POPOVICIU'S AND BELLMAN'S INEQUALITIES IN p-SEMI-INNER PRODUCT SPACES

Dedicated to the Memory of Dr. I. Franić

Y. J. CHO, M. MATIĆ AND J. PEČARIĆ

Abstract. In this paper, we study Popoviciu's and Bellman's inequalities in *p*-semi-inner product spaces and give some related results.

1. Introduction and Preliminaries

The following generalization of the well-known Aczél's inequality (see, for example, [4, p.117]) is referred in the literature as Popoviciu's inequality:

Theorem 1.1. Let a_0, b_0 and a_i, b_i, p_i (i = 1, 2, ..., n) be nonnegative real numbers such that

$$\sum_{i=1}^{n} p_i a_i^p \le a_0^p, \qquad \sum_{i=1}^{n} p_i b_i^q \le b_0^q, \tag{1.1}$$

where p,q>1 with $\frac{1}{p}+\frac{1}{q}=1$. Then the following inequality holds

$$\left(a_0^p - \sum_{i=1}^n p_i a_i^p\right)^{\frac{1}{p}} \left(b_0^q - \sum_{i=1}^n p_i b_i^q\right)^{\frac{1}{q}} \le a_0 b_0 - \sum_{i=1}^n p_i a_i b_i. \tag{1.2}$$

A result closely related to the one stated above is given in the following theorem and is referred in the literature as Bellman's inequality:

Theorem 1.2. Let a_0, b_0 and a_i, b_i, p_i (i = 1, 2, ..., n) be nonnegative real numbers such that

$$\sum_{i=1}^{n} p_i a_i^p \le a_0^p, \qquad \sum_{i=1}^{n} p_i b_i^p \le b_0^p, \tag{1.3}$$

where p > 1. Then the following inequality holds

Received August 9, 2001.

2000 Mathematics Subject Classification. 26D15, 26D99.

Key words and phrases. Popoviciu's and Bellman's inequalities, p-semi-inner product space The first author was supported financially from the Korea Science and Engineering Foundation (KOSEF 2000-1-10100-003-3)

$$\left(a_0^p - \sum_{i=1}^n p_i a_i^p\right)^{\frac{1}{p}} + \left(b_0^p - \sum_{i=1}^n p_i b_i^p\right)^{\frac{1}{p}} \le \left[(a_0 + b_0)^p - \sum_{i=1}^n p_i (a_i + b_i)^p\right]^{\frac{1}{p}}.$$
(1.4)

Remark. In fact, T. Popoviciu and R. Bellman proved Theorem 1.1 and Theorem 1.2, respectively, for the case $p_i = 1$ (i = 1, 2, ..., n) (see [4], pp.118-119). The result stated in Theorem 1.1 follows immediately from the original Popoviciu's result by replacing a_i with $p_i^{1/p}a_i$ and b_i with $p_i^{1/q}b_i$ (i = 1, 2, ..., n). Similarly, the result stated in Theorem 1.2 is easily obtained from the original Bellman's result by replacing a_i with $p_i^{1/p}a_i$ and b_i with $p_i^{1/p}b_i$ (i = 1, 2, ..., n).

Recently, M. Matić and J. Pečarić [3] proved the following refinements of the above results:

Theorem 1.3. Let a_0, b_0 and a_i, b_i, p_i, q_i (i = 1, 2, ..., n) be nonnegative real numbers such that the condition (1.1) is valid and

$$0 < q_i < p_i \quad (i = 1, 2, \dots, n).$$

Then the following inequalities hold

$$0 \le \left(\sum_{i=1}^{n} q_{i} a_{i}^{p}\right)^{1/p} \left(\sum_{i=1}^{n} q_{i} b_{i}^{q}\right)^{1/q} - \sum_{i=1}^{n} q_{i} a_{i} b_{i}$$

$$\le a_{0} b_{0} - \sum_{i=1}^{n} p_{i} a_{i} b_{i} - \left(a_{0}^{p} - \sum_{i=1}^{n} p_{i} a_{i}^{p}\right)^{\frac{1}{p}} \left(b_{0}^{q} - \sum_{i=1}^{n} p_{i} b_{i}^{q}\right)^{\frac{1}{q}}.$$

$$(1.5)$$

Theorem 1.4. Let a_0, b_0 and a_i, b_i, p_i, q_i (i = 1, 2, ..., n) be nonnegative real numbers such that the condition (1.3) is valid and

