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PROXIMINALITY IN ORLICZ-BOCHNER FUNCTION SPACES

M. KHANDAQJI, R. KHALIL AND D. HUSSEIN

Abstract. A (closed) subspace Y of a Banach space X is called proximinal if for every x ∈ X

there exists some y ∈ Y such that ‖x−y‖ ≤ ‖x−z‖ for z ∈ Y . It is the object of this paper is to

study the proximinality of LΦ(I, Y ) in LΦ(I, X) for some class of Young’s functions Φ, where I

is the unit interval. We prove (among other results) that if Y is a separable proximinal subspace

of X, then LΦ(I, Y ) is proximinal in LΦ(I, X).

1. Introduction

Let Φ be a Young’s function, [10] and X be a Banach space. LΦ(I, X) denotes the

sapce of all strongly measurable functions for the unit interval I (with the Lebesgue

measure) with values in X for which
∫

I
Φ(α‖f(t)‖)dt < ∞ for some α > 0. It is known

that LΦ(I, X), [3], is a Banach space under the Luxemburg norm:

‖f‖Φ = inf

{

k,

∫

I

Φ

∥

∥

∥

∥

1

k
f(t)

∥

∥

∥

∥

dt ≤ 1, k > 0

}

, f ∈ LΦ(I, X).

We refer to [4], [7] and [3] for the basic structure of LΦ(I, X).

A subspace (closed) Y of the Banach space X is called proximinal in X if for every

x ∈ X there exists y ∈ Y such that ‖x−y‖ ≤ ‖x−z‖ for all z ∈ Y . The element y is called

a best approximant of x in Y . One of the interesting problems in best approximation in

function spaces is :“If Y is proximinal in X must Lp(I, Y ) be proximinal in Lp(I, X)”.

We refer to [2], [5], [6] and [7] for the main results on that problem. It is the object of

this paper to study the proximinality of LΦ(I, Y ) in LΦ(I, X) for proximinal subspace

Y in X . We prove that LΦ(I, Y ) is proximinal in LΦ(I, X) if and only if L1(I, Y ) is

proximinal in L1(I, X), a result which has many consequences.

2. Proximinality in LΦ(I, X)

Throughout the rest of this paper Y is a closed subspace of X and the Young function

Φ is continuous and finite valued.
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We say that the Young function Φ satisfies ∆2 − condition (in short Φ ∈ ∆2) if there

exist k > 1 and x0 > 0 such that Φ(2x) ≤ kΦ(x), for x ≥ x0, with Φ(x0) < ∞.

Lemma 1. Let Φ ∈ ∆2 and Y be a proximinal subspace of the Banach space X. Let

f ∈ LΦ(I, X) and suppose that g is a strongly measrable function such that g(t) is a best

approximant to f(t) in Y for almost all t in I. Then g is a best approximant to f in

LΦ(I, Y ).

Proof. Since g(t) is a best approximant to f(t) in Y for almost all t in I and 0 ∈ Y ,

then we have ‖g(t)‖ ≤ 2‖f(t)‖ for almost all t in I [6]. Since Φ ∈ ∆2, [4], it follows that

∫

I

Φ(‖g(t)‖)dt ≤

∫

I

Φ(2‖f(t)‖)dt < ∞.

Hence g ∈ LΦ(I, Y ). Further for almost all t in I, ‖f(t) − g(t)‖ ≤ ‖f(t) − z‖ for all z in

Y , and ‖f(t) − g(t)‖ ≤ ‖f(t) − h(t)‖, for all h in LΦ(I, Y ). From the monotonocity of

the Luxemburg norm, [8], and the fact that ‖(‖f(·)‖)‖Φ = ‖f‖Φ, we get that ‖f − g‖Φ ≤

‖f − h‖Φ for all h in LΦ(I, Y ). Thus g is a best approximant to f in LΦ(I, Y ).

Theorem 2. If Φ ∈ ∆2 and f ∈ LΦ(I,X). Then the function dist(f(t), Y ) ∈
LΦ(I) and dist(f, LΦ(I, Y )) = ‖dist(f(·), Y )‖Φ.

