ON THE MODULAR FUNCTIONS ARISING FROM THE THETA CONSTANTS

UĞUR S. KIRMACI

Abstract. Some modular functions arising from the theta constants $\vartheta_2(\tau)$, $\vartheta_3(\tau)$, $\vartheta_4(\tau)$ are investigated. Let n be an odd square-free positive integer as in [4,7]. It is obtained a necessary and sufficient condition that $\varphi_{\delta,\rho,3}(\tau) = \prod_{\delta|n,\rho|n} \left(\frac{\vartheta_3(\delta\tau)}{\vartheta_3(\rho\tau)}\right)^{r\delta}$ is invariant with respect to transformations in $\theta(n)$. Also, It is deduced that $\varphi_{\delta,\rho,i}(\tau)$ is a modular function on $P^{-2}\theta(n)P^2$, $\theta(n), P^{-1}\theta(n)P$, for i = 2, 3, 4, respectively. Thus, the result of L. Wilson's paper [7] is generalized. Furthermore, let m and n denote positive integers. Let r, r_1, r_2 be integers such that $r(m-1)(n+1) \equiv 0 \pmod{8}, r_1(m-1)(n-1) \equiv 0 \pmod{8}, r_2^2(n-m)(nm-1) \equiv 0 \pmod{8}$, it is shown that $T_{m,n,i}^r(\tau) = \left(\frac{\vartheta_i(\tau)\vartheta_i(n\tau)}{\vartheta_i(m\tau)\vartheta_i(mn\tau)}\right)^r$, $H_{m,n,i}^{r_1}(\tau) = \left(\frac{\vartheta_i(m\tau)\vartheta_i(n\tau)}{\vartheta_i(\tau)}\right)^{r_1}$ and $\Phi_{m,n,i}^{r_2}(\tau) = \left(\frac{\vartheta_i(m\tau)}{\vartheta_i(n\tau)}\right)^{r_2}$ are modular functions on $\theta(mn)$, when i = 3. Similar results are deduced for $P^{-2}\theta(mn)P^2$ and $P^{-1}\theta(mn)P$, the suffixes 3 being replaced by 2 and 4, respectively. Therefore, the modular functions used in B. C. Berndt's paper [1] is rewritten for theta constants.

1. Introduction

We shall use χ to denote the upper half-plane, Z for the set of rational integers and $\Gamma(1)$ for the modular group. Let be $U = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $V = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $W = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$,

 $P = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$

 $\Gamma_u(2), \Gamma_v(2)$ and $\Gamma_w(2)$ are defined by

$$\begin{aligned} \Gamma_u(2) &= \{ S \in \Gamma(1) : S \equiv I \text{ or } S \equiv U(\text{mod } 2) \}, \\ \theta &= \Gamma_v(2) = \{ S \in \Gamma(1) : S \equiv I \text{ or } S \equiv V(\text{mod } 2) \}, \\ \Gamma_W(2) &= \{ S \in \Gamma(1) : S \equiv I \text{ or } S \equiv W(\text{mod } 2) \} \end{aligned}$$

where I is the unit matrix. The three subgroups $\Gamma_u(2)$, $\Gamma_v(2)$ and $\Gamma_w(2)$ are conjugate [6].

Received January 21, 2002; revised April 22, 2002.

Key words and phrases. Theta constants, modular functions.

UĞUR S. KIRMACI

The subgroup $\theta = \Gamma_v(2)$ of $\Gamma(1)$ is generated by U^2 and V. For an odd positive integer n, the set of elements in θ of the form $\begin{pmatrix} a & b \\ cn & d \end{pmatrix}$ is a subgroup of θ which will be denoted $\theta(n)$. The subgroup $\Gamma_0(k)$ is defined to be the set of elements in $\Gamma(1)$ of the form $\begin{pmatrix} a & b \\ ck & d \end{pmatrix}$, where k is a positive integer. $\Gamma_0(2n)$ and $\theta(n)$ are conjugate subgroups of $\Gamma(1)$. That is, $\Gamma_0(2n) = W^{-n}\theta(n)W^n$. [7]

Let F denote the Ford fundamental region of $\theta(n)$, where n denotes an odd squarefree positive integer. A complete set of non-equivalent parabolic points of $\theta(n)$ in \overline{F} is given by

$$0, i\infty \text{ and } P(n) = \{2/\Delta : \Delta \mid n, \ \Delta > 0\} \cup \{1/\Delta : \Delta \mid n, \ \Delta > 0\}$$

[4], [7, Theorem 1].

