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ON THE MODULAR FUNCTIONS ARISING

FROM THE THETA CONSTANTS

UǦUR S. KIRMACI

Abstract. Some modular functions arising from the theta constants ϑ2(τ), ϑ3(τ), ϑ4(τ) are

investigated. Let n be an odd square-free positive integer as in [4,7]. It is obtained a neces-

sary and sufficient condition that ϕδ,ρ,3(τ) =
∏

δ|n,ρ|n

(

ϑ3(δτ)

ϑ3(ρτ)

)rδ

is invariant with respect to

transformations in θ(n). Also, It is deduced that ϕδ,ρ,i(τ) is a modular function on P−2θ(n)P 2,

θ(n), P−1θ(n)P , for i = 2, 3, 4, respectively. Thus, the result of L. Wilson’s paper [7] is gener-

alized. Furthermore, let m and n denote positive integers. Let r, r1, r2 be integers such that

r(m − 1)(n + 1) ≡ 0(mod 8), r1(m − 1)(n − 1) ≡ 0(mod 8), r2
2(n − m)(nm − 1) ≡ 0(mod 8),

it is shown that T r
m,n,i(τ) =

(

ϑi(τ)ϑi(nτ)

ϑi(mτ)ϑi(mnτ)

)r

, H
r1
m,n,i

(τ) =

(

ϑi(mτ)ϑi(nτ)

ϑi(τ)ϑi(mnτ)

)r1

and

Φ
r2
m,n,i

(τ) =

(

ϑi(mτ)

ϑi(nτ)

)r2

are modular functions on θ(mn), when i = 3. Similar results are

deduced for P−2θ(mn)P 2 and P−1θ(mn)P , the suffixes 3 being replaced by 2 and 4, respec-

tively. Therefore, the modular functions used in B. C. Berndt’s paper [1] is rewritten for theta

constants.

1. Introduction

We shall use χ to denote the upper half-plane, Z for the set of rational integers

and Γ(1) for the modular group. Let be U =

(

1 1

0 1

)

, V =

(

0 − 1

1 0

)

, W =

(

1 0

1 1

)

,

P =

(

0 − 1

1 1

)

.

Γu(2), Γv(2) and Γw(2) are defined by

Γu(2) = {S ∈ Γ(1) : S ≡ I or S ≡ U(mod 2)},

θ = Γv(2) = {S ∈ Γ(1) : S ≡ I or S ≡ V (mod 2)},

ΓW (2) = {S ∈ Γ(1) : S ≡ I or S ≡W (mod 2)}

where I is the unit matrix. The three subgroups Γu(2), Γv(2) and Γw(2) are conjugate

[6].
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The subgroup θ = Γv(2) of Γ(1) is generated by U2 and V . For an odd positive

integer n, the set of elements in θ of the form

(

a b

cn d

)

is a subgroup of θ which will be

denoted θ(n). The subgroup Γ0(k) is defined to be the set of elements in Γ(1) of the

form

(

a b

ck d

)

, where k is a positive integer. Γ0(2n) and θ(n) are conjugate subgroups of

Γ(1). That is, Γ0(2n) = W−nθ(n)Wn. [7]

Let F denote the Ford fundamental region of θ(n), where n denotes an odd square-

free positive integer. A complete set of non-equivalent parabolic points of θ(n) in F is

given by

0, i∞ and P (n) = {2/∆ : ∆ | n, ∆ > 0} ∪ {1/∆ : ∆ | n, ∆ > 0}

[4], [7, Theorem 1].

We recall the theta constants ϑ2(τ), ϑ3(τ) and ϑ4(τ) defined by

ϑ2(τ) =
∑

n∈Z

q(n+ 1
2 )2 , ϑ(τ) = ϑ3(τ) =

∑

n∈Z

qn2

, ϑ4(τ) =
∑

n∈Z

(−1)nqn2

for τ ∈ χ and q = eπiτ . The Dedekind Eta function

η(τ) = eπiτ/12
∞
∏

n=1

(1 − e2πinτ )

is a cusp form of weight 1/2 on Γ(1) and satisfies

η(Mτ) = vη(M)(cτ + d)1/2η(τ)

for all M =

[

a b

c d

]

∈ Γ(1). An important connection between ϑ(τ) and η(τ) is given by.

