,

a;c”D(ﬂ»/lan;Akll)anql = { (5]-)

0,,, otherwise.

Therefore, we obtain YAng)@ng1 =0 for all n = 0, g = 1,m. Thus, we have got the entire
function (1), satisfying the presupposition of (E) for the spectral data A of the model problem
L. But (E) holds for A by Lemma 8. Hence y(A) = 0, and by (49)

oo m
YAngi) + D Y (YAki0) @i DT, Angis Acio) = Y ki) @y DT, Angis Akn)) = 0.
k=01=1

We see that the vector ¢ = [y(Anq4)] € B satisfy the homogeneous main equation v (1 +R(m)) =
0. It follows from (M), that y(A,4;) =0foralln=0, g =1,m, i =0, 1. Using (49) once again, we
arrive at y (1) = 0. Thus, we have proved (E). a

Introduce the subspaces &, = Ran a'n q= {& = (x’nqh, h € C'™}. Note that we intendently
use a4
. My,
ple times. Let {6",(;2,} lq be an ortonormal basis of &,,4. The number m;, coincide with the
1=

instead of @, in this definition, in order not to include the same subspaces multi-

multiplicity of the corresponding eigenvalue Ang if (x’nq # Om, and &4 = & otherwise.

Lemma 17. Let ¢(x,A) be an arbitrary matrix-function, continuous with respect to x € [0, ]

and entire in A, satisfying the asymptotic relation (21). Suppose that (E) holds. Then the system

P A8, n=0,q=T,m,i=1,Mng, (52)

is complete in L, ((0,7),C™).
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Proof. Consider a vector-function f(x) € L,((0,7),C"™), such that

n .
fo T Ang)énydx=0

foralln=0, g =1,m, i = 1, my,. Itis easy to check that the function

Y(A) = fﬂ e ) dx

satisfy all the properties in (E) and, consequently, equals zero. Therefore f(x) = 0 and the
system (52) is complete. O

Lemma 18. Let ¢(x,A) satisfy conditions of Lemma 17, and the system (52) is complete. Then
the system (52) is a basis in L,((0,7),C™).

Proof. The basis property of the system (52) follows from its completeness and /»-closeness

to the ortonormal basis

cos nx&Y

ng N=0,g=1,m,i=1mpyg, (53)

According to asymptotics (3) and (21),
o8 nx Iy — (X, Ang) =0(n™ "), {II (cosnxly,— (p(x,/lnq))é"’ﬁ,?, II} € .

In order to prove the basis property for the system (53), it is sufficient to show, that the system
{6’,%} is a basis in C™ for a fixed n, for all sufficiently large values of n = N. If the elements
of (63) for n < N are linearly dependent, one can change them to cosnxey, g = 1, m, where
{eq};”:1 is the standard coordinate basis. Since (R) holds, i.e. ranks of the weight matrices
equal multiplicities of the corresponding eigenvalues, the total number of the vectors {é"ﬁ,’;}
for a fixed n is m. Suppose there exists a vector & ortogonal to all é’,%. Then hT(an =0 for all
g=1,m, and h'a, = 0. But in view of (9), deta,, # 0 for sufficiently large values of n. Thus,

the considered system of vectors is a basis. O

Similar facts can be obtained for the problem L*. Let &;, = {§" = ha,,, h € cmTy,
) My,

Denote by {6",’;;7(’)}, lq an ortonormal basis of &, consisting of row vectors. The following
i=

lemma summarizes results, similar to Lemmas 16-18. In fact, the solvability of the main equa-

tion (41) for L*, instead of (34), can be used to prove the lemma.

Lemma 19. Assume that ¢(x,A) is an arbitrary matrix-function, continuous with respect to
x € [0, 7] and entirein A, satisfying the asymptotic relation (21), and (M) holds. Then the system

gy(ll;’*(P(x;Anq)r n 2 0; 6/ = ]-r » l = 1! mnq»

is a basis in L, ((0,),C™T).
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By virtue of Lemma 17, the following condition:

(C) The system of functions

(1)

COS PngXE g,

nzO,qzl,m,i:I,mnq,

is complete in L,((0,7),C™).
Follows from (E). The converse is not true.