We recall the theta constants $\vartheta_2(\tau)$, $\vartheta_3(\tau)$ and $\vartheta_4(\tau)$ defined by

$$\vartheta_2(\tau) = \sum_{n \in \mathbb{Z}} q^{(n+\frac{1}{2})^2}, \ \vartheta(\tau) = \vartheta_3(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2}, \ \vartheta_4(\tau) = \sum_{n \in \mathbb{Z}} (-1)^n q^{n^2}$$

for $\tau \in \chi$ and $q = e^{\pi i \tau}$. The Dedekind Eta function

$$\eta(\tau) = e^{\pi i \tau/12} \prod_{n=1}^{\infty} (1 - e^{2\pi i n \tau})$$

is a cusp form of weight 1/2 on $\Gamma(1)$ and satisfies

$$\eta(M\tau) = v_{\eta}(M)(c\tau + d)^{1/2}\eta(\tau)$$

for all $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \Gamma(1)$. An important connection between $\vartheta(\tau)$ and $\eta(\tau)$ is given by.

$$\vartheta(\tau) = \eta^2 \left(\frac{\tau+1}{2}\right) / \eta(\tau+1) \tag{1}$$

[3].

Let Γ be a subgroup of $\Gamma(1)$. If $f(\tau)$ is a modular form of weight k for Γ with multiplier system v, we write $f(\tau) \in M(\Gamma, k, v)$. If $f \in M(\Gamma, k, v)$ and $L \in \Gamma(1)$, the L-transform f_L of f is defined by

$$f_L(\tau) = f(\tau)|L = \{\mu(L,\tau)\}^{-1}f(L\tau)$$

Here, $\mu(L,\tau) = (c\tau + d)^k$, for $L = \begin{pmatrix} * & * \\ c & d \end{pmatrix}$. If $f_1 \in M(\Gamma, k_1, v_1)$ and $f_2 \in M(\Gamma, k_2, v_2)$, then $f_1.f_2 \in M(\Gamma, k_1 + k_2, v_1.v_2)$ and $f_1/f_2 \in M(\Gamma, k_1 - k_2, v_1/v_2)$.

Lemma 1. Suppose that $f \in M(\Gamma, k, v)$ and $L \in \Gamma(1)$. Then we have $f_L \in$ $M(L^{-1}\Gamma L, k, v^L).$ [6]

Lemma 2. The functions $\vartheta_2(\tau)$, $\vartheta_3(\tau)$ and $\vartheta_4(\tau)$ are entire modular forms of weight 1/2 for the groups $\Gamma_u(2)$, $\Gamma_v(2)$ and $\Gamma_w(2)$, respectively. Further,

$$\vartheta_3(\tau)|P = e^{-\frac{1}{4}\pi i}\vartheta_4(\tau)$$

$$\vartheta_3(\tau)|P^2 = e^{-\frac{1}{4}\pi i}\vartheta_2(\tau)$$
(2)

Also, for $n \ge 0$, ϑ_2^n , ϑ_3^n and ϑ_4^n are entire modular forms of weight n/2 for the groups $\Gamma_u(2), \Gamma_v(2)$ and $\Gamma_w(2)$, respectively [6].

Lemma 3. Let n be an odd square-free positive integer. For each divisor δ of n, with $\delta > 1$, let r_{δ} be any integer and let $r_1 = 0$. Then

$$f(\tau) = \prod_{\delta|n} \{\vartheta(\delta\tau)/\vartheta(\tau)\}^{r_{\delta}}$$
(3)

is invariant with respect to the transformations in $\theta(n)$ if and only if the following conditions hold:

(i) $\sum_{\delta|n} (\delta - 1) r_{\delta} \equiv 0 \pmod{8}$ (ii) $\prod_{\delta|n} \delta^{r_{\delta}}$ is the square of a rational number

The set of functions given by (3) and satisfying (i) and (ii) will be denoted F(n). The functions in F(n) are modular functions on $\theta(n)$, where $\vartheta(\tau) = \vartheta_3(\tau)$ [7, Theorem 3].