$$0 < q_i < p_i \quad (i = 1, 2, \dots, n).$$

Then the following inequalities hold

$$0 \leq \left[\left(\sum_{i=1}^{n} q_{i} a_{i}^{p} \right)^{1/p} + \left(\sum_{i=1}^{n} q_{i} b_{i}^{p} \right)^{1/p} \right]^{p} - \sum_{i=1}^{n} q_{i} (a_{i} + b_{i})^{p}$$

$$\leq (a_{0} + b_{0})^{p} - \sum_{i=1}^{n} p_{i} (a_{i} + b_{i})^{p}$$

$$- \left[\left(a_{0}^{p} - \sum_{i=1}^{n} p_{i} a_{i}^{p} \right)^{1/p} + \left(b_{0}^{p} - \sum_{i=1}^{n} p_{i} b_{i}^{p} \right)^{1/p} \right]^{p}.$$

$$(1.6)$$

In this paper, we give results related to Popoviciu's and Bellman's inequalities which hold in *p*-semi-inner product spaces and which can be regarded as a generalizations of the results stated above. The notation of a 2-semi-inner product space was introduced by A. H. Siddiqui and S. M. Rizvi [5]. This was generalized to the concept of *p*-semi-inner-product space by I. Franić [1]. To avoid the problem in the proof of the main result from [1] and [5], Y. Ho and A. White [2] modified one part in the definition of *p*-semi-inner product, the condition (PS-1) on positive definiteness, and then stated and proved the main result from [1] and [5] with that modified definition. Here we use the definition of *p*-semi-inner product space given in [2]:

Definition. Let X be a real linear space of dimension greater than one and let $[\cdot,\cdot|\cdot]$ be a real-valued function defined on $X\times X\times X$ such that for some $p\in(1,\infty)$ we have:

(PS-1) (i) $[x, x|z] \ge 0$

(ii) [x, x|z] = 0 if and only if x and z are linearly dependent,

(PS-2) $[\alpha x, y|z] = \alpha [x.y|z]$, where α is a real number,

(PS-3)
$$[x + x', y|z] = [x, y|z] + [x', y|z],$$

(PS-4)
$$|[x, y|z]| \le [x, x|z]^{1p} [y, y|z]^{\frac{p-1}{p}}.$$

Then $[\cdot,\cdot|\cdot]$ is called a *p*-semi-inner product on X and $(X,[\cdot,\cdot|\cdot])$ is called a *p*-semi-inner product space (in short, a *p*-SIP space).

We are interested in the following two simple properties which are valid in any p-SIP space X:

$$[\alpha x, \alpha x | y] = |\alpha|^p [x, x | y] \tag{1.7}$$

and

$$[x+y,x+y|z]^{\frac{1}{p}} \le [x,x|z]^{\frac{1}{p}} + [y,y|z]^{\frac{1}{p}}. \tag{1.8}$$

Indeed, when $\alpha = 0$ or x and y are linearly dependent, (1.7) is trivially fulfilled. If $\alpha \neq 0$ and x and y are linearly independent, then, by (i) of (PS-1) and (PS-2), we have

$$[\alpha x, \alpha x | y] = |[\alpha x, \alpha x | y]| = |\alpha| |[x, \alpha x | y]|. \tag{1.9}$$

By (PS-4), we have

$$|[x, \alpha x|y]| < [x, x|y]^{\frac{1}{p}} [\alpha x, \alpha x|y]^{\frac{p-1}{p}}$$

and so, by (1.9),

$$[\alpha x, \alpha x | y] \le |\alpha| [x, x | y]^{\frac{1}{p}} [\alpha x, \alpha x | y]^{\frac{p-1}{p}}. \tag{1.10}$$

Thus, dividing (1.10) by $\left[\alpha x, \alpha x | y\right]^{\frac{p-1}{p}}$, we get

$$[\alpha x, \alpha x | y]^{\frac{1}{p}} \le |\alpha| [x, x | y]^{\frac{1}{p}}.$$
 (1.11)

On the other hand, from (1.11) it follows

$$[x, x|y]^{\frac{1}{p}} = \left[\frac{1}{\alpha}\alpha x, \frac{1}{\alpha}\alpha x|y\right]^{\frac{1}{p}} \le \left|\frac{1}{\alpha}\right| [\alpha x, \alpha x|y]^{\frac{1}{p}}$$

or, equivalently,

$$|\alpha|[x,x|y]^{\frac{1}{p}} \le [\alpha x, \alpha x|y]^{\frac{1}{p}}. \tag{1.12}$$

