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QUASI-CLOSED PRIMARY COMPONENTS IN ABELIAN GROUP RINGS

PETER DANCHEV

1. Introduction

All groups considered in this work are assumed to be multiplicatively written abelian
groups and all rings are commutative with identity of prime characteristic p for some
fixed prime p. We follow essentially throughout the notation and terminology to the
abelian group theory of the excellent classical monographs of L. Fuchs [8]. All topological
references are to the p-adic topology.

For G a group and R a ring, RG will denote a group ring with a normed Sylow
p-subgroup S(RG), which is in the focus of our interest. The notations and terminology
from the commutative group algebras theory of the nice book of G. Karpilovsky [10] will
be followed.

This paper is a supplement and a generalization to our previous articles [6, 7]. The
main purpose that motivates the present research is the global investigation of the quasi-
completeness of S(RG) for large R and G on their minimal restrictions. In particular,
as corollaries to our main results, we will obtain well-documented facts in [7] and other
given by us in [6].

Before proving the central theorems, we need in the sequel some assertions stated in
the following paragraph.

2. Preliminary Statements

First and foremost we start with some group-theoretic multiplicities very needed for
our good presentation.

Proposition [6,7]. A nice subgroup of a closed p-group is closed. A balanced sub-
group of a quasi-closed p-group is quasi-closed.

The next statement is valuable and due to Hill-Megibben (see also [8]).

Proposition [9]. Suppose A is quasi-closed primary and H is unbounded pure in
A such that A/H is reduced (in particular H can be choosen unbounded balanced in A).
Then A/H is closed.

Remark. We note that of some interest and importance is also the following more
weak observation. If A is quasi-closed p-primary and H is balanced in A, then A/H
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is quasi-closed. Really, let B/H be pure in A/H . So [8] B is pure in A. Therefore
(A/B)pw ∼= (A/H/B/H)pw

is divisible. This verifies that A/H is quasi-closed since by a
hypothesis it is clearly reduced.

On the other hand it is well to know that there exists a more simple proof of a weak
variant (a special case) of Theorem 4.12 in [1]. It states as follows: Suppose A is a
p-group. Then A is quasi-closed if and only if Apn

is quasi-closed for any natural n.
And so, if A is p-primary and Apn

is quasi-closed for some fixed n ∈ N, then so is
A. In fact, Apn

is reduced whence the same is A. Let now C be pure in A. Therefore
Cpn

is pure in Apn

and thus (Apn

/Cpn

)pw

is divisible. But Apn

/Cpn ∼= (A/C)pn

and
consequently (Apn

/Cpn

)pw ∼= (A/C)pw

, which completes the proof of the first half.
Conversely, take A to be quasi-closed and P to be a pure subgroup of Apn

. Then
invoking [2, Theorem 2.2] we observe that there is C pure in A with the property Cpn

= P .
Therefore as above (Apn

/P )pw

= (Apn

/Cpn

)pw ∼= (A/C)pw

must be divisible, finishing
the proof in general after all.

Recall that as usual Gp is the p-torsion component of G. The following is well-known
and documented, but is included here for a convenience.

Lemma [5,6,7]. For each ordinal ε is valid that Spε

(RG) = S(Rpε

Gpε

).
Now we are in position to attack.

Main Lemma. Gp is balanced in S(RG).

Proof. “nice property”. Following [8] (by P. Hill), the subgroup N of an abelian
p-group A is said to be nice if (A/N)pε

= (Apε

N)/N for every ordinal ε. It is eas-
ily seen that the last is equivalent to ∩α<ε(A

pα

N) = Apε

N for each limit ε. Us-
ing this modification and the above lemma, to prove our claim it is enough to show
only that ∩α<ε(GpS(Rpα

Gpα

)) = GpS(Rpε

Gpε

). Indeed, given x in the left hand-
side. Hence x = gp

∑

g∈Gpα rgg = g′p
∑

g′∈Gpβ rg′g′ = · · ·, where gp, g
′
p ∈ Gp; rg ∈

Rpα

, rg′ ∈ Rpβ

and β is arbitrary with α < β ≤ ε. Furthermore rg = rg′ and
gpg = g′pg

′. Since
∑

g∈Gpα rgg ∈ S(RG), then there is some g ∈ Gpα

p . That is why

x = gpg
∑

g∈Gpα rggg−1 ∈ GpS(Rpε

Gpε

), because gpg ∈ Gp and
∑

g∈Gpα rggg−1 ∈

S(RG) ∩ Rpβ

Gpβ

= S(Rpβ

Gpβ

), which verifies the first claim on niceness.
“isotype property”. Employing the above lemma, for every ordinal number ε we

establish Gp ∩ Spε

(RG) = Gp ∩ S(Rpε

Gpε

) = Gpε

p , which verifies that Gp is isotype in
S(RG). Combining the above two properties, we finish the proof.