For relatively prime integers x and y with $x \neq 0$ and y odd, define

$$\left(\frac{x}{y}\right)^* = \left(\frac{x}{|y|}\right)$$
 and $\left(\frac{x}{y}\right)_* = \left(\frac{x}{|y|}\right)(-1)^{\frac{1}{4}\varepsilon(x)\varepsilon(y)}$

where $\left(\frac{x}{|y|}\right)$ is the Jacobi symbol and $\varepsilon(x) = x/|x|$. We also define $\left(\frac{0}{\pm 1}\right)^* = \left(\frac{0}{1}\right)_* = 1$ and $\left(\frac{0}{-1}\right) = -1.$

The multiplier system for $\vartheta_3(\tau)$ is given by

$$\upsilon(A) = \begin{cases} \left(\frac{d}{c}\right)^* \exp\left(\frac{1}{4}\pi i c\right) & \text{if } A \equiv V \pmod{2} \\ \left(\frac{c}{d}\right)_* \exp\left(\frac{1}{4}\pi i (d-1)\right) & \text{if } A \equiv I \pmod{2} \end{cases}$$
(4)

where $A = \begin{pmatrix} * & * \\ c & d \end{pmatrix} \in \theta$. Thus, v(A) is an 8th root of unity and

$$\vartheta(A\tau) = \upsilon(A)(c\tau + d)^{1/2}\vartheta(\tau), \quad \tau \in \chi, \quad [7]$$

This paper is a continuation of previous work [2]. We will develop some results in [1], [4], [5] and [7]. The valences of functions in this paper are the same as those constructed in [4] and [7]. Certain theorems given in [4] and [7] carry over to the present setting with only minor alterations in their proofs. The main results of this paper are the following theorems.

2. The Modular Functions $\varphi_{\delta,\rho,i}(\tau)$

Now, we define the functions $\varphi_{\delta,\rho,i}$ as follows:

$$\varphi_{\delta,\rho,i}(\tau) = \prod_{\delta|n,\rho|n} \{\vartheta_i(\delta\tau)/\vartheta_i(\rho\tau)\}^r, \quad i = 2, 3, 4$$

Theorem 1. Let n be an odd square-free positive integer. For each divisor δ and ρ of n, with $\delta, \rho > 1$, $\delta \neq \rho$, let $r = r_{\delta}$ be an integer and let $r_1 = 0$. Then $\varphi_{\delta,\rho,3}$ is invariant with respect to the transformations in $\theta(n)$ if and only if the following conditions hold:

(i)
$$\sum_{\substack{\delta|n,\rho|n}} (\rho - \delta) r_{\delta} \equiv 0 \pmod{8}$$

(ii)
$$\prod_{\substack{\delta|n,\rho|n}} \left(\frac{n^2}{\delta\rho}\right)^r \text{ is the square of a rational number.}$$
(5)

Further $\varphi_{\delta,\rho,3}$ is a modular function on $\theta(n)$.

Proof. It is enough to consider only those matrices $A = \begin{pmatrix} a & b \\ nc & d \end{pmatrix} \in \theta$ (n) such that $c \ge 0$ (since A and -A represent the same transformation) and such that $A \equiv V \pmod{2}$ (since these generate θ (n)). Let $B = \begin{pmatrix} a & \delta b \\ \delta^1 c & d \end{pmatrix}$ and $C = \begin{pmatrix} a & \rho b \\ \rho' c & d \end{pmatrix}$, where $\delta \delta' = \rho \rho' = n$ so that $B, C \equiv V \pmod{2}$ and $\delta A \tau = B \delta \tau$, $\rho A \tau = C \rho \tau$ Then using (4) and (5), we have

$$\begin{split} \varphi_{\delta,\rho,i}(A\tau) &= \prod_{\delta|n,\rho|n} \{\vartheta(\delta\tau)/\vartheta(\rho\tau)\}^{r_{\delta}} \\ &= \prod_{\delta|n,\rho|n} \{\nu(B)/\nu(C)\}^{r_{\delta}}\varphi_{\delta,\rho,i}(\tau) \\ &= \prod_{\delta|n,\rho|n} \left(\frac{d}{\delta'\rho'}\right)^{r_{\delta}}.k.\;\varphi_{\delta,\rho,i}(\tau) = \left(\frac{d}{\alpha}\right) \exp\left\{\frac{1}{4}\pi i c\beta\right\}\varphi_{\delta,\rho,i}(\tau) \end{split}$$

where, $k = \prod_{\delta|n,\rho|n} (\exp(1/4)\pi i c(\rho' - \delta')) r_{\delta}$, $\alpha = \prod_{\delta|n,\rho|n} (\delta'\rho')^{r_{\delta}}$ and $\beta = \sum_{\delta|n,\rho|n} (\rho' - \delta') r_{\delta}$

It remains to show that

- (a) $\beta \equiv 0 \pmod{8}$ if and only if (i) holds, and
- (b) $\left(\frac{d}{\alpha}\right) = 1$ for all even integer *d* relatively prime to *n* if and only if (ii) holds.

