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A STUDY ON BORNOLOGICAL PROPERTIES OF THE SPACE OF

ENTIRE FUNCTIONS OF SEVERAL COMPLEX VARIABLES

MUSHTAQ SHAKER ABDUL-HUSSEIN AND G. S. SRIVASTAVA

Abstract. Spaces of entire functions of several complex variables occupy an important position

in view of their vast applications in various branches of mathematics, for instance, the classical

analysis, theory of approximation, theory of topological bases etc. With an idea of correlating

entire functions with certain aspects in the theory of basis in locally convex spaces, we have

investigated in this paper the bornological aspects of the space X of integral functions of sev-

eral complex variables. By Y we denote the space of all power series with positive radius of

convergence at the origin. We introduce bornologies on X and Y and prove that Y is a convex

bornological vector space which is the completion of the convex bornological vector space X.

1. Introduction

The space of integral functions over the complex �eld C was introduced by Iyer [5]

who de�ned a metric on this space by introducing a real-valued map on it. Kamthan [7]

studied the properties of space of entire functions of several complex variables. In this

paper we study the bornological aspect of space of entire functions of several complex

variables.

A bornology on a set X is a family B of subset of X satisfying the following ax-

ioms:

(i) B is a covering of X , i.e. X =
S
B2B

B;

(ii) B is hereditary under inclusion, i.e. if A 2 B and B is a subset of X contained in

A, then B 2 B;

(iii) B is stable under �nite union.

A pair (X;B) consisting of a set X and a bornology B on X is called a bornological space,

and the elements of B are called the bounded subsets of X .

A base of a bornology B on X is any subfamily B� of B such that every element of B

is contained in an element of B�. A family B� of subsets of X is a base for a bornology

on X if and only if B� covers X and every �nite union of elements of B� is contained

in a member of B�. Then the collection of those subsets of X which are contained in

an element of B� de�nes a bornology B on X having B� as a base. A bornology is said

to be a bornology with a countable base if it possesses a base consisting of a sequence
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of bounded sets. Such a sequence can always be assumed to be increasing. For further

de�nitions and notations, we shall refer to [2] and [3].

2. The Space X

Let C denote the complex plane, and I be the set of non-negative integers. We write

for n 2 I , n � 1,

Cn = f(z1; z2; : : : ; zn); zi 2 C; 1 � i � ng ;

In = f(p1; p2; : : : ; pn); pi 2 I; 1 � i � ng :

Cn and In are respectively Banach and metric spaces under the functions:

k(z1; : : : ; zn)k = jz1j+ � � �+ jznj; k(p1; : : : ; pn)k = p1 + � � �+ pn:

We are concerned here with the space of entire functions from Cn to C under the usual

pointwise addition and scalar multiplicatioin. For the sake of simplicity we consider the

case when n = 2, though our results can be easily extended to any positive integer n.

Let therefore, X be the space of all entire functions f : C2 ! C, where

f(z1; z2) =

1X
n=0

1X
m=0

am;nz1
mz2

n; am;n 2 C for m;n � 0; (2.1)

and lim
km;nk!1

jamnj
1=(m+n) = 0, where corresponding to each f 2 X , am;n

;s are uniquely

determined coe�cients in C. For each f 2 X there is an associated real number kfk

de�ned by

kfk = sup
n
ja0;0j; jam;nj

1=(m+n); m; n � 0; m+ n 6= 0
o
;

satisfying for all f; g 2 X

(a) k0k = 0;

(b) kfk � 0;

(c) kfk = 0, f � 0;

(d) k � fk = kfk;

(e) kf + gk � kfk+ kgk.

Then k � k is a total paranorm on X . We de�ne a bornology on X with the help of this

paranorm. We denote by BJ the set ff 2 X : kfk � Jg. Then the family B� = fBJ :

J = 1; 2; : : :g forms a base for a bornology B on X .

It is known that (X;B) is a separable convex bornological vector space with a count-

able base.

De�nition 1. A set P is said to be bornivorous if for every bounded set S there

exists a � 2 C, � 6= 0 such that �S � P for all � 2 C for which j�j � j�j.

