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ON THE CONVEX NULL OPERATORS

JIAN-LIN LI

Abstract. The object of this paper is to investigate some properties of the convex null operators
which are defined for analytic functions. The result obtained here extends and sharpens some
recent results due to Silvia [5], Ahuja and Jahangiri [1].

1. Introduction

A sequence {¢,}22, of positive real numbers is said to be a normalized convex null
sequence if ¢g = 1, {¢,}22, is decreasing to 0 as n — oo, and ¢, — 2¢p41 + €pg2 > 0 for
each n. Let M(2) denote the class of all such sequences (alternatively, such sequences
are called monotonic of order 2. See [2]).

Let A be the class of functions f(z) of the form f(z) = z+ Y., a,z™, which are
analytic in the open unit disk U = {z : z € C and |2| < 1}. For {c,}32, € M(2),
Silvia[5] defined the corresponding convex null operator Fy.,y on A by Fr. y(f) = 2z +
S plan/en—1)z" for f(z) = z+ Y .o, a,z™ € A. Corresponding to {c,}>2, € M(2)
such that Fy.,1(z/(1-2)) € A, we use F({c,}; ) to denote the family of functions f € A
such that Re(Fy. 1(f))' > Bin U. Recently, Silvia [5], Ahuja and Jahangiri [1] discussed
some geometric properties of the class F'({c,,}; 3). In the present paper, we first correct
some erroneous results appeared in papers [5] and [1], we then extend and sharpen some
results obtained by these authors.

2. Preliminaries

The following two lemmas play an important role in the proof of our improved results.

Lemma 1(Fejer [2]). If {c,}5L, € M(2), then the function q(z) = co/2+ ) cp2™
n=1
is analytic in U and Re{q(z)} >0 in U.

Lemma 2. For j = 1,2, let H; be analytic in U, H;(0) = 1, Re{H:1(2)} > a and
Re{Hx(z)} > B inU. Then

Re{(H; * H3)(2)} > 2(a + 3) — 228 — 1, (z€U)
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where denotes the Hadamard product or convolution.

The conclusion of Lemma 2 readily follows from a well-know fact that if P(z) is
analytic in U, P(0) = 1, and Re{P(z)} > 1/2 in U, then for any function F(z), analytic
in U, (P* F)(U) is contained in the convex hull of F(U).

3. Theorems and Their Proofs

(I) It is know that if {c,}52, € M(2) then {c,/(1+n)}>2, € M(2). But we can’t
have {b,}°, € M(2) for bo =1,b, = c,/(v(1+n)) (n=1,2,...) and 1/ > 0. For
example, let ¢, = (1 +n)~! and v = 1/5, we see that by — b; < 0 and {b,}5°, & M(2).
Therefore, Theorem 8 and the second part of Theorems 9 and 11 in [5] are not correct.
In this section, we shall extend and sharpen the corresponding results to the following.

Theorem 1. If f € F({c,}; 8), then Re{f(2)/2} >28—-1+2(1 — ) log2in U.
Proof. For f(z) =z+ > ", a,2" € F({cn};3), we write

f <1+Z —) 1>*<1+§:C”n—1z”1>. (1)

Re {1 + i C”T‘lz"—l} = Re {/01 g(zt)dt}

for g(z) =14+ 3,2, ¢p2", we see from Lemma 1 that Re{g(zt)} > 1/(1+1¢), (z € U,t €
[0, 1]), which yields

0 1
Cn—1 n—1 1
1 — ——dt =log?2 . 2
Re{ +nE:2 — }>/0 T+1 og (zeU) (2)

From (1), (2) and Lemma 2, we get the desired result.

Since

Theorem 2. If f € F({c,}; 3) for {c.}20 ={(1+an)1}>2,, a>0and f <1,
then

Re(/ () > 5+ 1= (2 [ {$m-1)  Gev, ®)
Ref ()}>1+2(3—1)/0 mdt (z € U). (4)

These results are sharp. The extremal function is given by

z+ Z —”n 2"+ (5)

n)(1+ an)
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Proof. For f(z) =z+ > ", a,2" € F({cn}; ), we write

f'(z) = (1 + niz ( t > anz”1> * (1 +n§:2cn1z”1> (6)

Cn—1

and f(z)/z as (1) for ¢, =1/(1+an), n=0,1,2,....
Since

> 1 1 1 z
n—1 _ - =
Re{1+g Cpn_12 }—1+Re{a/0t l—tzdt}

>1+1/1tL =1 /1 " w  ev), ()
— o = — 4
aly, 1+t o 1+1to ’

we get (3) from (6) amd Lemma 2. Similarly, from

Eap 1tl—t z
Re{ 1 el b =14 R / S dt
e{ +nz::2 n ‘ } + e{o a—1 1-tz

Voo

we obtain (4). The proof of Theorem 2 is complete.