Remark. The last two lemmas are proved also by W. May (see, for example, [10]) but
when R is a field. More precisely, May has shown that Gp is balanced in 1 + I(RG; Gp).
But (cf. [5, 6]) S(RG) = 1 + I(RG; Gp) when R is a field and so more precise Gp is
balanced in S(RG), of course, for R a field. The used our technique is different to that
of May (see the cited book [10]).

We continue with (cf. [6])

Proposition. S(RG) is reduced ⇔ the maximal perfect subring of R has nilpotents
and G is p-reduced or the maximal perfect subring has no nilpotents and Gp is reduced.
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Moreover S(RG) is separable ⇔ Rpw

has nilpotents and G is p-separable or Rpw

is

without nilpotents and Gp is separable.

Proof. Follows by a direct application of the first lemma plus [5, Lemma 3]. The

proof is completed.

Begin with the following paragraph in which are stated our major theorems selected

in the next three sections, namely

3. Main Results

1. Quasi-closed S(RG) for p-primary G

The main statement in this section, however, is the following (announced in [4] as
Remark 12)

Theorem 1. Assume G is a p-group. Then S(RG) is quasi-closed if and only if G

is bounded.

Proof. If G is bounded, then apparently (for example cf. [4]) S(RG) is one also,

whence it is quasi-closed [8].

Conversely, let now S(RG) be quasi-closed and G be unbounded. Therefore owing
to the Main Lemma and to the proposition of Hill-Megibben, S(RG)/G is closed. We

claim then that G is bounded. If not, then G contains an unbounded basic subgroup

B =
∐∞

n=1 Bn, where Bn are homogeneous of order pn. We set now the sequences ϕn =
∏n

i=1(1 + bpi−1

i − bpi

i+1) and Φn = ϕnG, where bn ∈ Bn(n ∈ N) with bpn−1

n 6= 1. Evidently

ϕp
n = 1 whence (Φn)∞n=1 ∈ S(RG)/G is bounded at p, and moreover (Φn)∞n=1 is a Cauchy

sequence since clearly (ϕn)∞n=1 is. Next we shall show that Φn is not convergent (i.e. is

divergent) in S(RG)/G. Otherwise Φn → Φ when n → ∞ and where Φ ∈ S(RG)/G is

the boundary of Φn, n ∈ N. Therefore by a definition, Φ ∈ ΦnS(Rpk

Gpk

)G/G for each

k ≥ 2 and n ≥ k. That is why Φ = (
∑t

1 rigi)G for some fixed t ∈ N and

r1g1 + · · · + rtgt =

[

n
∏

i=1

(1 + bpi−1

i − bpi

i+1)

]

[

α
(k)pk

1n a
(k)pk

1n + · · · + α(k)pk

snn a(k)pk

snn

]

c(k)
n , (o)

where 0 6= ri ∈ R, gi ∈ G(1 ≤ i ≤ t),
∑t

1 ri = 1; α
(k)
1n , . . . , α

(k)
snn ∈ R, a

(k)
1n , . . . , a

(k)
snn ∈ G,

α
(k)
1n + · · ·+α

(k)
snn = 1, sn ∈ N; c

(k)
n ∈ G. It is a routine matter to see that

∏n

i=1(1+bpi−1

i −

bpi

i+1) is a canonical element with ≥ n members, and moreover because G is separable as a

subgroup of the separable S(RG), there exists u ∈ N such that bpi−1

i 6∈ Gpu

, bpi−1

i bεpj−1

j 6∈

Gpu

, . . . , bpi−1

i bεpj−1

j · · · bεpl−1

l 6∈ Gpu

(n members) for 1 ≤ i ≤ j ≤ · · · ≤ l ≤ n and ε = ±1.

Furthermore it is a simple exercise to verify that the left hand-side of (o) contains a

number t of elements with nonzero coefficients which is strictly less than the number of

the elements with nonzero coefficients in the right hand-side. This contradiction leads us

to the fact that Φn is unconvergent in S(RG)/G. Finally we wish to apply the topological
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criterion of L. Kulikov [8, 6] to get that G must be bounded, as claimed. The proof is

finished.

An immediate consequence is the following due to N. Nachev (cf. [7] or [6] too).

Corollary 1. Let G be a p-group. Then S(RG) is closed if and only if G bounded.

2. Quasi-closed S(RG) for N(R) = 0

Recall that as usual N(R) is the nilradical in R. The main theorem here, however, is

the following

Theorem 2. Presume N(R) = 0. Then S(RG) is quasi-closed if and only if Gp is

bounded.