Indeed, there is the one-to-one correspondence between vector-functions
f(x) € Ly((0,7),C™) and row vectors y(A) = fO” fT(x) cos pxdx of an even Paley-Wiener class
PW, defined by the following conditions:

1. y(A) is entire,
2. y(A) = O(exp(||m)),
3. [ ly(e*)IPdp < oo.

Therefore, condition (C) is equivalent to the following condition:

(PW) For any row vectory(A) € PW, if y(Apg)ang =0 foralln=0, g = 1, m, then Y(A) =0.

6. Proof of Theorem 1

The necessity in Theorem 1 is contained in Lemmas 1, 2, 3, 6 and Theorem 4.

Turn to the proof of the sufficiency. Let data {A,q, @ng} =, g=Tm € Sp be given. Choose L €
Aj 2(w) and construct ¥ (x), R(x). Assume that the conditions of Theorem 1 hold. Let Y(x) =
{w(X)}n=0 € B be the unique solution of the main equation (34). The proofs of Lemmas 20-22

are analogous to ones described in [4, Sec. 1.6.2].

Lemma 20. For n =0, the functions v ,(x) are continuously differentiable with respect to x on
[0, 7], and the following relations hold

lyY ()lpe)<Cm+1)Y, v=01, xel0,n],

W n(0) =T () B@G,) < CONp, Ny, (X) =9, (0)pe,) <CQ, x€l0,].

where

o 1 1/2

= ,§0 (k+D2(n—kl+1)2

By virtue of Lemma 20, the matrix-functions ¢,4; (x) := ¥, (x, pngi) satisfy the following
estimates

lph), (I <C+1)¥, v=0,1,

19nqi (X) = Pngi ) < CQNR, N, () -, (DI <CQ, g=1,m, (54)
19ngi (X) = @n1j (NI < Clpngi = Pnijl, q,1=1,m,i,j=0,1.
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Further, we construct the matrix-functions ¢(x, 1) and ®(x, 1) by the formulas

o m 1 . @ (0, p(x, )
P, ) =g, )= 3 3 > (D prij(ay; F ) : (55)
k=01=1j=0 —Vklj
_ o m 1 , (@71 (x), D(x, 1))
D(x,A) =@, )= Y Y > (1 prij)ay,; : (56)
k=01=1j=0 A= Akij

(see (30), (31)) and the boundary value problem L(Q(x), h, H) via (47). Clearly, ¢(x,Anq;) =
Pngi(X).
Using estimates (54), one can show that the entries of g(x) are absolutely continuous

and the entries of £(x) belong to L, (0, 7). Consequently, we get
Lemma 21. Q(x) € Ly((0,7),C"™*'™),
Lemma 22. The following relations hold
CPngi(X) = Angi®Pngi (0), Lp(x,A) = Ap(x,A), €D(x,A) = AD(x,A),
O, =1y, ¢ OA)=h U@D=I, V@) =0,.

Proof. Let us prove only the relation V(®) = 0,,, since other ones can be obtained similarly to
the scalar case [4]. It follows from (47) and (55), that

oo m
V@) =V + Y. Y (Vgrio) oDt A, Akio) = V(@) ah, DT, A, Akin)),
k=01=1

oo m
V(@ng)@ngt = V@ng)angr + Y. Y (Vprio)@hig DT, Ang, Akio) dngr
k=01=1

V(@) @y D, Apgr, Akll)anql)-

Using (18) and (51), we derive

oo m

Y Y V(@rio) ;oD Apgr, Akio) @ngr = 0.
k=01=1

Taking (27) into account, we obtain

f fX)Png1 (X)apg1 dx=0p,, n=0,g=1,m, (57)
0
F):=3 Y V@rio) Q@) (58)
k=01=1

Let us prove that f € Ly ((0,7),C"™*™). Indeed, ¢(x, A) is a solution of equation (1), there-
fore the relation (19) holds and

Vprio) = (DX - w1y + K.
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By virtue of (8), {II V((pklo)(x;doll} € l,. Similarly to asymptotic relation (21), we get (,T)Zlo (x) =
coskxI,, + O(k™1), and the series in (57) converges in L. Hence f(x) belongs to L.
The system of linearly independent columns of the matrices @;; (x)ay;; is complete in