We now prove
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Theorem 2.1. B contains no bornivorous set.

Proof. Suppose B contains a borni vorous set A. Then there exists a set Si 2 B

such that A � Si and consequently Si is also bornivorous. We now assert that if i1 > i,

then �Si1 6� Si for any � 2 C which leads to a contradiction. If i1 > i, it is easy to see

that �Si1 6� Si for any � 2 C such that j�j � 1 Now we prove that �Si1 6� Si for any

� 2 C such that j�j < 1 also. Let thus j�j < 1. Since i1=i > 1, we can choose m;n such

that 1 < 1=j�j < (i1=i)
m+n. Now let am;n 2 C be such that

im+n

j�j
< jam;nj � im+n

1

and let f = am;nz
m
1 z

n
2 . Then kfk = jam;nj

1=(m+n) � i1, and hence f 2 Si1 . Now

k�fk = k�am;nz
m
1 z

n
2 k = j�am;nj

1=(m+n) > i and hence �f 62 Si1 . Thus �Si1 6� Si for any

� 2 C. This proves Theorem 2.1.

De�nition 2. Let E be a bornological vector space. A sequence fxng in E is said to

be Mackey-convergent to a point x 2 E, if there exists a decreasing sequence of positive

real numbers f�ng tending to zero such that the sequence

�
xn � x

�n

�
is bounded.

De�nition 3. Let E be a separated convex bornological space. A sequence fxng in

E is said to be a bornologcal Cauchy sequence (or a Mackey-Cauchy sequence) in E if

there exists a bounded disk B � E such that fxng is a Cauchy sequence in EB .

Theorem 2.2. The Mackey-convergence in a bornological vector space E is topolo-

gisable if and only if E has a bounded bornivorous set.

For proof of Theorem 2.2, see Hogbe-Nlend [2, Proposition 1, p.12].

Corollary 2.1. The Mackey-convergence of X is not topologisable.

Proof. Suppose the Mackey-convergence of X is topologisable. Then by Theorem

2.2, X has a bounded bornivorous set, and this contradicts Theorem 2.1.

3. The Bornological Dual of X

The following result is due to Kamthan [7, Lemma 2.1]:

Lemma 3.1. A necessary and su�cient condition that
1P
n=0

1P
m=0

cm;nam;n should be

convergent for every sequence fam;ng satisfying

jam;nj
1=(m+n) ! 0 as m;n!1; is thatn

jc0;0j; jcm;nj
1=(m+n); m; n � 0; m+ n 6= 0

o
should be bounded.

Kamthan [7] has also proved that every continuous linear functional � on X is of the
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form

�(f) =

1X
n=0

1X
m=0

am;ncm;m; where f(z1; z2) =

1X
n=0

1X
m=0

am;nz
m
1 z

n
2 ; and the (3.1)

sequence
n
jc0;0j; jcm;nj

1=(m+n); m; n � 0; m+ n 6= 0
o
is bounded. Moreover, if any dou-

ble sequence fcm;n : m;n � 0g satis�es Lemma 3:1, then the mapping

� : X ! C whose value at any f 2 X is given by (3.1) represents a continuous linear

functional on X.

Lemma 3.2. A linear functional � : X ! C is bounded if and only if � maps every

Mackey-convergent sequence to a bounded sequence in C.

For the proof of above, we refer to [2, propositions 1, p. 10].

We now prove

Theorem 3.1. A linear functional � =
1P
n=0

1P
m=0

cm;nam;n on X is bounded if and

only if lim
km;nk!1

jcm;nj
1=(m+n) = 0.

Proof. First suppose that jcm;nj
1=(m+n) ! 0 as m;n ! 1. Let ffqg be a sequence

in X such that fq
M

���! 0. Then there exists a constant k and a decreasing sequence

f�qg of scalars converging to zero such that kfq=�qk � k i.e.
���a(q)0;0

��� � j�q j k and ja
(q)
m;nj �

j�q jk
m+n, m;n � 1.

Since jcm;nj
1=(m+n) ! 0, there exists N such that jcm;nj

1=(m+n) �
1

2k
for k(m;n)k � N .