Proof. For f ∈ LΦ(I,X), f is strongly measurable, and there exists a se-
quence of simple functions in LΦ(I,X) such that limn→∞ ‖fn(t) − f(t)‖ = 0 for
almost all t in I. The continuity of dist(x, Y ) implies that limn→∞ |dist(fn(t), Y )−
dist(f(t), Y )| = 0. Set gn(t) = dist(fn(t), Y ). Then each gn (measurable) is a sim-
ple function and so dist(f(·), Y ) is measurable. We have dist(f(t), Y ) ≤ ‖f(t)−z‖,
for all z ∈ Y . Thus dist(f(t), Y ) ≤ ‖f(t) − g(t)‖, for almost all t in I and all
g in LΦ(I, Y ). Therefore, ‖dist(f(·), Y )‖Φ ≤ ‖f − g‖Φ for all g ∈ LΦ(I, Y ).
Consequently dist(f(·), Y ) ∈ LΦ(I) and

‖dist(f(·), Y )‖Φ ≤ dist(f, LΦ(I, Y )). (∗)

Now, that Φ ∈ ∆2, [3], implies that for a given ε > 0, there exists f ′ a
simple function in LΦ(I,X) such that ‖f − f ′‖Φ < ε/3. Assume f ′ has the form
f ′(t) =

∑n
i=1 χBi

(t)xi with the B′

is disjoint and measurable sets, xi ∈ X and
⋃n

i=1 Bi = I. We can assume µ(Bi) > 0 and Φ(1) ≤ 1. For each i = 1, 2, . . . , n
take yi ∈ Y such that ‖xi − yi‖ < dist(xi, Y ) + ε/3.
Set g(t) =

∑n
i=1 χBi

(t)yi and F (t) = dist(f(t), Y ) + ‖f(t) − f ′(t)‖ + ε/3.
Consider:

∫

I

Φ

(

‖f ′(t) − g(t)‖

‖F‖Φ

)

dt =
n

∑

i=1

∫

Bi

Φ

(

‖xi − yi‖

‖F‖Φ

)

dt
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<
n

∑

i=1

∫

Bi

Φ

(

dist(xi, Y ) + ε/3

‖F‖Φ

)

dt

=

∫

I

Φ

(

dist(f ′(t), Y ) + ε/3

‖F‖Φ

)

dµ

≤

∫

I

Φ

(

‖f(t) − f ′(t)‖ + dist(f(t), Y ) + ε/3

‖F‖Φ

)

dt

=

∫

I

Φ

(

F (t)

‖F‖Φ

)

dt ≤ 1.

Consequently, ‖f ′ − g‖Φ ≤ ‖dist(f(·), Y ) + ‖f(·) − f ′(·)‖ + ε/3‖Φ.

Using: Φ(1) ≤ 1 and the fact that µ(I) = 1, we get:

dist(f, LΦ(I, Y )) ≤ ‖f − f ′‖Φ + dist(f ′, LΦ(I, Y ))

≤ ε/3 + ‖f ′ − g‖Φ

≤ ε/3 + ‖dist(f(·), Y ) + ‖f(·) − f ′(·)‖ + ε/3‖Φ

≤ ‖dist(f(·), Y )‖Φ + ‖f − f ′‖Φ + 2ε/3

≤ ‖dist(f(·), Y )‖Φ + ε.

Since ε is arbitary, then dist(f, LΦ(I, Y )) ≤ ‖dist(f(·), Y )‖Φ. Together with (∗)

we get the required result.

Corollary 3. Let Φ ∈ ∆2, X a Banach space and Y a closed subspace of X.

For f ∈ LΦ(I,X) and g ∈ LΦ(I, Y ), g is a best approximant of f in LΦ(I,X) if

and only if g(t) is a best approximant of f(t) in Y for almost all t in I.

Now we introduce the main theorem of this paper:

Theorem 4. Let X be a Banach space and Y be a closed subspace of X. For

a strictly increasing function Φ ∈ ∆2, the following are equivalent:

(i) L1(I, Y ) is proximinal in L1(I,X).

(ii) LΦ(I, Y ) is proximinal in LΦ(I,X).