L,((0,),C™) by Lemma 17. Hence, it follows from (57), that f(x) =0,

By Lemma 19, linearly independent rows of the matrices ) ,¢;,,(x) form a basis in

L,((0,7),C™7T). Therefore, the terms in (58) can not differ from zero. Hence

V(@ki0)@0=0m, k=0, I=1,m. (59)

Using (47) and (56), we obtain

(@710, P(x, 1) x=r (@3,%), D, 1)) x=n

V@) =V(@)+ ) Y | V(gro)

- Viprn)a,
k=01=1 A= Akio Yen B A=Akn
Applying (59) and the following relations:
. (@50, D, A)) x=n VX9 )N = @F (M V(D)
V(®) =0y, = =0,
(@) =0m, a@kn A=A Akl A=A m
we conclude that V(®) = 0y,. a

In order to finish the proof of Theorem 1, it remains to show that the constructed bound-
ary value problem L(Q, i, H) belongs to A;»(w) and the given data {14, @nq} coincide with
the spectral data of L. In view of Lemma 22, the matrix-function ®(x, 1) is the Weyl solution

of L. Let us get the representation for the Weyl matrix:

(@10, D06 A0

oco m 1 .
M) =®0,1) = M)~ Y. Y. Y. (-1 e 0 M)
k=01=1j=0 A= Akij
oo m a/ a/
k10 ki
+ZZ(;L—;L 1A, )
k=01=1 ki1 ki1

Using the equality (see [9])
~ QM
M=) > ———
k=01=1 A- /1kll

we arrive at

SR
M=) Y T
k=01=1 kl0

Consequently, {1} are simple poles of the Weyl matrix M (1), and {a;o} are residues at the
poles. So L € Ay 2(w), and A is the spectral data of L. Theorem 1 is proved.
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7. The self-adjoint case

Suppose Q(x) = QT(x) a.e. on [0,7], h = h', H = H'. In this case, the matrix w = h + H +
% Jo Q(x)dx is Hermitian. Therefore, one can diagonalize it, applying a unitary transform.

Without loss of generality, we consider L € A(w), w = wled.

The eigenvalues A4 are real, and the poles of the matrix function (V(¢(x, A1)~ are sim-
ple [11]. Furthermore, it is easy to check that ¢*(x, 1) = (pT (x,A), S*(x,A) = ST(x,1). Conse-
quently, M*(A) = MY (1) = M(A) and Apg = aI,q, foralln=0,g=1,m. ByLemma?7,

T
Apg = a‘;lq/ (pT(x,)an)(p(x,)an) dxang=0.
0

Taking the last fact together with asymptotics (7), we conclude, that |anqll < C, n =0, g =1,m.

Thus, we have shown that Assumptions 1 and 2 hold automatically in the self-adjoint
case. Moreover, we have proved (S) in Theorem 2. Note that (E) by necessity was proved in

Lemma 8. So we have finished the proof of the necessity.

In order to prove the sufficiency in Theorem 2, it remains to show that the solvability of

the main equation (34) follows from (E) together with other conditions.

Letdata {A,q, a nq}nzo, g=T,m € Sp, satisfying the conditions of Theorem 2, be given. Choose

amodel problem L€ A(w), construct W (x), R(x), and consider the main equation (34).

Lemma 23. For each fixed x € [0, 7], the operator I + R(x), acting from B to B, has a bounded

inverse operator, and the main equation (34) has a unique solutiony(x) € B.

Proof. By Lemma 12 the operator R(x) is compact. Therefore it is sufficient to prove that the
homogeneous equation
YX) U +R(x) =0, (60)

where y(x) € B, has only the zero solution. Let y(x) = {y,(x)},>0 € B be a solution of (60).
Denote y g (x) = Yn(x, pngi).- Then

oo m
Yngi () + D Y (Yrio(X)@p1o DX, Angis Akio) = Vit ()@ DX, Angis Akin)) = Opm, (61)
k=01=1
and the following estimates are valid
1Y ngi I < C, 1Yngi () =Y nij O < Clpngi —pnijl, n=0,q,1=1,m,i,j=0,1.  (62)

Construct the matrix-functions y(x, 1), T'(x, 1) and #(x, 1) by the formulas

YA ==Y,
k=01

(Ykl()(x) alklOD(x) A» A’kl()) — Yk (x)a;(;llD(x» /1) Akl])) ’ (63)

co m
=1
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(P10, P(x, 1)) @, (0, B, )

I(x,A ’ - , (64
(x,A) = I;OZZI[YkIO(x)akIO A=A Yen(X)a, A= Aen (64)

B(x,A) =T(x, Ny (x,A).