Since n, δ' and ρ' are odd, $n^2 \equiv (\delta')^2 \equiv (\rho')^2 \equiv 1 \pmod{8}$ and so $n\beta \equiv \sum_{\delta|n,\rho|n} (\rho - \delta)r_{\delta} \pmod{8}$ and (a) follows. The "if" part of (b) is trivial. Assumming $\left(\frac{d}{\alpha}\right) = 1$ for all even integers d relatively prime to n implies the same for all integers d relatively prime to n. But if α is not a rational square, then by quadratic reciprocity and Dirichlet's Theorem there is a prime p with $p \nmid n$ and $\left(\frac{p}{\alpha}\right) = -1$; so α must be a square, giving (ii).

By (1), we obtain

$$\frac{\vartheta(\delta\tau)}{\vartheta(\rho\tau)} = \frac{\eta^2 \left(\frac{\delta\tau+\delta}{2}\right) / \eta(\delta\tau+\delta)}{\eta^2 (\frac{\rho\tau+\rho}{2}) / \eta(\rho\tau+\rho)} = \frac{\Phi^2(\tau')\Psi(2\tau')}{\Phi(2\tau')\Psi^2(\tau')} \tag{6}$$

where $\tau' = \frac{\tau + 1}{2}$, $\Phi(\tau') = \frac{\eta(\delta \tau')}{\eta(\tau')}$ and $\Psi(\tau') = \frac{\eta(\rho \tau')}{\eta(\tau')}$.

Finally, we consider the expansions of $\varphi_{\delta,\rho,3}(\tau)$ at the parabolic cusps ∞ , 0, 2/ Δ and 1/ Δ . We have

$$\Phi(\tau) = \exp\left\{\frac{\pi i(\delta-1)r}{12}\tau\right\} \left(1 + \sum_{k=1}^{\infty} a_k e^{2\pi i k\tau}\right) \text{ and } \Psi(\tau) = \exp\left\{\frac{\pi i(\rho-1)r}{12}\tau\right\} \left(1 + \sum_{k=1}^{\infty} b_k e^{2\pi i k\tau}\right)$$

as the Fourier expansions of Φ and ψ at ∞ . [3, p.103]. Hence, by (6), $\varphi_{\delta,\rho,3}(\tau)$ has the Fourier expansion at ∞ of the form

$$\varphi_{\delta,\rho,3}(\tau) = 1 + \sum_{k=1}^{\infty} a'_k e^{2\pi i k \tau}$$
(7)

We have

$$\Phi(\tau) = \delta^{-r/2} \exp\left\{\frac{\pi i(\delta-1)r}{12\delta\tau}\right\} \left(1 + \sum_{k=1}^{\infty} c_k e^{-2\pi i k/\delta\tau}\right)$$
$$\Psi(\tau) = \rho^{-r/2} \exp\left\{\frac{\pi i(\rho-1)r}{12\rho\tau}\right\} \left(1 + \sum_{k=1}^{\infty} d_k e^{-2\pi i k/\rho\tau}\right)$$

as the Fourier expansion at 0 [3, p.103]. Hence, by (6), $\varphi_{\delta,\rho,3}(\tau)$ has the Fourier expansion at 0 of the form

$$\varphi_{\delta,\rho,3}(\tau) = \left(\frac{\rho}{\delta}\right)^{r/2} \exp\left(\frac{\pi i r}{8\tau} \left(\frac{\delta-\rho}{\delta\rho}\right)\right) \left(1 + \sum_{k=1}^{\infty} \alpha_k e^{-\frac{2\pi i k}{\tau}\gamma(\delta,\rho)}\right) \tag{8}$$

where, $\gamma(\delta, \rho)$ is a rational function of δ and ρ . It is shown in [7] that $f(S\tau)$ has the form

$$f(S\tau) = \sum_{k=0}^{\infty} a_k \exp\{2\pi i k\tau/(2n/\Delta)\}$$

at the parabolic points $2/\Delta$. Hence, we have

$$\varphi_{\delta,\rho,3}(S\tau) = \sum_{k=0}^{\infty} a'_k \exp\{2\pi i k\tau/(2n/\Delta)\}\$$

where the a'_k are complex numbers independent of τ with $a_0 \neq 0$ and $S = \begin{pmatrix} 2 & b \\ \Delta & d \end{pmatrix}$. Replacing τ by $S^{-1}\tau = \frac{d\tau - b}{-\Delta \tau + 2}$, we obtain