Now (1.7) follows from (1.11) and (1.12). To prove (1.8), first suppose $[x+y, x+y|z] \neq 0$. Then we have

$$\begin{split} &[x+y \ , \ x+y|z] \\ &= [x,x+y|z] + [y,x+y|z] \\ &\leq [x,x|z]^{\frac{1}{p}} [x+y,x+y|z]^{\frac{p-1}{p}} + [y,y|z]^{\frac{1}{p}} [x+y,x+y|z]^{\frac{p-1}{p}} \\ &= ([x,x|z]^{\frac{1}{p}} + [y,y|z]^{\frac{1}{p}}) [x+y,x+y|z]^{\frac{p-1}{p}}. \end{split} \tag{1.13}$$

Now, dividing (1.13) by $[x+y,x+y|z]^{\frac{p-1}{p}}$, we get (1.8). In the case when [x+y,x+y|z]=0, that is, when x+y and z are linearly dependent, the inequality (1.8) obviously holds.

2. Popoviciu's Inequality

In this section, we study an analogue of Popoviciu's inequality in p-semi- inner product spaces. An expected generalization of Popoviciu's inequality for p-SIP space is as follows:

Theorem 2.1. Let $(X, [\cdot, \cdot | \cdot])$ be a p-SIP space. Let a_0, b_0 be nonnegative numbers and $x, y, z \in X$ vectors such that

$$[x, x|z] \le a_0^p, [y, y|z] \le b_0^q,$$
 (2.1)

where p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. Then we have

$$(a_0^p - [x, x|z])^{\frac{1}{p}} (b_0^q - [y, y|z])^{\frac{1}{q}} \le a_0 b_0 - |[x, y|z]|.$$
(2.2)

Instead of proving this result here, we state and prove the following theorem which is more general:

Theorem 2.2. Let $(X, [\cdot, \cdot|\cdot])$ be a p-SIP space and $x_i, y_i, z_i \in X$ $(i = 1, 2, \dots, n)$ be given vectors. If a_0, b_0 and p_i $(i = 1, 2, \dots, n)$ are nonnegative numbers such that

$$\sum_{i=1}^{n} p_i[x_i, x_i | z_i] \le a_0^p, \qquad \sum_{i=1}^{n} p_i[y_i, y_i | z_i] \le b_0^q, \tag{2.3}$$

where p,q>1 with $\frac{1}{p}+\frac{1}{q}=1$, then we have

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} \left(b_0^q - \sum_{i=1}^n p_i[y_i, y_i|z_i]\right)^{\frac{1}{q}} \\
\leq a_0 b_0 - \sum_{i=1}^n p_i[[x_i, y_i|z_i]].$$
(2.4)

Proof. Set $a_i = [x_i, x_i | z_i]^{\frac{1}{p}}$ and $b_i = [y_i, y_i | z_i]^{\frac{1}{q}}$ $(i = 1, 2, \dots, n)$ and apply Theorem 1.1 to obtain the inequality

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} \left(b_0^q - \sum_{i=1}^n p_i[y_i, y_i|z_i]\right)^{\frac{1}{q}} \\
\leq a_0 b_0 - \sum_{i=1}^n p_i[x_i, x_i|z_i]^{\frac{1}{p}} [y_i, y_i|z_i])^{\frac{1}{q}}.$$
(2.5)

Now, from $\frac{1}{p} + \frac{1}{q} = 1$, we get $\frac{p-1}{p} = \frac{1}{q}$ so that, by (PS-4), we have

$$|[x_i, y_i|z_i]| \le [x_i, x_i|z_i]^{\frac{1}{p}} [y_i, y_i|z_i]^{\frac{1}{q}} \ (i = 1, 2, \dots, n).$$

Using these inequalities and (2.5), we get (2.4). This completes the proof.

Remark. In the case when n = 1, $p_1 = 1$, $x_1 = x$, $y_1 = y$ and $z_1 = z$, Theorem 2.2 reduces to Theorem 2.1.