Note that Theorem 2 sharpens the result [5, Theorem 9]. As noted by Silvia [5,
Remarks 3 and 4], Ponnusamy [3] obtained (3) by using differential subordination, while
extreme point theory was used by Silverman [4] to obtain Theorem 2 in the special case
when a = 1.

The following Theorem 3 will correct and sharpen [5, Theorem 11].

Theorem 3. Fora >0, 3>0, and f € A, if

Re{f'(z) + (a+ B)zf"(z) + aBz(zf"(2))'} > 0 (z e U)

holds, then
li — (_l)n
Re{f(z)}>1+2n2::1(1+an)(1+ﬂn) (zel), (9)
1(2) e X (-)"
Re{7}>1+410g§-n2::1(1+an)(1+ﬂn) (z € U). (10)
These results are sharp. The extremal function is given by.
falz) = z+2§: (=1)" 2" (11)
(1+n)(1+an)(1+ 8n)

n=1
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Proof. Observe that for a >0, 8> 0and f(z) =2+ )., ,anz" € A, we have

F(2) + (a+B)zf"(2) + afz(zf"(2) = 1 + Z i (12)
(a+ Z R TY(ES e} (13)
n n=2

where ¢, = (1+an) (1 +6n)~t, n=1,2,....
Let p(z) =1/2+ 577 | ¢,2™. Then

1 [l —p 2
_1 : 14
o) =g+ [ e (14)

which yields
1 [ltE z

Re{p(z)}—§+/0 P Re{l—tz}dt
L il L = p—1) >0 U 15
e e A CE L B G O R D)

Hence,

- n—1 .- (_1)n
Re{1+n22cnlz }>1+n21(1+0m)(1+5n) (z € U). (16)

By applying (12), (13), (16) and Lemma 2, we get the sharp result (9).
Since £&) = f(2)  p(2) for p(z) = 1+ 302, 22", and

1
Re{p(z)} = Re {1 +/ tz dt} > log 2
o 1—tz

in U, we obtain (10) from (9) and Lemma 2. The sharpness of Theorem 3 follows by
considering the extremal function (11) directly. This completes the proof.

It should be point out that the above proof also shows that, for a > 0, 8 > 0 and
f € A, the best bound o such that

Re(f'(2) + (0 + B)=f"(2) + afz(f"(2))} >0 = Relf(2} >0 (z€D)
= (-

o(a,B) =1+ |2 (14 an)(1 + Bn)

(17)

n=1

The extremal function is given by

o0 _1)n )
f3(2) = 2+ 2(1 — o(e, B)) nzl 1+n)(1(+ oz)n)(1+5n)zn+ , (18)
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(IT) Ahuja and Jahangiri [1] obtained some results for the class My (a) = {f(z) € A :
Re(D"f(2))" > a,z € U}, where D" f(z) is the Hadamard product of f with z/(1—z)"1.
It is easily seen that this class is equal to the class F'({cy}; ) with {ci}32, € M(2)
defined by

1
co =1, ck:(<k“;”>> . k=12....neNy a<l. (19)

We note with careful calculation that Theorems 4 and 5 of [1] are not correct. In fact,
applying lemma 2 directly, we should have the following.

Theorem 4. Let f € M,(a) and let g € A so that Re{g(z)/z} > (n+ a)/(n +1) in
U. Then fx g € My(B), where
da—20” +n -1

p= 1 >a (20)

Proof. For f(z) =z+ Y .2, a,2" € My(a), we have

Re{1+§:k<k+2_l>akzkl}>a (z €U). (21)

k=2
Combining (21) with Re{g(z)/z} > (n + «)/(n + 1), we obtain from Lemma 2 that
} da — 20 +n—1
>
n+1

Re {(an)' . g(;) =B (zel). (22)
This shows that f % g € M, ().

As it is shown in [1] that g € M, («) implies Re{g(z)/z} > (n + @)/(n + 1) in U, we
also have the following.

Theorem 5. Let f and g be in M,(a). Then fxg € M,(8) C M,(«), where 3 is
given by (20).
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