ϑ(τ) = η2

(

τ + 1

2

)

/η(τ + 1) (1)

[3].

Let Γ be a subgroup of Γ(1). If f(τ) is a modular form of weight k for Γ with

multiplier system υ, we write f(τ) ∈ M(Γ, k, υ). If f ∈ M(Γ, k, υ) and L ∈ Γ(1), the

L-transform fL of f is defined by

fL(τ) = f(τ)|L = {µ(L, τ)}−1f(Lτ)

Here, µ(L, τ) = (cτ + d)k, for L =

(

∗ ∗

c d

)

. If f1 ∈ M(Γ, k1, υ1) and f2 ∈ M(Γ, k2, υ2),

then f1.f2 ∈M(Γ, k1 + k2, υ1.υ2) and f1/f2 ∈M(Γ, k1 − k2, υ1/υ2).
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Lemma 1. Suppose that f ∈ M(Γ, k, υ) and L ∈ Γ(1). Then we have fL ∈
M(L−1ΓL, k, υL). [6]

Lemma 2. The functions ϑ2(τ), ϑ3(τ) and ϑ4(τ) are entire modular forms of weight

1/2 for the groups Γu(2), Γv(2) and Γw(2), respectively. Further,

ϑ3(τ)|P = e−
1
4πiϑ4(τ)

ϑ3(τ)|P
2 = e−

1
4πiϑ2(τ) (2)

Also, for n ≥ 0, ϑn
2 , ϑn

3 and ϑn
4 are entire modular forms of weight n/2 for the groups

Γu(2), Γv(2) and Γw(2), respectively [6].

Lemma 3. Let n be an odd square-free positive integer. For each divisor δ of n, with

δ > 1, let rδ be any integer and let r1 = 0. Then

f(τ) =
∏

δ|n

{ϑ(δτ)/ϑ(τ)}rδ (3)

is invariant with respect to the transformations in θ(n) if and only if the following con-

ditions hold:

(i)
∑

δ|n(δ − 1)rδ ≡ 0(mod 8)
(ii)

∏

δ|n δ
rδ is the square of a rational number

The set of functions given by (3) and satisfying (i) and (ii) will be denoted F (n). The
functions in F (n) are modular functions on θ(n), where ϑ(τ) = ϑ3(τ) [7, Theorem 3].

For relatively prime integers x and y with x 6= 0 and y odd, define

(

x

y

)∗

=

(

x

|y|

)

and

(

x

y

)

∗

=

(

x

|y|

)

(−1)
1
4 ε(x)ε(y)

where

(

x

|y|

)

is the Jacobi symbol and ε(x) = x/|x|. We also define

(

0

±1

)∗

=
(0

1

)

∗
= 1

and

(

0

−1

)

∗

= −1.

The multiplier system for ϑ3(τ) is given by

υ(A) =

{

(

d
c

)∗
exp

(

1
4πic

)

if A ≡ V (mod 2)
(

c
d

)

∗
exp

(

1
4πi(d− 1)

)

if A ≡ I(mod 2)
(4)

where A =

(

∗ ∗
c d

)

∈ θ. Thus, υ(A) is an 8th root of unity and

ϑ(Aτ) = υ(A)(cτ + d)1/2ϑ(τ), τ ∈ χ, [7].

This paper is a continuation of previous work [2]. We will develop some results in [1],
[4], [5] and [7]. The valences of functions in this paper are the same as those constructed
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in [4] and [7]. Certain theorems given in [4] and [7] carry over to the present setting with
only minor alterations in their proofs. The main results of this paper are the following
theorems.

2. The Modular Functions ϕδ,ρ,i(τ)

Now, we define the functions ϕδ,ρ,i as follows:

ϕδ,ρ,i(τ) =
∏

δ|n,ρ|n

{ϑi(δτ)/ϑi(ρτ)}
r , i = 2, 3, 4

Theorem 1. Let n be an odd square-free positive integer. For each divisor δ and ρ of

n, with δ, ρ > 1, δ 6= ρ, let r = rδ be an integer and let r1 = 0. Then ϕδ,ρ,3 is invariant

with respect to the transformations in θ(n) if and only if the following conditions hold:

(i)
∑

δ|n,ρ|n

(ρ− δ)rδ ≡ 0 (mod 8)

(ii)
∏

δ|n,ρ|n

(

n2

δρ

)r

is the square of a rational number. (5)

Further ϕδ,ρ,3 is a modular function on θ(n).