Next, we give a result for p-SIP spaces analogous to the result stated in Theorem 1.3:

Theorem 2.3. Let $(X, [\cdot, \cdot|\cdot])$ be a p-SIP space and $x_i, y_i, z_i \in X$ $(i = 1, 2, \dots, n)$ be given vectors. If a_0, b_0, p_i and q_i $(i = 1, 2, \dots, n)$ are nonnegative numbers such that

$$0 < q_i < p_i$$
 $(i = 1, 2, \dots, n)$

and

$$\sum_{i=1}^{n} p_i[x_i, x_i | z_i] \le a_0^p, \qquad \sum_{i=1}^{n} p_i[y_i, y_i | z_i] \le b_0^q, \tag{2.6}$$

where p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$, then we have

$$0 \leq \left(\sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}]\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}]\right)^{\frac{1}{q}} - \sum_{i=1}^{n} q_{i}|[x_{i}, y_{i}|z_{i}]|$$

$$\leq a_{0}b_{0} - \sum_{i=1}^{n} p_{i}|[x_{i}, y_{i}|z_{i}]| - \left(a_{0}^{p} - \sum_{i=1}^{n} p_{i}[x_{i}, x_{i}|z_{i}]\right)^{\frac{1}{p}} \left(b_{0}^{q} - \sum_{i=1}^{n} p_{i}[y_{i}, y_{i}|z_{i}]\right)^{\frac{1}{q}}. \quad (2.7)$$

Proof. Since $0 \le p_i - q_i \le p_i$ $(i = 1, 2, \dots, n)$, from (2.6) it follows that

$$a_0^p - \sum_{i=1}^n (p_i - q_i)[x_i, x_i | z_i] \ge a_0^p - \sum_{i=1}^n p_i[x_i, x_i | z_i] \ge 0$$

and

$$b_0^q - \sum_{i=1}^n (p_i - q_i)[y_i, y_i | z_i] \ge b_0^q - \sum_{i=1}^n p_i[y_i, y_i | z_i] \ge 0.$$

Therefore, we can apply (2.4) with $p_i - q_i$ in place of p_i ($i = 1, 2, \dots, n$) to obtain the inequality

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i|z_i] + \sum_{i=1}^n q_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} \times \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i|z_i] + \sum_{i=1}^n q_i[y_i, y_i|z_i]\right)^{\frac{1}{q}} \\
\leq a_0 b_0 - \sum_{i=1}^n p_i[[x_i, y_i|z_i]] + \sum_{i=1}^n q_i[[x_i, y_i|z_i]].$$
(2.8)

On the other hand, applying the well-known discrete Hölder inequality, we get

$$\left(a_{0}^{p} - \sum_{i=1}^{n} p_{i}[x_{i}, x_{i}|z_{i}]\right)^{\frac{1}{p}} \left(b_{0}^{p} - \sum_{i=1}^{n} p_{i}[y_{i}, y_{i}|z_{i}]\right)^{\frac{1}{q}} + \left(\sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}]\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}]\right)^{\frac{1}{q}} \\
\leq \left(a_{0}^{p} - \sum_{i=1}^{n} p_{i}[x_{i}, x_{i}|z_{i}] + \sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}]\right)^{\frac{1}{p}} \\
\times \left(b_{0}^{q} - \sum_{i=1}^{n} p_{i}[y_{i}, y_{i}|z_{i}] + \sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}]\right)^{\frac{1}{q}}.$$
(2.9)

Thus, from (2.8) and (2.9) it follows that

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i|z_i]\right)^{\frac{1}{q}} + \left(\sum_{i=1}^n q_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} \left(\sum_{i=1}^n q_i[y_i, y_i|z_i]\right)^{\frac{1}{q}} \\
\leq a_0 b_0 - \sum_{i=1}^n p_i[x_i, y_i|z_i] + \sum_{i=1}^n q_i[x_i, y_i|z_i],$$

which is equivalent to the second inequality in (2.7). The first inequality in (2.7) is a simple consequence of the weighted Hölder discrete inequality and (PS-4). Namely, we have

$$\left(\sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}]\right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}]\right)^{\frac{1}{q}} \ge \sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}]^{\frac{1}{p}} [y_{i}, y_{i}|z_{i}]^{\frac{1}{q}} \ge \sum_{i=1}^{n} q_{i}[[x_{i}, y_{i}|z_{i}]].$$

This completes the proof.