In view of (27), the matrix-function y(x, A) is entire in A for each fixed x. The functions I'(x, 1)
and A(x, 1) are meromorphic in A with simple poles Angi- According to (61), y(x,Angi) =
Y nqi(x). We calculate residues of #(x, 1) (for simplicity we assume that Angot N{dng1} = @):

Res Z(x,1) = y(X, 1ng0) @nqoY" (X, Ango), Res B(x,A) =
nql

A:Anqo

Consider the integral

1
INX)=— | PBx,NVdA,
27t Jry

where I'y = {A: |A| = (N + 1/2)?}. Let us show that for each fixed x € [0, 7]
Aim_ Iy (x) = O
Indeed, transforming (63) similarly to (50), and using (28), (62) and the estimates

Clpkij — Pkqgilexp(T]|x)
lp—kl+1

k=0,1,q=1,m,i,j=0,1,

Cexp(|7|x)
lo—kl+1

”D(x) A» A’klj) ” = ’ ”D(x) A»/lklj) - D(x) A»/lkqi ” =

’

we get

S Sk

ly(x, Ml < C(x) exp(I7|x) Z —s1 Rerz0

Similarly, using (64) we obtain for sufficiently large p*>0:

IT(x, M)l < Qexp( IT]x) Z —ET]CI

] Rep=0,|pl=p* lp—k|>6>0.

Then

1% (x, VIl < AeTy.

C(x) (i )2 _Cw
— 1o~ k|+1 ~ P’

This estimate yields Z\lll_r)rgo In(x) =0,,
On the other hand, calculating the integral Iy(x) by the residue theorem, we arrive at

(e8]

m
> 2 Y)Y o) = O
k=01=1

Since a9 = }‘Clo =0, we get

Yklo(X)akloﬂdO(X) =0,
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Y (%, Ak10) k1o =0, k=0, I=1,m.
Since y(x, A) is entire in A, and
y(x,A) = O(exp(|7|x))

for each fixed x € [0, 7], according (E), we get y(x, 1) = 0,,. Therefore y4; (x) = 0,, forall n > 0,
g=1,m,i=0,1,i.e. the homogeneous equation (60) has only the zero solution. O

Thus, the proof of Theorem 2 is finished. Some discussion on condition (E) with exam-
plesis provided in [11]. We can also give an alternative formulation of necessary and sufficient

conditions with condition (C) instead of (E).

Theorem 5. Let w = w' € 9. For data an'“nq}nzo,qzl,_m € Sp to be the spectral data for a
certain self-adjoint problem L € A(w) it is necessary and sufficient to satisfy the following con-

ditions.

(A) The asymptotics (3), (7), (8) (9) are valid.

(R) The ranks of the matrices a4 coincide with the multiplicities of the corresponding values
Ang-

(S) All Apq arereal, apg = ((an)T, Apg = O0foralln=0,qg=1,m.

(C) The system of functions

cospnqxé’(i) nz0,qg=1,m,i=1mygq,

nq’

is complete in L((0,7),C™).

Condition (C) was used by Ya.V. Mykytyuk and N.S. Trush [12] in the characterization of
the spectral data for the self-adjoint matrix Sturm-Liouville operator with the potential from
Wz‘l. In spite of the fact, that this class is wider than our class Ly, these are two parallel results
for different classes. Moreover, for W, ! the asymptotics of eigenvalues and weight matrices
are more rough, that makes the class WZ‘1 easier for investigation. It does not require our
technique with complicated division of eigenvalues into groups. Now we have shown, that
condition (C) can be used in our case with our method, so there is no principal difference
with the work [12] in this particular point.

It was established in Section 5, that (C) is weaker than (E), but (C) is equivalent to (PW).
One can easily show that everywhere in our proofs (namely, in Lemmas 17 and 23), we apply
this type of conditions to functions y (A1) € PW. Thus, both Theorems 2 and 5 are valid.
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