Hence jcm;nj � (2k)�m�n, k(m;n)k � N .

Now

j�(fq)j =

�����
1X
n=0

1X
m=0

cm;na
(q)
m;n

�����
�

1X
n=0

1X
m=0

jcm;nj
���a(q)m;n

���
�

1X
n=0

1X
m=0

jcm;nj j�q j k
m+n

�
X

k(m;n)k�N

jcm;nj j�q j k
m+n +

1X
k(m;n)k>N

j�q j 2
�m�n <1:

Hence � is bounded on every sequence which Mackey-converges to zero and consequently

by Lemma 3.2 � is bounded.

To prove the converse part of the theorem, let � be as mentioned in the hypothesis

such that

lim sup
k(m;n)k!1

jcm;nj
1=(m+n) = � > 0:
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Then given � > 0 such that � < �, there exist divergent increasing sequences fmqg, fntg

of integers such that

jcm;nj � �m+n for all m = mq ; n = n1:

Choose � 2 R such that � > 1 and �� > 1. Consider the sequence ffm;ng where fm;n =

�m+nzm1 z
n
2 2 X and de�ne �mn 2 C as �m;n = 1=�m+n. Then lim

k(m;n)k!1
�m;n = 0

and kfm;n=�m;nk = k�2(m+n)zm1 z
n
2 k = j�j2 < 1. Consequently fm;n

M

���! 0. But

�(fm;n) = cmn�
m+n and j�(fmq ;nt

)j =jcmq;nt
j�mq+nt > �mq+nt j�jmq+nt , which is not

bounded. Hence again by Lemma 3.2, � is not bounded. Thus boundedness of � implies

that

lim
k(m;n)k!1

jcm;nj
1=(m+n) = 0:

This complete the proof of the theorem.

4. r1; r2-Norms On X

Let f : C2 ! C, where

f(z1; z2) =

1X
n=0

1X
m=0

am;nz
m
1 z

n
2 ; am;n 2 C; (z1; z2) 2 C � C:

For every r1; r2 2 R+ an r1; r2 - norm k� : r1; r2k can be de�ned on X as:

k� : r1; r2k : X ! R such that

kf : r1; r2k =

1X
m

1X
n

jam;njr
m
1 r

n
2 :

Clearly kf : r1; r2k is a norm on X . We denote the space X endowed by this norm by

X(r1; r2). We denote by Br1;r2 the bornology on X consisting of the sets bounded in the

sense of the norm k� : r1; r2k. We now prove.

Theorem 4.1. B =
S

r1;r2>0

Br1;r2 .

Proof. Let B 2 B. Then there exists a constant k such that kfk � k for f 2 B.

Let now

f =

1X
n=0

1X
m=0

am;nz
m
1 z

n
2 2 B:

Then

ja0;0j � k; jam;njjz1j
mjz2j

n � km+njz1j
mjz2j

n; m; n � 1:
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Thus

1X
n=0

1X
m=0

jam;njjz1j
mjz2j

n � 1 +

1X
n=0

1X
m=0

jz1j
mjz2j

n <1 if jz1j; jz2j < 1=k:

Hence if 0 < r1, r2 � 1=k, then B 2 Br1;r2 and so B �
S

r1;r2>0

Br1;r2 .

For the reverse inclusion let B2 Br1;r2 . Then there exists a constant k such that

kf : r1; r2k � k for all f =

1X
n=0

1X
m=0

am;nz
m
1 z

n
2 2 B;

i.e.

1X
n=0

1X
m=0

jamnjr
m
1 r

n
2 � k;

i.e. ja0;0j � k; jam;nj
1=(m+n) �

k1=(m+n)

r1r2
; m; n � 1;

i.e. kfk � sup

�
k;
k1=(m+n)

r1r2
; m; n � 1

�
<1:

Thus B2 B and hence
S

r1;r2>0

Br1;r2 � B.

This proves Theorem 4.1.

Corollary 4.1. (X;B) is the bornological inductive limit of normed space

fX(r1; r2)gr1;r22R+ where the inductive limit is de�ned in the usual way.