3. Bellman's Inequality

In this section, we give analogues of the results related to Bellman's inequality in p-semi-inner product spaces. The simplest generalization of Bellman's inequality for p-SIP space is given in the next theorem:

Theorem 3.1. Let $(X, [\cdot, \cdot | \cdot])$ be a p-SIP space and $x, y, z \in X$ be given vectors. If a_0 and b_0 are nonnegative numbers such that

$$[x, x|z] \le a_0^p, [y, y|z] \le b_0^p, (3.1)$$

then we have

$$(a_0^p - [x, x|z])^{\frac{1}{p}} + (b_0^p - [y, y|z])^{\frac{1}{p}} \le ((a_0 + b_0)^p - [x + y, x + y|z])^{\frac{1}{p}}.$$
 (3.2)

We give the proof for thr following more general result:

Theorem 3.2. Let $(X, [\cdot, \cdot|\cdot])$ be a p-SIP space and let $x_i, y_i, z_i \in X$ $(i = 1, 2, \dots, n)$ be given vectors. If a_0, b_0 and p_i $(i = 1, 2, \dots, n)$ are nonnegative numbers such that

$$\sum_{i=1}^{n} p_i[x_i, x_i | z_i] \le a_0^p, \qquad \sum_{i=1}^{n} p_i[y_i, y_i | z_i] \le b_0^p, \tag{3.3}$$

then we have

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} + \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i|z_i]\right)^{\frac{1}{p}} \\
\leq \left[(a_0 + b_0)^p - \sum_{i=1}^n p_i[x_i + y_i, x_i + y_i|z_i]\right]^{\frac{1}{p}}.$$
(3.4)

Proof. Setting $a_i = [x_i, x_i | z_i]^{\frac{1}{p}}$ and $b_i = [y_i, y_i | z_i]^{\frac{1}{p}}$ and then applying Theorem 1.2, we get

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i.x_i|z_i]\right)^{\frac{1}{p}} + \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i|z_i]\right)^{\frac{1}{p}} \\
\leq \left[(a_0 + b_0)^p - \sum_{i=1}^n p_i \left([x_i, x_i|z_i]^{\frac{1}{p}} + [y_i, y_i|z_i]^{\frac{1}{p}} \right)^p \right]^{\frac{1}{p}}.$$
(3.5)

On the other side, by (1.8), we have

$$[x_i, x_i|z_i]^{\frac{1}{p}} + [y_i, y_i|z_i]^{\frac{1}{p}} > [x_i + y_i, x_i + y_i|z_i]^{\frac{1}{p}}$$
 $(i = 1, 2, \dots, n).$

Using these inequalities, we get

$$\sum_{i=1}^{n} p_{i}[x_{i} + y_{i}, x_{i} + y_{i}|z_{i}] \leq \sum_{i=1}^{n} p_{i} \left([x_{i}, x_{i}|z_{i}]^{\frac{1}{p}} + [y_{i}, y_{i}|z_{i}]^{\frac{1}{p}} \right)^{p}$$

$$\leq \left[\left(\sum_{i=1}^{n} p_{i}[x_{i}, x_{i}|z_{i}] \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} [y_{i}, y_{i}|z_{i}] \right)^{\frac{1}{p}} \right]^{p}. \tag{3.6}$$

Now it is easy to obtain (3.4) from (3.5) and (3.6). This completes the proof.

Remark. In the case when n = 1, $p_1 = 1$, $x_1 = x$, $y_1 = y$ and $z_1 = z$, Theorem 3.2 reduces to Theorem 3.1.

As we may expect, am analogue of the result stated in Theorem 1.4 for p-SIP can be also proved:

Theorem 3.3. Let $(X, [\cdot, \cdot|\cdot])$ be a p-SIP space and let $x_i, y_i, z_i \in X$ $(i = 1, 2, \dots, n)$ be given vectors. If a_0, b_0 and p_i, q_i $(i = 1, 2, \dots, n)$ are nonnegative numbers such that the conditions (3.3) are satisfied and

$$0 < q_i < p_i$$
 $(i = 1, 2, \dots, n),$

then we have

$$0 \leq \left[\left(\sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}] \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}] \right)^{\frac{1}{p}} \right]^{p} - \sum_{i=1}^{n} q_{i}[x_{i} + y_{i}, x_{i} + y_{i}|z_{i}]$$

$$\leq (a_{0} + b_{0})^{p} - \sum_{i=1}^{n} p_{i}[x_{i} + y_{i}, x_{i} + y_{i}|z_{i}]$$

$$- \left[\left(a_{0}^{p} - \sum_{i=1}^{n} p_{i}[x_{i}, x_{i}|z_{i}] \right)^{\frac{1}{p}} + \left(b_{0}^{p} - \sum_{i=1}^{n} p_{i}[y_{i}, y_{i}|z_{i}] \right)^{\frac{1}{p}} \right]^{p}.$$

$$(3.7)$$

Proof. Since $0 \le p_i - q_i \le p_i$ $(i = 1, 2, \dots, n)$, from (3.3) it follows that

$$a_0^p - \sum_{i=1}^n (p_i - q_i)[x_i, x_i | z_i] \ge a_0^p - \sum_{i=1}^n p_i[x_i, x_i | z_i] \ge 0$$

and

$$b_0^p - \sum_{i=1}^n (p_i - q_i)[y_i, y_i | z_i] \ge b_0^p - \sum_{i=1}^n p_i[y_i, y_i | z_i] \ge 0.$$