Proof. It is enough to consider only those matrices A =

(

a b

nc d

)

∈ θ (n) such that

c ≥ 0 (since A and -A represent the same transformation) and such that A ≡ V (mod 2)

(since these generate θ (n)). Let B =

(

a δb
δ1c d

)

and C =

(

a ρb
ρ′c d

)

, where δδ′ =

ρρ′ = n so that B, C ≡ V (mod 2) and δAτ = Bδτ , ρAτ = Cρτ Then using (4) and (5),
we have

ϕδ,ρ,i(Aτ) =
∏

δ|n,ρ|n

{ϑ(δτ)/ϑ(ρτ)}rδ

=
∏

δ|n,ρ|n

{ν(B)/ν(C)}rδϕδ,ρ,i(τ)

=
∏

δ|n,ρ|n

(

d

δ′ρ′

)rδ

.k. ϕδ,ρ,i(τ) =

(

d

α

)

exp

{

1

4
πicβ

}

ϕδ,ρ,i(τ)

where, k =
∏

δ|n,ρ|n(exp(1/4)πic(ρ′ − δ′))rδ, α =
∏

δ|n,ρ|n(δ′ρ′)rδ and β =
∑

δ|n,ρ|n(ρ′ −
δ′)rδ

It remains to show that
(a) β ≡ 0 (mod 8) if and only if (i) holds, and

(b)
( d

α

)

= 1 for all even integer d relatively prime to n if and only if (ii) holds.



MODULAR FUNCTIONS ARISING FROM THE THETA CONSTANTS 81

Since n, δ′ and ρ′ are odd, n2 ≡ (δ′)2 ≡ (ρ′)2 ≡ 1 (mod 8) and so nβ ≡
∑

δ|n,ρ|n (ρ −

δ)rδ (mod 8) and (a) follows. The “if” part of (b) is trivial. Assumming
( d

α

)

= 1 for all

even integers d relatively prime to n implies the same for all integers d relatively prime

to n. But if α is not a rational square, then by quadratic reciprocity and Dirichlet’s

Theorem there is a prime p with p ∤ n and
( p

α

)

= −1; so α must be a square, giving (ii).

By (1), we obtain

ϑ(δτ)

ϑ(ρτ)
=
η2

(

δτ+δ
2

)

/η(δτ + δ)

η2(ρτ+ρ
2 )/η(ρτ + ρ)

=
Φ2(τ ′)Ψ(2τ ′)

Φ(2τ ′)Ψ2(τ ′)
(6)

where τ ′ =
τ + 1

2
, Φ(τ ′) =

η(δτ ′)

η(τ ′)
and Ψ(τ ′) =

η(ρτ ′)

η(τ ′)
.

Finally, we consider the expansions of ϕδ,ρ,3(τ) at the parabolic cusps ∞, 0, 2/∆ and

1/∆. We have

Φ(τ)=exp

{

πi(δ−1)r

12
τ

}(

1+

∞
∑

k=1

ake
2πikτ

)

and Ψ(τ)=exp

{

πi(ρ− 1)r

12
τ

}(

1+

∞
∑

k=1

bke
2πikτ

)

as the Fourier expansions of Φ and ψ at ∞. [3, p.103]. Hence, by (6), ϕδ,ρ,3(τ) has the

Fourier expansion at ∞ of the form

ϕδ,ρ,3(τ) = 1 +

∞
∑

k=1

a′ke
2πikτ (7)

We have

Φ(τ) = δ−r/2 exp

{

πi(δ − 1)r

12δτ

}(

1 +

∞
∑

k=1

cke
−2πik/δτ

)

Ψ(τ) = ρ−r/2 exp

{

πi(ρ− 1)r

12ρτ

}(

1 +

∞
∑

k=1

dke
−2πik/ρτ

)

as the Fourier expansion at 0 [3, p.103]. Hence, by (6), ϕδ,ρ,3(τ) has the Fourier expansion

at 0 of the form

ϕδ,ρ,3(τ) =

(

ρ

δ

)r/2

exp

(

πir

8τ

(

δ − ρ

δρ

))(

1 +

∞
∑

k=1

αke
− 2πik

τ γ(δ,ρ)

)

(8)

where, γ(δ, ρ) is a rational function of δ and ρ. It is shown in [7] that f(Sτ) has the form

f(Sτ) =

∞
∑

k=0

ak exp{2πikτ/(2n/∆)}
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at the parabolic points 2/∆. Hence, we have

ϕδ,ρ,3(Sτ) =

∞
∑

k=0

a′k exp{2πikτ/(2n/∆)}

where the a′k are complex numbers independent of τ with a0 6= 0 and S =

(

2 b

∆ d

)

.