Remark. The same theorem was proved by us in [7] but when R is a field by making

use of a purely algebraic technique.

In particular, we directly yield (cf. [3, 7]).

Corollary 2. Let N(R) = 0. Then S(RG) is closed if and only if Gp is bounded.

Now we are ready to obtain

Proof of Theorem 2. If Gp is bounded, then certainly so is S(RG) (see [3, 5]),

whence it is quasi-closed.

Now we treat the more difficult converse claim. Really, if Gp is unbounded, the Main

Lemma and second proposition imply S(RG)/Gp is closed. Hence the same sequence

(ϕn)∞n=1 from the p-primary case but when B is basic in Gp, along with the sequence

Φn = ϕnGp ∈ S(RG)/Gp(n ∈ N), yield the fact immediately. This completes the proof

after all.

Remark. By what we have shown above and more specially according to our obser-

vation that the quasi-completeness preserves between S(RG) and Sps

(RG) = S(Rps

Gps

),

we derive that we can formulate: if N(Rps

) = 0 for any s ∈ N, then S(RG) is quasi-closed

if and only if Gp is bounded.

We close the main three cases of quasi completeness with

3. Quasi-closed S(RG) for N(R) 6= 0

First and foremost we obtain the major extension of [6, Theorem], namely

Theorem 3. Suppose N(Rpw

) 6= 0 and G is an abelian group. Then S(RG) is closed

if and only if G is bounded p-primary.

Proof. Observe that the same sequence fn =
∏n

i=1(1 + r(1 − gpi

)) as in [6], but

when 0 6= r ∈ N(Rpw

) with r2 = 0; g ∈ G with order(g) = ∞, together with the same

conclusions as in [6, p.319, Case 1], yield that G is torsion.

But then T =
∐

q 6=p Gq = 1 as a p-divisible group, since our proposition proved above

means that G is p-separable, whence p-reduced. Therefore G is p-torsion and so Corollary

1 is applicable. The proof is completed.
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Of some interest is the situation when N(Rpw

) = 0 and N(R) 6= 0 (or owing to the

Remark of [6] or to this formulated above, N(Rpn

) 6= 0 for each n ∈ N is interesting),

but the problem is still left-open to the moment and seems to be difficult.

The main theorem that determines this section, however, states thus.

Theorem 4. Suppose R is such a ring that N(Rpw

) 6= 0 and either

(∗) G/Gp is p-divisible or (∗∗) G/Gp is decomposable.

Then S(RG) is quasi-closed if and only if G is a bounded p-group.

Proof. It is a development of our idea in [6]. The condition that G is bounded
p-torsion implies the same for S(RG) [4], hence it is quasi-closed [8].

Now, for the converse, choose S(RG) quasi-closed. If Gp is unbounded, then as above

S(RG)/Gp must be closed and thus as in the proofs of Theorems 2 or 3 we will obtain

that Gp is bounded. Consequently G = Gp × M [8] for some M ≤ G. Now, if (∗) is
fulfilled, then as above M = 1 (cf. [6]) and so G = Gp. Furthermore G is bounded

p-torsion. Further, if (∗∗) holds, then owing to [4] we claim that S(RM) is a direct

factor of S(RG) and thus the first proposition implies that S(RM) is quasi-closed. The

hypothesis on M 6= 1 leads us to M = A × B, where both 1 6= A, B 6= M . Applying

[4] and the second proposition we derive S(RM)/S(RA) ∼= S((RA)B) is closed, because
S(RA) is unbounded pure (otherwise A must be p-torsion [5], which is wrong). That is

why by virtue of Theorem 3 we deduce B is p-primary since (RA)pw

= Rpw

Apw

possesses

nilpotents. The contrary B = Bp = 1 ensures that M = 1. Thus G = Gp once again.

This means G is bounded p-primary. The proof is completed after all.
The author feels that the answer of the following question would be of some interest

and importance to the theory of the commutative group algebras.

Problem. Presume that G is a torsion-free indecomposable group. Whether S(RG)

is quasi-closed if and only if G = 1, provided that N(Rpw

) 6= 0? The positive solution
of the last problem guarantees that Theorem 4 will be true in a general form, i.e. for

arbitrary G and N(Rpw

) 6= 0. But besides when N(Rpw

) = 0 with N(R) 6= 0 (or more

precise owing to the Remark, for N(Rpn

) 6= 0 with every n ∈ N), the situation is left-open

yet, too.

Correction. The first line of Case 2 from our article [6] should be read thus: Then

G =
∐

p Gp =
∐

q 6=p Gq × Gp (q is a prime), where T =
∐

q 6=p Gq is a p-divisible group,

i.e. T p = T , because Gp
q = Gq for all q 6= p; (q, p) = 1.
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