Now we prove

Lemma 4.1. The following are equivalent for (X;B)

(a) fk
M

���! 0,

(b) there exists a sequence f�kg of positive real number tending to zero such that ffk=�kg

is bounded.

Proof. (a))(b) is obviously true.

To prove (b))(a), let ffkg be a sequence in X for which there exists a sequence f�kg

of positive real number tending to zero and a constant w such that kfk=�kk � w for all

k. Now there exists a positive number M such that �k � M for all k. Further, we can

choose for each i = 1; 2; : : : a ki such that �k < 1=i for all k � ki.

Let us de�ne a sequence f�0kg as

�0k =M for all k < ki

= 1=i for all ki � k < ki+1 and i = 1; 2; : : : :

Then f�0kg is a decreasing sequences of positive real numbers tending to zero and further

�0k � �k for all k.
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Hence

kfk=�
0
kk = kfk�k=�k�

0
kk

� A(�k=�
0
k)kfk=�kk where A(�) = max(1; j�j); � 2 C

� w:

Therefore fk
M

���! 0:

Hence (b))(a) and proof of Lemma 4.1 is complete.

Theorem 4.2. fq
M

���! 0 in X if and only if fq(z1; z2)
M

���! 0 uniformly in some

�nite circle.

Proof. First, let us suppose that fq
M

���! 0 and fq =
1P
n=0

1P
m=0

aqmnz
m
1 z

n
2 .

Then there exists a constant k and a sequences f�qg in C, tending to zero such that

kfq=�qk � k for all q

i.e.

����a
q
0;0

�q

���� � k and

����a
q
m;n

�q

���� � km+n; m; n � 1

i.e.
��aq0;0�� � j�q jk and jaqm;nj � j�q jk

m+n; m; n � 1:

If (z1; z2) 2 C � C such that jz1j; jz2j < 1=k, then

jfq(z1; z2)j =

�����
1X
n=0

1X
m=0

aqm;nz
m
1 z

n
2

�����
�

1X
n=0

1X
m=0

jaqmnj jz1j
mjz2j

n

�

1X
n=1

1X
m=1

j�q j k
m+njz1j

mjz2j
n + j�q j k

= j�q j

 
1X
n=1

1X
m=1

km+njz1j
mjz2j

n + k

!

� j�q j

 
1X

m=1

1X
n=1

1=2m+n + k

!

� j�q j(1 + k):

Hence

jfq(z1; z2)j ! 0 uniformly for all z1, z2 such that jz1j, jz2j < 1=k.

Conversely, suppose there exist r1, r2 > 0 such that fq(z1; z2)! 0 uniformly for all z1; z2
such that jz1j � r1, jz2j � r2.
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i.e.

sup
jzij�ri

jfq(z1; z2)j ! 1 as q !1:

Now

jfq(z1; z2)j � sup
jzij�ri

jfq(z1; z2)j for all z1; z2 such that jzij � ri:

Hence

jaqmnjr
m
1 r

n
2 � sup

jzij�ri

jfq(z1; z2)j;

i.e.

2
64 jaqmnj

sup
jzij�ri

jfq(z1; z2)j

3
75 �

�
1

r1

�m�
1

r1

�n
:

Choose � = max
�
1
r1
; 1
r2

�
then, we get

2
64 jaqmnj

sup
jzij�ri

jfq(z1; z2)j

3
75 � �m+n:

i.e.

2
64 jaqmnj

sup
jzij�ri

jfq(z1; z2)j

3
75
1=(m+n)

� �:

Let �q = sup
jzij�ri

jfq(z1; z2)j.

Then

jaq0;0j = jfq(0; 0)j � �q and �q ! 0:

Hence

kfq=�qk = sup
m+n�1

�
jaq0;0j

j�q j
;
jaq;mnj

1=m+n

j�q j

�
� maxf1; �g = A(�);

and hence, in view of Lemma 4.1, fq
M

���! 0.
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Theorem 4.3. The bornological dual X�(r1; r2) of X(r1; r2) is the same as its topo-

logical dual X 0(r1; r2).