Replacing τ by S−1τ =
dτ − b

−∆τ + 2
, we obtain

ϕδ,ρ,3(τ) =

∞
∑

k=0

a′k exp{2πikS−1τ/(2n/∆)} (9)

as the Fourier expansion at the parabolic points 2/∆. From the function
ϑ(δτ)/ϑ(τ)

ϑ(ρτ)/ϑ(τ)
and the equation

ϑ(δSτ)/ϑ(Sτ) = c′
∞
∏

m=1

(1−c2mq2m∆k/n)(1+c2m−1q(2m−1)∆k/n)2(1−q2m)−1(1+q2m−1)−2

(10)

in [7, Theorem 4], it follows that the valence ν is 0. Where k = ng/∆δ0, q = exp(iπτ)
and c, c′ are non-zero constants.

It is shown in [7] that f(Nτ) has the form

f(Nτ) =
∞
∑

k=0

bk exp{2πi(k + ν)τ/(n/∆)}

at the parabolic points 1/∆. Hence, we have

ϕδ,ρ,3(Nτ) =

∞
∑

k=0

b′k exp{2πi(k + ν)τ/(n/∆)}

where the b′k are complex numbers with b0 6= 0 and N =

(

1 0

∆ 1

)

. Hence, replacing τ by

N−1τ =
τ

−∆τ + 1
, we obtain

ϕδ,ρ,3(τ) =
∞
∑

k=0

b′k exp{2πi(k + ν)N−1τ/(n/∆)}, (11)

as the Fourier expansion at the parabolic points 1/∆. From the function
ϑ(δτ)/ϑ(τ)

ϑ(ρτ)/ϑ(τ)
and the equation

ϑ(δNτ)/ϑ(Nτ)=c′′z(k−n/∆)/8
∞
∏

m=1

(1−c2mz2mk)(1+cmzmk)(1−z2mn/∆)−1(1+zmn/∆)−1

(12)
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in [7, Theorem 5], it is clear that the valence ν is

1

8

∑

δ|n,ρ|n

{(ng/∆δ0) − (ng′/∆ρ0)}rδ

where g = (δ,∆), δ0g = δ, ρ0g
′ = ρ, g′ = (ρ,∆), z = exp(2πi∆τ/n), k = ng/∆δ0,

c = exp(−2πiβ/δ0), c
′′ = c′ exp(−πiβ/4δ0).

Theorem 2. Let n, δ, ρ, rδ be as in Theorem 1. If the conditions (5) hold, then

ϕδ,ρ,i(τ) are modular functions on P−2θ(n)P 2 and P−1θ(n)P , for i = 2, 4, respectively.

Proof. By Lemma 2, using the equality ϑ3(τ) | P = e−
1
4 πiϑ4(τ), we have

ϕδ,ρ,3(τ) | P = ϕδ,ρ,4(τ)

By Lemma 1, ϕδ,ρ,4(τ) is a modular function on P−1θ(n)P . By Lemma 2, using the
equality ϑ3(τ) | P

2 = e−
1
4πiϑ2(τ), we obtain

ϕδ,ρ,3(τ) | P
2 = ϕδ,ρ,2(τ)

By Lemma 1, ϕδ,ρ,2(τ) is a modular function on P−2θ(n)P 2. This concludes the proof.

3. The Modular Functions Tm,n,i(τ), Hm,n,i(τ), Φm,n,i(τ)

Now we consider the following functions:

Tm,n,i(τ)=
ϑi(τ)ϑi(nτ)

ϑi(mτ)ϑi(mnτ)
, Hm,n,i(τ)=

ϑi(mτ)ϑi(nτ)

ϑi(τ)ϑi(mnτ)
, and Φm,n,i(τ)=

ϑi(mτ)

ϑi(nτ)
, for i=2, 3, 4

The following theorems show that, under appropriate conditions T r
m,n,i(τ), H

r
m,n,i(τ) and

Φr
m,n,i(τ) are modular functions holomorphic on χ, with respect to the transformations

of appropriate subgroups of finite index of the modular group, i.e., modular forms of
weight 0.