$$\varphi_{\delta,\rho,3}(\tau) = \sum_{k=0}^{\infty} a'_k \exp\{2\pi i k S^{-1} \tau / (2n/\Delta)\}$$
(9)

as the Fourier expansion at the parabolic points $2/\Delta$. From the function $\frac{\vartheta(\delta \tau)/\vartheta(\tau)}{\vartheta(\rho \tau)/\vartheta(\tau)}$ and the equation

$$\vartheta(\delta S\tau)/\vartheta(S\tau) = c' \prod_{m=1}^{\infty} (1 - c^{2m} q^{2m\Delta k/n}) (1 + c^{2m-1} q^{(2m-1)\Delta k/n})^2 (1 - q^{2m})^{-1} (1 + q^{2m-1})^{-2}$$
(10)

in [7, Theorem 4], it follows that the valence ν is 0. Where $k = ng/\Delta\delta_0$, $q = \exp(i\pi\tau)$ and c, c' are non-zero constants.

It is shown in [7] that $f(N\tau)$ has the form

$$f(N\tau) = \sum_{k=0}^{\infty} b_k \exp\{2\pi i(k+\nu)\tau/(n/\Delta)\}$$

at the parabolic points $1/\Delta$. Hence, we have

$$\varphi_{\delta,\rho,3}(N\tau) = \sum_{k=0}^{\infty} b'_k \exp\{2\pi i(k+\nu)\tau/(n/\Delta)\}$$

where the b'_k are complex numbers with $b_0 \neq 0$ and $N = \begin{pmatrix} 1 & 0 \\ \Delta & 1 \end{pmatrix}$. Hence, replacing τ by $N^{-1}\tau = \frac{\tau}{-\Delta \tau + 1}$, we obtain

$$\varphi_{\delta,\rho,3}(\tau) = \sum_{k=0}^{\infty} b'_k \exp\{2\pi i (k+\nu) N^{-1} \tau / (n/\Delta)\},\tag{11}$$

as the Fourier expansion at the parabolic points $1/\Delta$. From the function $\frac{\vartheta(\delta \tau)/\vartheta(\tau)}{\vartheta(\rho \tau)/\vartheta(\tau)}$ and the equation

$$\vartheta(\delta N\tau)/\vartheta(N\tau) = c'' z^{(k-n/\Delta)/8} \prod_{m=1}^{\infty} (1 - c^{2m} z^{2mk})(1 + c^m z^{mk})(1 - z^{2mn/\Delta})^{-1}(1 + z^{mn/\Delta})^{-1}$$
(12)

in [7, Theorem 5], it is clear that the valence ν is

$$\frac{1}{8} \sum_{\delta \mid n, \rho \mid n} \{ (ng/\Delta \delta_0) - (ng'/\Delta \rho_0) \} r_{\delta}$$

where $g = (\delta, \Delta)$, $\delta_0 g = \delta$, $\rho_0 g' = \rho$, $g' = (\rho, \Delta)$, $z = \exp(2\pi i \Delta \tau/n)$, $k = ng/\Delta \delta_0$, $c = \exp(-2\pi i \beta/\delta_0)$, $c'' = c' \exp(-\pi i \beta/4\delta_0)$.

Theorem 2. Let n, δ , ρ , r_{δ} be as in Theorem 1. If the conditions (5) hold, then $\varphi_{\delta,\rho,i}(\tau)$ are modular functions on $P^{-2}\theta(n)P^2$ and $P^{-1}\theta(n)P$, for i = 2, 4, respectively.

Proof. By Lemma 2, using the equality $\vartheta_3(\tau) \mid P = e^{-\frac{1}{4}\pi i} \vartheta_4(\tau)$, we have

$$\varphi_{\delta,\rho,3}(\tau) \mid P = \varphi_{\delta,\rho,4}(\tau)$$

By Lemma 1, $\varphi_{\delta,\rho,4}(\tau)$ is a modular function on $P^{-1}\theta(n)P$. By Lemma 2, using the equality $\vartheta_3(\tau) \mid P^2 = e^{-\frac{1}{4}\pi i}\vartheta_2(\tau)$, we obtain

$$\varphi_{\delta,\rho,3}(\tau) \mid P^2 = \varphi_{\delta,\rho,2}(\tau)$$

By Lemma 1, $\varphi_{\delta,\rho,2}(\tau)$ is a modular function on $P^{-2}\theta(n)P^2$. This concludes the proof.