Proof. The proof follows immediately from the fact that a linear functional on a

normed linear space is continuous if and only if it is bounded.

On X 0(r1; r2) we now de�ne a map:

j� : 1=2(r1r2)j : X
0(r1; r2)! R; where for f =

1X
n=0

1X
m=0

am;nz
m
1 z

n
2

jf : 1=2(r1r2)j =

1X
n=0

1X
m=0

jamnj=2
m+nrm1 r

n
2 :

It is well-known that

f =

1X
n=0

1X
m=0

amnz
m
1 z

n
2 2 X 0(r1; r2) if and only if fjcm;nj=r

m
1 r

n
2 g is

bounded.

Consequently the function k� : 1=2(r1; r2)k is well-de�ned and X 0(r1; r2) becomes a

normed linear space relative to k� : 1=2(r1r2)k.

Denote by �B1=2(r1r2) the canonical bornology of X 0(r1; r2) with this norm which we call

the (1=2(r1r2))-norm.

5. The Space Y

Suppose that

Y =

(
g =

1X
m=0

1X
n=0

bm;nz
m
1 z

n
2 : bm;n 2 C � C and

n
jbm;nj

1=(m+n)
o

is bounded

)
:

A convex bornology �B can be de�ned on Y with the help of a function k � k : Y ! R

de�ned in a similar fashion as that on X . We note that �B when restricted to X gives

B. Moreover, x =
S

r1;r2>0

Xr1;r2 , and as in the proof of Theorem 4.1 we have that

�B =
S

r1;r2>0

�Br1;r2 . Consequently Y is the bornological inductive limit of the normed

space Y (r1; r2).

Theorem 5.1. (Y; �B) is Mackey-complete.

Proof. We �rst observe that Lemma 4.1 holds for Y also. Let thus ffkg be a double

Mackey-sequence Y . Then there exists a sequence f�kpg of scalars, tending to zero, such

that





fk � fp

�kp





 � w, where w is some �xed real positive number.
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Now we choose a sequence f�kpg of scalars such that �kp � �kp for all k; p and further

such that �k1p1 � �k2p2 whenever k1 � k2 and p1 � p2. For this, since �kp ! 0, without

loss of generality we can assume that �kp < 1 for all k; p. Now we set k1 = 1, p1 = 1

and choose (ki; pi) inductively such that ki > ki�1, pi > pi�1 and �kp < 1=i for k � ki,

p � pi. De�ne f�kpg as

�kp =
1

min(i; j)
if ki � k < ki+1 and pj � p < pj+1:

It is easily seen that f�kpg is the required sequence. Moreover

�kp ! 0 and





fk � fp

�kp





 �




fk � fp

�kp





 � w

i.e. ��ak00 � a
p
00

��
j�kpj

� w and

��akmn � apmn

��
j�kpj

� w for all m;n � 1:

fak00g and fa
k
mng, m;n � 1, are Cauchy sequences and hence there exists a00, amn,

m;n � 1 in C � C such that ak00 ! a00 and akmn ! amn for all m;n � 1.

Now ��ak00 � ad00
��

j�k;k+1j
<

��ak00 � ad00
��

j�k;dj
for all d � k + 1;

and hence ��ak00 � ad00
��

j�k;k+1j
� w for all d � k + 1:

Hence as d!1, we get
jak00 � a00j

j�k;k+1j
� w:

Similarly

jakmn � amnj
1=(m+n)

j�k;k+1j
� w for all m;n � 1:

i.e. 



fk � f

�k;k+1





 � w where f =

1X
n=0

1X
m=0

amnz
m
1 z

n
2 and �k;k+1 ! 0:

Hence fk
M

���!f .

Now jamnj
1=(m+n) = jakmn � amn � akmnj

1=(m+n)

� jakmn � amnj
1=(m+n) +

��akmn

��1=(m+n)

� j�k;k+1j � w + jakmnj
1=(m+n):



A STUDY ON BORNOLOGICAL PROPERTIES 299

Hence

lim sup
m;n!1

jamnj
1=(m+n) � lim sup

m;n!1

j�k;k+1j � w + lim sup
m;n!1

jakmnj
1=(m+n)

�M w + rk

<1:

where M = sup
k

j�k;k+1j <1 and rk = lim sup
m;n!1

jakmnj
1=(m+n) <1.