Theorem 3. Let m and n denote positive integers and suppose that r is an integer

such that r(m − 1)(n + 1) ≡ 0 (mod 8). Then T r
m,n,3(τ) ∈ M(θ(mn), 0, 1). Moreover,

T r
m,n,3(τ) is analytic on χ.

Proof. The last assertion in Theorem 3 is obvious from the definition of Tm,n,3(τ).

Let A =

(

a b

c d

)

∈ θ(mn). Then, for τ ∈ χ,

ϑ(Aτ) = ν(A)(cτ + d)1/2ϑ(τ)

and for s | c,

ϑ(sAτ) = ϑ

(

a(sτ) + sb
c
s (sτ) + d

)

= ν

(

a sb

c/s d

)

(cτ + d)1/2ϑ(sτ)
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where ν(A) is given by (4). Thus,

Tm,n(Aτ) = ν1(A)Tm,n(τ)

where ν1(A) =
ν(a b

c d)ν(a nb
c/n d)

ν( a mb
c/m d )ν( a mnb

c/mn d )
. Suppose first that A ≡ V (mod 2). Then from (4),

ν1(A) = ζ
−(c+ c

n− c
m− c

mn )
8 = ζ

−c(m−1)(n+1)/mn
8

Since r(m − 1)(n+ 1) ≡ 0 (mod 8), νr
l (A) ≡ 1. Where ζ8 = exp(2πi/8).

Secondly, suppose that A ≡ I (mod 2). Then νr
l (A) ≡ 1. Thus, in both instances,

T r
m,n,3(Aτ) = T r

m,n,3(τ)

For δ = 1, ρ = m and δ = n, ρ = mn in the equation (8), we have the Fourier
expansion of T r

m,n,3(τ) at 0 of the form

T r
m,n,3(τ) = mr. exp

πir

8τ

(

1 −m

m
+
n−mn

mn2

)(

1 +

∞
∑

k=1

αke
− 2πik

τ γ(m,n)

)

where, γ(m,n) is a rational function of m and n. Similarly, from the equations (7), (9),
(11), we obtain the Fourier expansions of T r

m,n,3(τ) at the indicated other cusp points of

the forms

T r
m,n,3(τ) = 1 +

∞
∑

k=1

a′ke
2πikτ , at ∞

T r
m,n,3(τ) =

∞
∑

k=0

a′k exp{2πikS−1τ/(2mn/∆)}, at 2/∆

T r
m,n,3(τ) =

∞
∑

k=0

b′k exp{2πi(k + ν)N−1τ/(mn/∆)}, at 1/∆,

From the function ϑ(nτ)/ϑ(τ)
(ϑ(mτ)/ϑ(τ))(ϑ(mnτ)/ϑ(τ)) and the equation (10), we find that T r

m,n,3(τ)

has valence 0 at the parabolic points 2/∆. From the same function and the equation

(12), T r
m,n,3(τ) has valence

1

8
{(mn/∆) + (mng′/∆n0) − (mng′′/∆m0) − (mng′′′/∆m0n0)}r (13)

at the parabolic points 1/∆ (∆ | mn, ∆ > 0), where g′ = (n,∆), g′′ = (m,∆), g′′′ =

(mn,∆), n0g
′ = n, m0g

′′ = m, m0n0g
′′′ = mn.

Theorem 4. Let m,n, r be as in Theorem 3. Then, T r
m,n,4(τ) ∈M(P−1θ(mn)P, 0, 1)

and T r
m,n,2(τ) ∈M(P−2θ(mn)P 2, 0, 1)
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Proof. Using the equations (2), we have T r
m,n,3(τ) | P = T r

m,n,4(τ) and T r
m,n,3(τ) |

P 2 = T r
m,n,2(τ). Hence, we have the conclusion.

Theorem 5. Let m and n denote positive integers and suppose that r is an integer

such that r(m − 1)(n − 1) ≡ 0 (mod 8). Then, Hr
m,n,3(τ) ∈ M(θ(mn), 0, 1). Moreover,

Hr
m,n,3(τ) is analytic on χ.