3. The Modular Functions $T_{m,n,i}(\tau), H_{m,n,i}(\tau), \Phi_{m,n,i}(\tau)$

Now we consider the following functions:

$$T_{m,n,i}(\tau) = \frac{\vartheta_i(\tau)\vartheta_i(n\tau)}{\vartheta_i(m\tau)\vartheta_i(mn\tau)}, \quad H_{m,n,i}(\tau) = \frac{\vartheta_i(m\tau)\vartheta_i(n\tau)}{\vartheta_i(\tau)\vartheta_i(mn\tau)}, \text{ and } \Phi_{m,n,i}(\tau) = \frac{\vartheta_i(m\tau)}{\vartheta_i(n\tau)}, \text{ for } i = 2, 3, 4$$

The following theorems show that, under appropriate conditions $T^r_{m,n,i}(\tau)$, $H^r_{m,n,i}(\tau)$ and $\Phi^r_{m,n,i}(\tau)$ are modular functions holomorphic on χ , with respect to the transformations of appropriate subgroups of finite index of the modular group, i.e., modular forms of weight 0.

Theorem 3. Let m and n denote positive integers and suppose that r is an integer such that $r(m-1)(n+1) \equiv 0 \pmod{8}$. Then $T^r_{m,n,3}(\tau) \in M(\theta(mn),0,1)$. Moreover, $T^r_{m,n,3}(\tau)$ is analytic on χ .

Proof. The last assertion in Theorem 3 is obvious from the definition of $T_{m,n,3}(\tau)$. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \theta(mn)$. Then, for $\tau \in \chi$,

$$\vartheta(A\tau) = \nu(A)(c\tau + d)^{1/2}\vartheta(\tau)$$

and for $s \mid c$,

$$\vartheta(sA\tau) = \vartheta\left(\frac{a(s\tau) + sb}{\frac{c}{s}(s\tau) + d}\right) = \nu\binom{a \ sb}{c/s \ d}(c\tau + d)^{1/2}\vartheta(s\tau)$$

where $\nu(A)$ is given by (4). Thus,

$$T_{m,n}(A\tau) = \nu_1(A)T_{m,n}(\tau)$$

where $\nu_1(A) = \frac{\nu \begin{pmatrix} a & b \\ c & d \end{pmatrix} \nu \begin{pmatrix} a & nb \\ c & d \end{pmatrix}}{\nu \begin{pmatrix} a & mb \\ c & m \end{pmatrix} \nu \begin{pmatrix} a & mnb \\ c & m \end{pmatrix}}$. Suppose first that $A \equiv V \pmod{2}$. Then from (4),

$$\nu_1(A) = \zeta_8^{-(c + \frac{c}{n} - \frac{c}{m} - \frac{c}{mn})} = \zeta_8^{-c(m-1)(n+1)/mn}$$

Since $r(m-1)(n+1) \equiv 0 \pmod{8}, \nu_l^r(A) \equiv 1$. Where $\zeta_8 = \exp(2\pi i/8)$.

Secondly, suppose that $A \equiv I \pmod{2}$. Then $\nu_l^r(A) \equiv 1$. Thus, in both instances,

$$T^r_{m,n,3}(A\tau) = T^r_{m,n,3}(\tau)$$

For $\delta = 1$, $\rho = m$ and $\delta = n$, $\rho = mn$ in the equation (8), we have the Fourier expansion of $T^r_{m,n,3}(\tau)$ at 0 of the form

$$T_{m,n,3}^{r}(\tau) = m^{r} \cdot \exp \frac{\pi i r}{8\tau} \left(\frac{1-m}{m} + \frac{n-mn}{mn^2} \right) \left(1 + \sum_{k=1}^{\infty} \alpha_k e^{-\frac{2\pi i k}{\tau} \gamma(m,n)} \right)$$

where, $\gamma(m, n)$ is a rational function of m and n. Similarly, from the equations (7), (9), (11), we obtain the Fourier expansions of $T^r_{m,n,3}(\tau)$ at the indicated other cusp points of the forms

$$\begin{split} T^{r}_{m,n,3}(\tau) &= 1 + \sum_{k=1}^{\infty} a'_{k} e^{2\pi i k \tau}, \quad \text{at } \infty \\ T^{r}_{m,n,3}(\tau) &= \sum_{k=0}^{\infty} a'_{k} \exp\{2\pi i k S^{-1} \tau / (2mn/\Delta)\}, \quad \text{at } 2/\Delta \\ T^{r}_{m,n,3}(\tau) &= \sum_{k=0}^{\infty} b'_{k} \exp\{2\pi i (k+\nu) N^{-1} \tau / (mn/\Delta)\}, \quad \text{at } 1/\Delta, \end{split}$$