Therefore, we can replace p_i in (3.4) with $p_i - q_i$ $(i = 1, 2, \dots, n)$ to obtain the inequality

$$\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i|z_i] + \sum_{i=1}^n q_i[x_i, x_i|z_i]\right)^{\frac{1}{p}} + \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i|z_i] + \sum_{i=1}^n q_i[y_i, y_i|z_i]\right)^{\frac{1}{p}} \\
\leq \left[(a_0 + b_0)^p - \sum_{i=1}^n p_i[x_i + y_i, x_i + y_i|z_i] + \sum_{i=1}^n q_i[x_i + y_i, x_i + y_i|z_i]\right]^{\frac{1}{p}}.$$
(3.8)

Also, by the Minkowski's inequality, we have

$$\left[\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i | z_i] + \sum_{i=1}^n q_i[x_i, x_i | z_i] \right)^{\frac{1}{p}} + \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i | z_i] + \sum_{i=1}^n q_i[y_i, y_i | z_i] \right)^{\frac{1}{p}} \right]^p \\
\ge \left[\left(a_0^p - \sum_{i=1}^n p_i[x_i, x_i | z_i] \right)^{\frac{1}{p}} + \left(b_0^p - \sum_{i=1}^n p_i[y_i, y_i | z_i] \right)^{\frac{1}{p}} \right]^p \\
+ \left[\left(\sum_{i=1}^n q_i[x_i, x_i | z_i] \right)^{\frac{1}{p}} + \left(\sum_{i=1}^n q_i[y_i, y_i | z_i] \right)^{\frac{1}{p}} \right]^p. \tag{3.9}$$

Now, from the inequalities (3.8) and (3.9), we get the inequality

$$(a_{0} + b_{0})^{p} - \sum_{i=1}^{n} p_{i}[x_{i} + y_{i}, x_{i} + y_{i}|z_{i}] + \sum_{i=1}^{n} q_{i}[x_{i} + y_{i}, x_{i} + y_{i}|z_{i}]$$

$$\geq \left[\left(a_{0}^{p} - \sum_{i=1}^{n} p_{i}[x_{i}, x_{i}|z_{i}] \right)^{\frac{1}{p}} + \left(b_{0}^{p} - \sum_{i=1}^{n} p_{i}[y_{i}, y_{i}|z_{i}] \right)^{\frac{1}{p}} \right]^{p}$$

$$+ \left[\left(\sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}] \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}] \right)^{\frac{1}{p}} \right]^{p},$$

which is equivalent to the second inequality in (3.7). The first inequality in (3.7) is a simple consequence of (1.8) and weighted discrete Minkowski's inequality since we have

$$\left[\left(\sum_{i=1}^{n} q_{i}[x_{i}, x_{i}|z_{i}] \right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} q_{i}[y_{i}, y_{i}|z_{i}] \right)^{\frac{1}{p}} \right]^{p} \ge \sum_{i=1}^{n} q_{i} \left([x_{i}, x_{i}|z_{i}]^{\frac{1}{p}} + [y_{i}, y_{i}|z_{i}]^{\frac{1}{p}} \right)^{p} \\
\ge \sum_{i=1}^{n} q_{i}[x_{i} + y_{i}, x_{i} + y_{i}|z_{i}].$$

This completes the proof.

References

- [1] I. Franić, Two results in 2-normed spaces, Glasnik Matematički 17 No. 37 (1982), 271-275.
- [2] Y. Ho and A. White, A note on p-semi-inner product spaces, Glasnik Matematički 22 No. 42 (1987), 365-370.
- [3] M. Matić and J. Pečarić, On Popoviciu's and Bellman's inequalities, Nonlinear Functional Analysis and Applications 5 No.1 (2000), 85-91.
- [4] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Acad. Publ., 1993.
- [5] A. H. Siddiqui and S. M. Rizvi, 2-semi-inner product space I, Mathematica Japonica 21 (1996), 391-397.

Department of Mathematics Education, College of Education, Gyeongsang National University, Chinju 660-701, KOREA.

Department of Mathematics, University of Split, R. Boškovića bb, 21000 Split, CROATIA.

Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, CROATIA.