Proof. The proof is analogous to that of Theorme 3.

Theorem 6. Let m,n, r be as in Theorem 5. Then, Hr
m,n,4(τ) ∈M(P−1θ(mn)P, 0, 1)

and Hr
m,n,2(τ) ∈M(P−2θ(mn)P 2, 0, 1).

Proof. As the proof of Theorem 4, from the equations Hr
m,n,3(τ) | P = Hr

m,n,4(τ)

and Hr
m,n,3(τ) | P

2 = Hr
m,n,2(τ), the assertion follows.

Theorem 7. Let m and n denote positive integers and suppose that r is an integer

such that r2(n −m)(nm − 1) ≡ 0 (mod 8). Then, Φr
m,n,3(τ) is a modular function on

θ(mn), with multiplier system

(

d

mn

)r

.

Proof. Let A =

(

a b

c d

)

∈ θ(mn). Then for τ ∈ χ,

Φm,n,3(Aτ)=
ϑ(mAτ)

ϑ(nAτ)
=
ϑ(A1mτ)

ϑ(A2nτ)
=
ν(A1)

ν(A2)

ϑ(mτ)

ϑ(nτ)

where A1 =

(

a mb

c/m d

)

, A2 =

(

a nb

c/n d

)

. If A1, A2 ≡ V (mod 2), by (4),

ν(A) =
( d

mn

)

e−
πic
4 ( n−m

nm ). Since r(n − m) ≡ 0 (mod 8), we have νr(A) =
( d

mn

)r

.

If A1, A2 ≡ I (mod 2), by (4) and quadratic reciprocity law, we have ν(A) =
(nm

d

)

=
( d

nm

)

(−1)(
nm−1

2 )( d−1
2 ). Since r(nm − 1) ≡ 0 (mod 8), νr(A) =

( d

nm

)r

. Thus, in both

instances, we have Φr
m,n,3(Aτ) = νr(A)Φr

m,n,3(τ). Now we consider the Fourier epansions

of Φr
m,n,3(τ) at the cusps of θ(mn). For δ = m, ρ = n in the equations (7), (8), (9), (11),

we obtain the Fourier expansions of Φr
m,n,3(τ) at the parabolic points ∞, 0, 2/∆, 1/∆,

respectively, (∆ | mn, ∆ > 0). From the function
ϑ(mτ)/ϑ(τ)

ϑ(nτ)/ϑ(τ)
and the equation (10), we

note that Φr
m,n,3(τ) has valence 0 at the parabolic points 2/∆. From the same function

and the equation (12), we find that Φr
m,n,3(τ) has valence

1

8
{(mng/∆m0)−(mng′/∆n0)}r

at the parabolic point 1/∆, where g = (m,∆), m0g = m, g′ = (n,∆), n0g
′ = n. Thus

Φr
m,n,3(τ) ∈M

(

θ(mn), 0,
( d

mn

)r)

.
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Theorem 8. Let m,n, r be as in Theorem 7. Then Φr
m,n,4(τ) ∈M(P−1θ(mn)P, 0, 1)

and Φr
m,n,2(τ) ∈M(P−2θ(mn)P 2, 0, 1).

Proof. By the equations (2), since Φr
m,n,3(τ) | P = Φr

m,n,4(τ) and Φr
m,n,3(τ) | P

2 =

Φr
m,n,2(τ) the assertion follows.

4. Conclusion

It is a simple matter, using the work already done in this paper, to formulate and

prove analogous results for functions in Γ0(2mn). The key is the equation Γ0(2mn) =

W−mnθ(mn)Wmn, wherem and n are odd positive integers. The functions Tm,n,3(W
mnτ),

Hm,n,3(W
mnτ) and Φm,n,3(W

mnτ) are modular functions on Γ0(2mn). The functions
ϕδ,ρ,3(W

nτ) are modular functions on Γ0(2n), for an odd square-free positive integer

n. For example, the functions Tm,n,3(W
mnτ) are modular functions on Γ0(2mn) with

valence 0 at the parabolic points W−mnS(i∞) and valence (13) at the parabolic points

W−mn+∆(i∞), (∆ | mn, ∆ > 0), where S =

(

2 b

∆ d

)

andW =

(

1 0

1 1

)

. In this setting,

the natural parabolic point in which to expand the function is i∞.
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