From the function $\frac{\vartheta(n\tau)/\vartheta(\tau)}{(\vartheta(m\tau)/\vartheta(\tau))(\vartheta(mn\tau)/\vartheta(\tau))}$ and the equation (10), we find that $T^r_{m,n,3}(\tau)$ has valence 0 at the parabolic points $2/\Delta$. From the same function and the equation (12), $T^r_{m,n,3}(\tau)$ has valence

$$\frac{1}{8}\{(mn/\Delta) + (mng'/\Delta n_0) - (mng''/\Delta m_0) - (mng'''/\Delta m_0 n_0)\}r$$
(13)

at the parabolic points $1/\Delta$ ($\Delta \mid mn, \Delta > 0$), where $g' = (n, \Delta), g'' = (m, \Delta), g''' = (mn, \Delta), n_0g' = n, m_0g'' = m, m_0n_0g''' = mn$.

Theorem 4. Let m, n, r be as in Theorem 3. Then, $T^{r}_{m,n,4}(\tau) \in M(P^{-1}\theta(mn)P, 0, 1)$ and $T^{r}_{m,n,2}(\tau) \in M(P^{-2}\theta(mn)P^{2}, 0, 1)$

84

Proof. Using the equations (2), we have $T^r_{m,n,3}(\tau) \mid P = T^r_{m,n,4}(\tau)$ and $T^r_{m,n,3}(\tau) \mid P^2 = T^r_{m,n,2}(\tau)$. Hence, we have the conclusion.

Theorem 5. Let m and n denote positive integers and suppose that r is an integer such that $r(m-1)(n-1) \equiv 0 \pmod{8}$. Then, $H^r_{m,n,3}(\tau) \in M(\theta(mn), 0, 1)$. Moreover, $H^r_{m,n,3}(\tau)$ is analytic on χ .

Proof. The proof is analogous to that of Theorme 3.

Theorem 6. Let m, n, r be as in Theorem 5. Then, $H^{r}_{m,n,4}(\tau) \in M(P^{-1}\theta(mn)P, 0, 1)$ and $H^{r}_{m,n,2}(\tau) \in M(P^{-2}\theta(mn)P^{2}, 0, 1).$

Proof. As the proof of Theorem 4, from the equations $H^r_{m,n,3}(\tau) \mid P = H^r_{m,n,4}(\tau)$ and $H^r_{m,n,3}(\tau) \mid P^2 = H^r_{m,n,2}(\tau)$, the assertion follows.

Theorem 7. Let *m* and *n* denote positive integers and suppose that *r* is an integer such that $r^2(n-m)(nm-1) \equiv 0 \pmod{8}$. Then, $\Phi_{m,n,3}^r(\tau)$ is a modular function on $\theta(mn)$, with multiplier system $\left(\frac{d}{mn}\right)^r$.

Proof. Let
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \theta(mn)$$
. Then for $\tau \in \chi$,
 $\Phi_{m,n,3}(A\tau) = \frac{\vartheta(mA\tau)}{\vartheta(nA\tau)} = \frac{\vartheta(A_1m\tau)}{\vartheta(A_2n\tau)} = \frac{\nu(A_1)}{\nu(A_2)} \frac{\vartheta(m\tau)}{\vartheta(n\tau)}$