Proof of. (i)→(ii). Suppose that L1(I, Y ) is proximinal in L1(I,X). Let

f ∈ LΦ(I,X). Then f ∈ L1(I,X), [3]. Therefore, there exists g ∈ L1(I, Y ) such

that ‖f − g‖1 = dist(f, L1(I, Y )). Hence g(t) a best approximant to f(t) for

almost all t in I, [coroll. 2.11, 6]. Thus Lemma 1 gives (ii).

For (ii)→(i). Suppose that LΦ(I, Y ) is proximinal in LΦ(I,X). Consider the

map:

J : L1(I,X) → LΦ(I,X)
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J(f)(t) =
Φ−1(‖f(t)‖)

‖f(t)‖
f(t)

if f(t) 6= 0 and J(f)(t) = 0 otherwise. Since ‖J(f)(t)‖ = Φ−1(‖f(t)‖) and
f ∈ L1(I,X), then J(f) ∈ LΦ(I,X). Further, if g ∈ LΦ(I,X), then f(t) =
Φ(‖g(t)‖)

‖g(t)‖
g(t) ∈ X and ‖f(t)‖ = Φ(‖g(t)‖). Thus f ∈ L1(I,X). Also

J(f)(t) =
Φ−1(‖f(t)‖)

‖f(t)‖
·
Φ(‖g(t)‖)

‖g(t)‖
g(t) = g(t).

Which implies that J is onto.

Now, let f ∈ L1(I,X) with no loss of generality we may assume that f(t) 6= 0
for almost all t in I, for otherwise we can restrict our measure to the support
of f . Since J(f) ∈ LΦ(I,X), then there exists some w ∈ LΦ(I, Y ) such that

‖J(f) − w‖Φ ≤ ‖J(f) − z‖Φ , for all z ∈ LΦ(I, Y ). But J is onto. Hence
w = J(g) for some g in L1(I, Y ) and z = J(h) for some h in L1(I,X). Using
Theorem 2, ‖J(f)(t) − J(g)(t)‖ ≤ ‖J(f)(t) − y‖, for almost all t in I and for all
y ∈ Y . Hence for almost all t in I, we get

‖J(f)(t) − J(g)(t)‖ ≤

∥

∥

∥

∥

J(f)(t) −
Φ−1(‖f(t)‖)

‖f(t)‖
y

∥

∥

∥

∥

(1)

for all y ∈ Y . Multiplying both sides of inequality (1) by
‖f(t)‖

Φ−1(‖f(t)‖)
, we get:

∥

∥

∥

∥

f(t) −
‖f(t)‖

Φ−1(‖f(t)‖)

Φ−1(‖g(t)‖)

‖g(t)‖
g(t)

∥

∥

∥

∥

≤ ‖f(t) − y‖, for almost all t in I and for

all y ∈ Y .

Set w(t) =
‖f(t)‖

Φ−1(‖f(t)‖)

Φ−1(‖g(t)‖)

‖g(t)‖
g(t) ∈ Y . Since w(t) is best approximant of

f(t) in Y for almost all t and 0 ∈ Y , then ‖w(t)‖≤2‖f(t)‖, for alomst all t in I.

Thus w ∈ L1(I, Y ). Consequently, for almost all t in I, we get

‖f(t) − w(t)‖ ≤ ‖f(t) − h(t)‖,

for all h ∈ L1(I, Y ). Thus w is a best approximtion of f in L1(I, Y ), [6]. This
ends the proof.

Remark 5. The monotonicity condition on Φ was not needed in the proof of

(i)→(ii).
As corollaries to Theorem 4, we get:
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Theorem 6. Let Φ ∈ ∆2 and Y be a reflexive subspace of a Banach space X.

Then LΦ(I, Y ) is proximinal in LΦ(I,X).

Proof. Using Theorem 4 and Theorme 1.2 in [1], we get the result.

Theorem 7 [2, 9]. Let Y be a reflexive subspace of the Banach space X.

Then Lp(I, Y ) is proximinal in Lp(I,X), 1 < p < ∞.

Theorem 8. Let Φ ∈ ∆2 and Y be a closed separable proximinal subspace of

a Banach space X, then LΦ(I, Y ) is proximinal in LΦ(I,X).

Proof. Using Theorem 4 and Theorem 3.2 in [7], we get the result.
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