Hence f 2 Y and therefore Y is Mackey-complete.

Corollary 5.1. Y is complete

Proof. In view of Theorem [2, p.33] it is enough to show that �B is l1-disced.

For this we show that each Br1;r2 2
�B is l1-disced. Let thus f�ig be a sequence of scalars

such that
1P
i=1

j�ij � 1, and ffig be sequence in Br1;r2 .

Then




f =

1X
i=1

�ifi






 = sup

8<
:
�����
1X
i=1

�ia
i
00

����� ;
�����
1X
1

�ia
i
mn

�����
1=(m+n)

; m; n � 0; m+ n 6= 0

9=
;

� sup

�X
j�ij

��ai00�� ;�X j�ij
��aimn

���1=(m+n)

; m; n � 0; m+ n 6= 0

�

� sup

�
ri
X

j�ij; ri

�X
j�ij
�1=(m+n)

; m;n � 0; m+ n 6= 0

�
� ri;

where ri is de�ned as in the previous theorem. Hence Sr1;r2 is l
1-disced and the assertion

follows.

Theorem 5.2. (X;B) is not complete.

Proof. It is enough to show that (X;B) is not Mackey-complete (see [2, p.33]). Thus

we consider the sequence

fm;n =

mX
i=1

nX
j=1

�
1

2

�i+j
zi1z

j
2 m;n � 1:

Then �
2�xy (fm;n � fx;y) ; m � n; x � y

	
is bounded in X:

In other words ffm;ng is a Mackey-Cauchy sequence in X and hence in Y .

As (Y; �B) is Mackey-complete, the Mackey-limit of ffm;ng exists in Y . In fact the Mackey-

limit of ffm;ng in Y is fm;n =
mP
i=1

nP
j=1

�
1
2

�i+j
zi1z

j
2 as f(fm;n � f)=2�m�ng is bounded in

Y , and f 62 X . We now claim that the Mackey-limit of ffm;ng does not exist in X .
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For otherwise, let fm;n

M

���!g 2 X . Then fm;n

M

���! g in Y . Hence g = f as Y is a

separated bornological vector space. This contradicts the fact that f 62 X . Hence (Y; �B)

is not Mackey-complete. This proves theorem 5.2. Lastly we have.

Theorem 5.3. (Y; �B) is the Mackey-completion of (X;B).

Proof. Let f =
1P
n=0

1P
m=0

cm;nz
m
1 z

n
2 2 Y . Then there exists a number h such that

jcmnj
1=(m+n)

< h for all m;n � 1. Now consider the sequence(
fqt =

qX
n=0

tX
m=0

cmnz
m
1 z

n
2

)
; q; t = 1; 2; : : : in X:

Then




f � fqt�
1
2

�q+t





 =







 

1X
n=0

1X
m=0

cmnz
m
1 z

n
2 �

qX
n=0

tX
m=0

cmnz
m
1 z

n
2

!
� 2q+t








=













(
qP

n=0

1P
m=0

cmnz
m
1 z

n
2 +

1P
n=q+1

1P
m=0

cmnz
m
1 z

n
2 �

qP
n=0

tP
m=0

cmnz
m
1 z

n
2

)
�
1
2

�q+t












=







qX

n=0

1X
m=t+1

cmnz
m
1 z

n
2�

1
2

�q+t +

1X
n=q+1

tX
m=0

cmnz
m
1 z

n
2�

1
2

�q+t +

1X
n=q+1

1X
m=t+1

cmnz
m
1 z

n
2�

1
2

�q+t







< 4(h+ h+ h) = 12h <1;

i.e. fq;t
M

���! f in X . Thus every f 2 Y can be written as the Mackey-limit of a sequence

ffm;ng in X .

Corollary 5.2. (Y; �B) is the completion of (X;B).

The proof follows immediately from Theorem 5.1 and 5.3.
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