where $A_1 = \begin{pmatrix} a & mb \\ c/m & d \end{pmatrix}$, $A_2 = \begin{pmatrix} a & nb \\ c/n & d \end{pmatrix}$. If A_1 , $A_2 \equiv V \pmod{2}$, by (4), $\nu(A) = \begin{pmatrix} \frac{d}{mn} \end{pmatrix} e^{-\frac{\pi i c}{4} (\frac{n-m}{nm})}$. Since $r(n-m) \equiv 0 \pmod{8}$, we have $\nu^r(A) = \begin{pmatrix} \frac{d}{mn} \end{pmatrix}^r$. If $A_1, A_2 \equiv I \pmod{2}$, by (4) and quadratic reciprocity law, we have $\nu(A) = \begin{pmatrix} \frac{mm}{d} \end{pmatrix} = \begin{pmatrix} \frac{d}{nm} \end{pmatrix} (-1)^{(\frac{nm-1}{2})(\frac{d-1}{2})}$. Since $r(nm-1) \equiv 0 \pmod{8}$, $\nu^r(A) = \begin{pmatrix} \frac{d}{nm} \end{pmatrix}^r$. Thus, in both instances, we have $\Phi^r_{m,n,3}(A\tau) = \nu^r(A)\Phi^r_{m,n,3}(\tau)$. Now we consider the Fourier epansions of $\Phi^r_{m,n,3}(\tau)$ at the cusps of $\theta(mn)$. For $\delta = m$, $\rho = n$ in the equation (7), (8), (9), (11), we obtain the Fourier expansions of $\Phi^r_{m,n,3}(\tau)$ at the parabolic points ∞ , $0, 2/\Delta, 1/\Delta$, respectively, $(\Delta \mid mn, \Delta > 0)$. From the function $\frac{\vartheta(m\tau)/\vartheta(\tau)}{\vartheta(n\tau)/\vartheta(\tau)}$ and the equation (10), we note that $\Phi^r_{m,n,3}(\tau)$ has valence 0 at the parabolic points $2/\Delta$. From the same function and the equation (12), we find that $\Phi^r_{m,n,3}(\tau)$ has valence

$$\frac{1}{8}\{(mng/\Delta m_0) - (mng'/\Delta n_0)\}r$$

at the parabolic point $1/\Delta$, where $g = (m, \Delta)$, $m_0 g = m$, $g' = (n, \Delta)$, $n_0 g' = n$. Thus $\Phi^r_{m,n,3}(\tau) \in M\left(\theta(mn), 0, \left(\frac{d}{mn}\right)^r\right)$.

Theorem 8. Let m, n, r be as in Theorem 7. Then $\Phi^r_{m,n,4}(\tau) \in M(P^{-1}\theta(mn)P, 0, 1)$ and $\Phi^r_{m,n,2}(\tau) \in M(P^{-2}\theta(mn)P^2, 0, 1).$

Proof. By the equations (2), since $\Phi_{m,n,3}^r(\tau) \mid P = \Phi_{m,n,4}^r(\tau)$ and $\Phi_{m,n,3}^r(\tau) \mid P^2 = \Phi_{m,n,2}^r(\tau)$ the assertion follows.

4. Conclusion

It is a simple matter, using the work already done in this paper, to formulate and prove analogous results for functions in $\Gamma_0(2mn)$. The key is the equation $\Gamma_0(2mn) = W^{-mn}\theta(mn)W^{mn}$, where m and n are odd positive integers. The functions $T_{m,n,3}(W^{mn}\tau)$, $H_{m,n,3}(W^{mn}\tau)$ and $\Phi_{m,n,3}(W^{mn}\tau)$ are modular functions on $\Gamma_0(2mn)$. The functions $\varphi_{\delta,\rho,3}(W^n\tau)$ are modular functions on $\Gamma_0(2n)$, for an odd square-free positive integer n. For example, the functions $T_{m,n,3}(W^{mn}\tau)$ are modular functions on $\Gamma_0(2mn)$ with valence 0 at the parabolic points $W^{-mn}S(i\infty)$ and valence (13) at the parabolic points $W^{-mn+\Delta}(i\infty)$, $(\Delta \mid mn, \quad \Delta > 0)$, where $S = \begin{pmatrix} 2 & b \\ \Delta & d \end{pmatrix}$ and $W = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$. In this setting, the natural parabolic point in which to expand the function is $i\infty$.

References

- Berndt, B. C., Cheng Zhang-Liang, Ramanujan's identities for eta functions. Math. Ann. 292(1992), 561-573.
- [2] Kirmaci, U. S., Özdemir, M. E., On the modular functions, International Journal of Applied Mathematics, 2(2000), 1385-1397.
- [3] Knopp, M. I., Modular Functions in Analytic Number Theory, Markham Publishing Co, Chicago, 1970.
- [4] Newman, M., Construction and application of a class of modular functions, Proc. London Math. Soc. 7(1957), 334-350.
- [5] Newman, M., Construction and application of a class of modular functions II, Proc. London Math. Soc. 9(1959), 373-387.
- [6] Rankin, R., Modular Forms and Functions, Cambridge University Press, Cambridge, 1977.
- [7] Wilson, G., A family of modular functions arising from the theta function, Proc. London Math. Soc. 55(1987), 433-449.

Atatürk University, K. K. Education Faculty, Department of Mathematics, 25240, Erzurum-Turkey.